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Abstract
Tuna is an economically significant seafood, harvested throughout the world, and is heavily traded due to its high nutritional 
quality and consumer acceptance. Tuna meat is rich in essential nutrients such as amino acids, polyunsaturated fatty acids 
(PUFA), and trace minerals. The huge volume of solid and liquid sidestreams generated during the processing stages of 
tuna is creating environmental and socioeconomic challenges in coastal areas. Different products such as fish meal, protein 
hydrolysates, collagen, enzymes, oil, and bone powder can be produced from tuna sidestreams. Using different nutrient 
recovery technologies like enzymatic hydrolysis, chemical processing, and green technologies, various categories of product 
value chains can be created in line with the conventional processing industry. This review attempts to provide a route map 
for the tuna industry for achieving the circular blue-bioeconomic objectives and reorient the irregular utilization pattern 
into a sustainable and inclusive path.
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Introduction

Seafood is an essential component of most food security pro-
grams being a comparatively cost-effective protein resource 
worldwide. In 2020, the total world seafood production of 
179.8 million metric tons (MT) contributed around 157.4 MT 
directly for human consumption (at 20.2 kg per capita rate) 
(FAO 2022). The European Commission (2018) predicts that 
by 2050, the demand for seafood may increase by up to 60% 
along with the increasing global population, which is expected 
to reach 9.8 billion by that time. Seafood supply is confronting 
numerous challenges such as population-induced demand pres-
sure, changing consumer preferences, overfishing, bycatch, spe-
cies depletion, aquatic pollution, global warming, biodiversity 
alterations, and acidification of ocean water (Venugopal 2022). 

The key issue often associated with aquatic food production is 
the production of large amount of sidestreams which creates 
a huge loss of nutrients if discarded irresponsibly. The side-
streams are the unutilized parts like the skin, bones, and viscera 
which are equally rich in nutrients as the edible parts but are fre-
quently discarded (Venugopal and Sasidharan 2022). System-
atic attempts to transform the existing aquatic food production 
systems into a sustainable mode are therefore required (FAO 
et al. 2021). In this scenario, new technological approaches 
which at the same time reduce food loss and wastage and also 
can valorize the resulting sidestreams into valuable products 
should be introduced (Venugopal 2022).

The tuna, occasionally known as the “chicken of the sea,” 
is one of the major marine fish varieties given its contribu-
tion toward the seafood trade in value, volume, and nutri-
tional significance. It belongs to the Scombridae family 
and consists of around 15 species, the major ones being the 
albacore tuna (Thunnus alalunga), bigeye tuna (Thunnus 
obesus), Atlantic bluefin tuna (Thunnus thynnus), Pacific 
bluefin tuna (Thunnus orientalis), skipjack tuna (Katsuwo-
nus pelamis), and yellowfin tuna (Thunnus albacares). These 
tuna species are distributed widely along Pacific, Atlantic, 
and Indian Oceans (Allain et al. 2016). The major harvest-
ing methodologies involve purse seines, gillnets, long lines, 
hand lines, and pole lines. FAO reported tuna catches of 7.8 
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million tonnes in 2020 (FAO 2022). In 2020, the worldwide 
export of tuna and tuna-like fishes (Bonitos and Bill fishes) 
was worth USD 14.6 billion contributing around 9.7 percent 
by value of total aquatic product exports (FAO 2022).

The market trade of the species is divided into two broad 
categories, processed and preserved tuna meat and the supe-
rior quality fresh tuna meat, meant for the sushi and sashimi 
market. The processed and preserved category consists of 
canned, fresh, or frozen, largely based on loins which con-
stitute up to 50% of the fish (Herpandi et al. 2011). Atlan-
tic, Pacific, and Southern bluefin tuna are preferred for the 
sushi and sashimi market and are therefore the most valu-
able (Metian et al. 2014). The higher demand and reduced 
catches over the years have resulted in an increasing trend in 
aquaculture of bluefin tuna especially in Japan, Spain, Malta, 
Croatia, Mexico, and Australia (FAO 2022).

The global tuna industry is facing numerous sustainability 
challenges. As the tuna are highly migratory and predatory, 
any sustainability issue associated with the stocks could per-
colate down to the entire pelagic ecosystem of the oceans. 
Tuna fishing vessels are usually industrial trawlers with sig-
nificant ecological impact associated with their bycatch, and 
in addition, around 43% of tuna fish stocks are exploited 
at unsustainable levels (FAO 2020). For the fisheries to be 
operated at a sustainable level, it is important with optimal 
utilization of the available tuna resources. Environmental, 
social, and economic sustainability measures must be intro-
duced in the consumption pattern. The recovery of valuable 
nutritional components from the otherwise discarded side-
streams through different valorization methods and reintro-
ducing the components into human food chain could address 
some of the nutrition deficiency issues of many food-inse-
cure populations (Hicks et al. 2019). Other than the han-
dling cost involved, food loss and sidestream generation are 
generally attributed to insufficient logistics, technological 
inadequacy, and consumer behavior (Chauhan et al. 2021). 
These parameters can also vary geographically, for example, 
insufficient logistics and technological inadequacy are gen-
erally attributed to underdeveloped or developing countries 
and poor consumer awareness with the developed nations 
(Gustavsson et al. 2011).

In the underdeveloped and developing countries, the most 
significantly affected resources are the water bodies adjacent 
to the processing facilities as the overloading of the nutrients 
from seafood sidestreams discarded may result in eutrophi-
cation and increase in water pollution indicators (Sasidharan 
et al. 2013). In the case of European nations, the newly intro-
duced measures like landing obligation regulations prevent 
open water discards (EC 2021), and the landed discards and 
sidestreams create new challenges regarding handling and 
processing. The economic perspective of food loss and wast-
age (FLW) should also be considered while addressing the 
management of sidestreams. The blue economic approach 

involves ocean resource utilization patterns targeted for 
attaining economic growth, enhanced employment oppor-
tunities, ocean ecosystem health, and interlinking of all the 
traditional and evolving engagements including fisheries 
associated with it (World Bank 2017). Fisheries, aquacul-
ture, and associated processing systems form an integral part 
of the blue economy. They have interlinking influence with 
other components along with the externalities that are gener-
ated. One of the ten social injustices as described by Bennett 
et al. (2019) is the challenge of pollution and sidestreams, 
which has the potential to upset the blue economy balance. 
Even though there are many works which discuss seafood 
sidestream management in general (Thirukumaran et al. 
2022; Sasidharan and Venugopal 2020) and raw material 
specifically (Zou et al. 2023), a comprehensive review on the 
valorization potential of tuna sidestreams is not available. 
This could be of interest for the academic and industrial 
community involved in tuna-related fisheries, aquaculture, 
and processing. In light of this, this article attempts to evalu-
ate the variety of sidestreams generated during the different 
tuna pre-processing, processing, and preservation methods 
and explore the technologies available to recover the nutri-
tional constituents effectively and thus to provide the stake-
holders to frame productive resource recovery road maps for 
sustainable utilization of the tuna fish resources.

Yield and recovery options for tuna 
sidestreams from processing operations

Different processing and pre-processing methods yield 
different quantities of tuna sidestreams. The fillet yield of 
yellowfin tuna (Thunnus albacares) is estimated as 45% and 
the rest (55%) consist of belly flap, bone, skin, tail, gut, and 
head (Murthy et al. 2014). Canning, one of the important 
value addition operations in tuna processing, is reported to 
produce up to 70% of solid sidestream comprised of dark 
meat, head, skin, and bone (Sasidharan and Venugopal 2020). 
Sayana and Sirajudheen (2017) observed that approximately 
36% of sidestream is generated during tuna processing with 
head being 17%, skin 8%, viscera 5%, bones 4%, and fins 2%. 
Fluence (2019) reported that a tuna cannery processing around 
200 tons of raw material per day could discharge around 1300 
 m3 effluents. Figure 1 represents the flow of tuna sidestreams 
during various processing activities. Tuna is nutritionally rich 
in all the essential nutritional components. Table 1 depicts 
the proximate composition of various commercial tuna 
species, and it is evident that the tuna fish is a good source of 
high-value protein. The amino acid and fatty acid profiles of 
different commercial tuna species (Tables 2 and 3) confirm 
the presence of essential amino acids as well as fatty acids 
such as eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA). This shows that the sidestreams generated from 
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Fig. 1  Tuna sidestream genera-
tion and yield

Table 1  Proximate composition 
of commercial tuna species

Sl. no. Tuna species Moisture Protein Lipid Ash Reference

1. Yellowfin tuna (Thunnus albacares) 73.6 23.5 1.9 1.5 Peng et al. 2013
2. Bigeye tuna (Thunnus obesus) 72.9 23.7 2.1 1.8 Peng et al. 2013
3. Atlantic bluefin tuna (Thunnus thynnus) 63.3 21 11 4.7 Topic Popovic et al. 2012
4. Albacore tuna (Thunnus alalunga) 58.8 23.5 16 1.6 Wheeler (2002)
5. Pacific bluefin tuna (Thunnus orientalis) 68.6 ± 25 0.6 1.9 Roy et al. 2010
6. Skipjack tuna (Katsuwonus pelamis) 73.3 24 0.4 1.4 Mahaliyana et al. 2015

Table 2  Amino acid composition of different body parts of commercial tuna species

Amino acids Yellowfin tuna  
(Thunnus albacares)

Bigeye tuna  
(Thunnus obesus)

Atlantic bluefin tuna 
(Thunnus thynnus)

Pacific bluefin tuna 
(Thunnus orientalis)

Skipjack tuna  
(Katsuwonus pelamis)

Serine 3.23 3.12 3.72 26.7 2.69
Tyrosine 3.19 3.14 1.95 19.8 2.54
Proline 3.08 2.99 5.19 2.7 –
Aspartic acid 8.29 8.11 12.45 5.2 7.35
Glutamic acid 12.45 11.28 10.90 73.7 11.22
Glycine 3.75 3.66 13.96 3.2 4.83
Alanine 5.14 5.02 22 32.3 5.04
Cystine 0.44 0.49 – – –
Arginine 5.11 4.96 1.98 34.2 4.85
Threonine 3.85 3.75 6.85 24.8 3.30
Valine 4.54 4.63 8.2 19.1 4.25
Methionine 2.55 2.76 2.04 15.4 2.16
Isoleucine 4.06 4.01 9.15 15.5 3.89
Leucine 6.99 6.86 17.75 38.7 5.89
Phenylalanine 3.30 3.32 5.88 21.1 3.23
Lysine 8.19 7.93 14.86 41.3 6.29
Tryptophan 0.88 0.86 – 7.0 –
Histidine 5.49 5.26 6.10 17.4 6.72
References Peng et al. 2013 Peng et al. 2013 Balestrieri et al. 1978 Cho et al. 2022 Doe et al. 2020
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the tuna processing operations could be considered equally 
valuable in nutritional components as the edible portions. 
The hydrolysates prepared from tuna processing sidestream 
possess good nutritional attributes (Herpandi et al. 2011) 
with considerable proportion of essential fatty acids with 
yield levels up to 7% (Taati et al. 2018). The dark muscle 
of tuna is one of the important solid sidestreams generated 
from the processing operations. Tuna dark muscle has been 
reported to make up to 48% of the body weight in species 
like yellowfin tuna. The distinct biochemical difference 
regarding the tuna dark muscle when compared to light 
muscle is the high fat, blood pigment, and iron content, 
which makes the tuna dark muscle a potential product for 
extracting value-added components like PUFA (Messina 
et al. 2022).

Protein recovery options

The technique to recover the protein from any seafood solid 
sidestream is to either convert it into a meal with oil as one 
of the products or subject it to partial or complete hydrolysis 
with or without oil recovery. The conventional meal 
preparation involves vigorous high-temperature cooking 

processes resulting in the loss of valuable nutrients (Abraha 
et al. 2018). Protein hydrolysis by using endogenous or 
commercial enzymes could be utilized to produce valuable 
protein-based ingredients from the tuna sidestreams. Even 
though autolysis-assisted hydrolysis has been frequently 
used, enzymatic hydrolysis with exogenous enzymes 
has evolved as the common and commercially applied 
technology for the recovery of essential and biologically 
active protein components (Chalamaiah et al. 2012).

Tuna silage

The nutritional potential of tuna silage has been demon-
strated in many studies. Spanopoulos-Hernandez et  al. 
(2010) prepared biological silage using smoked yellowfin 
tuna filleting residue fermented with sugar cane molasses 
and Lactobacillus casei strain Shirota as the commercial 
inoculum for six days, which produced a silage with accept-
able properties for application in animal feed. Ramli (2014) 
was successful in preparing fermented silage from tuna 
sidestreams using inoculums of Lactobacillus plantarum 
(1A-2) and Lactobacillus plantarum (1BL-2) in different 
culture concentrations, resulting in nutritionally superior 

Table 3  Fatty acid composition of commercial tuna species

Fatty acids Yellowfin tuna  
(Thunnus albacares)

Bigeye tuna  
(Thunnus obesus)

Atlantic bluefin tuna 
(Thunnus thynnus)

Pacific bluefin tuna 
(Thunnus orientalis)

Skipjack tuna  
(Katsuwonus pelamis)

14:0 1.3 1.66 2.92 2.9 2.02
15:0 0.6 0.73 – 0.4 0.66
16:0 26.18 24.55 16.21 17.8 21.88
16:1 3.08 3.42 3.98 3.7 2.49
16:2 – – 0.58 – –
16:4 – – 0.68 – –
17:0 1.47 1.07 – – –
17:1 0.83 0.92 – 0.4 –
18:0 – – 4.95 6.2 11.69
18:1 20.32 24.19 25.85 15.5 10.03
18:2n-6 1.31 0.92 1.25 1.0 1.38
18:3n-3 – – 0.86 1.2 0.13
18:4n-3 – – 1.54 – –
20:0 0.55 0.85 – 6.3 –
20:1n-7 – – 4.29 – –
20:2 – – – – –
20:4n-6 – – 1.05 1.3 0.32
20:4n-3 – – 0.87 –
20:5n-3 1.25 3.27 6.51 6.9 4.74
22:1n-7 – – 3.51 – –
22:5n-6 – – 1.74 – –
22:6n-3 16.91 20.22 16.24 22.3 35.66
References Peng et al. 2013 Peng et al. 2013 Topic Popovic et al. 

2012
Nakamura et al. 2007 Mahaliyana et al. 2015
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hydrolysate. Mousavi et al. (2013) prepared tuna silage 
from canning sidestreams of three different species of tuna 
using three different methods and found that the biologi-
cal method was the optimum with ideal pH (4) suitable for 
shrimp feed applications. Filipe et al. (2017) prepared acid 
silage from tuna viscera achieving 61.7% solubilization and 
88.5% digestibility of the crude protein.

Tuna hydrolysate

The process of hydrolysis cleaves complex protein molecules 
down to peptide and amino acid components which could 
be commercially utilized to develop food and feed ingredi-
ents for human as well as animal populations. Saidi and Ben 
Amar (2016) utilized enzymatic hydrolysis with Prolyve BS 
enzyme to transform the tuna dark muscle sidestream into 
tuna protein hydrolysate (TPH). The hydrolysate exhibited 
elevated oil and water-binding capacity, emulsifying capac-
ity, foam stability, higher radical scavenging activity, and 
a higher iron chelating activity in comparison with other 
similar fractions. A TPH was prepared from the dark muscle 
of tuna by Saidi et al. (2013) using Alcalase and Neutrase as 
the enzyme producing a TPH with a significant amount of a 
peptide fraction of about 1–4 kDa of molecular weight with 
a balanced composition of essential amino acids (EAA). 
Chi et al. (2015) observed that the peptide fraction with a 
molecular weight less than 1 kDa in the tuna dark muscle 
hydrolysate prepared using the Neutrase enzyme exhibited 
superior radical scavenging activity. Chotikachinda et al. 
(2018) prepared tuna viscera hydrolysate for application in 
aquatic feed using different endo and exopeptidase enzyme 
sources with different degrees of hydrolysis from Bacillus 
licheniformis, Aspergillus oryzae, and B. amyloliquefaciens, 

with positive nutritional effects. Table 4 indicates the key 
highlights regarding the techniques adapted for tuna side-
stream hydrolysate recovery.

Application of recovered tuna protein hydrolysate 
in animal nutrition

Tuna sidestream meal and hydrolysates have been widely 
used as a nutritional component in different animal dietary 
formulations. Even though different nutritional studies 
incorporating tuna sidestream as a protein supplement has 
been reported in various animal species, the studies were 
mainly concentrated on pig and poultry nutrition (Anuraj 
et al. 2014; Widjastuti et al. 2011) and feed for popular 
aquaculture species such as Pacific white shrimp (Litope-
naeus vannamei) (Hernández et al. 2017), Asian seabass 
or barramundi (Lates calcarifer) (Chaklader et al. 2021), 
and Nile tilapia (Oreochromis niloticus) (Kim et al. 2019). 
The aquatic feed industry provides a commercially promis-
ing arena for tuna sidestream valorization as a potential fish 
meal substitute.

Pig and poultry nutrition

Anuraj et al. (2014) studied the impact of dietary inclusion 
of tuna sidestream silage on the growth parameters of Large 
White Yorkshire pigs and found tuna silage to be an excel-
lent source of nutrition for pigs. In a feeding experiment 
with thirty-six weaned Large White Yorkshire piglets, tuna 
sidestream silage mixed with rice bran was used which gen-
erated comparable growth parameters with that of standard 
fish meal-based diet (Yathavamoorthi et al. 2015). Widjastuti 
et al. (2011) utilized tuna sidestream silage prepared from 

Table 4  Technique adaptation for tuna sidestream protein hydrolysis

Sl. no. Sidestream source Enzyme/substrate/technique Properties/results References

1 Tuna dark muscle Prolyve BS enzyme in combination 
with ultrafiltration (UF) and nanofil-
tration (NF) (10 min @ 50°C)

Oil and water binding capacity, 
emulsifying capacity, foam stability, 
radical scavenging activity, iron 
chelating activity

Saidi and Amar 2016

2 Tuna dark muscle Alcalase and Neutrase (1 h @ 55°C) Peptide fraction with a molecular 
weight of 1–4 kDa and balanced 
composition of essential amino 
acids (EAA)

Saidi et al. 2013

3 Tuna viscera Autolysis (10 days @ 33°C, 35°C, and 
55°C)

Hydrolysate with radical scavenging 
activity

Detkamhaeng et al. 2016

4 Tuna dark and white muscle Papain (240 min @ 55°C) Hydrolysate with high protein content 
(72%)

Dana et al. 2019

5 Tuna viscera Endoproteinase (source: Bacillus 
licheniformis), endoproteinase and 
exopeptidase (source: Aspergillus 
oryzae), and endoproteinase (source: 
B. amyloliquefaciens) (10 min @ 
50°C)

Rich in essential nutrients for feed 
application

Chotikachinda et al. 2018
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Thunnus atlanticus as a dietary ingredient for broiler chicken 
in varying concentrations concluding that 4% inclusion of 
tuna sidestream silage gave positive response in broilers 
regarding body weight and meat protein conversion.

Shrimp nutrition

Fish meal replacement studies were conducted by Hernández 
et al. (2017) by utilizing tuna sidestream silage and soybean 
meal in the diet of Pacific white shrimp (Litopenaeus van-
namei). The 41-day feed trial inferred that 25% inclusion 
of tuna sidestream silage along with 75% of soybean meal 
generated comparable growth results with that of fish meal 
control. Lactic acid fermentation methodology was used to 
prepare tuna sidestream hydrolysate, and this was further 
used as a feed ingredient in the diet of Pacific white shrimp 
(Litopenaeus vannamei) in combination with porcine meat 
meal (Hernández et al. 2011). It was observed that the L. 
vannamei shrimps fed with feed supplemented with 5% of 
tuna sidestream hydrolysate reported a significant increase 
in weight gain (8.6 g), feed conversion ratio (FCR) (1.3), 
and specific growth rate (5.1% per day) compared to the 
control. These results were credited to the effect of tuna side-
stream hydrolysate which served as an attractant as well as 
an enhancer of protein digestibility and protein quality of 
the formulations.

Fin fish nutrition

Six-week feeding trials were conducted by Chaklader et al. 
(2021) to understand the fish meal replacement potential of 
poultry sidestream meal supplemented with tuna sidestream 
hydrolysate and insect larvae, on the growth, nutritional, 
sensory, and gut microbial characteristics of juvenile bar-
ramundi (Lates calcarifer). The study demonstrated that 
simultaneous combination of tuna sidestream hydrolysate 
and insect larvae could significantly improve the effect of 
poultry sidestream meal-based diets on the growth, meat 
quality, gut health, and immune traits of barramundi juve-
niles in comparison to fish meal. Siddik et al. (2019) used 
tuna sidestream hydrolysate as a co-supplement with poultry 
sidestream meal in the diet of Lates calcarifer and found 
that the poultry and tuna sidestream meals when comple-
mented together generated significant increase in growth, 
immunity, intestinal health, and Vibrio harveyi resistance 
in juvenile barramundi. An eight-week feeding trial was 
conducted by Tola et al. (2022) to examine the effect of 
tuna hydrolysate supplementation on growth performance 
and health status of juvenile barramundi (Lates calcarifer). 
The study demonstrated that a 2.5% tuna hydrolysate dietary 
supplementation is sufficient to enhance the diet palatability 
of a low fish meal diet formulated with 55% replacement of 
fish meal with soybean meal without negative impact on 

feed intake and growth performance of juvenile barramundi. 
Kim et al. (2019) demonstrated that tuna sidestream-based 
ingredients are a potential candidate for fish meal replace-
ment in tilapia (Oreochromis niloticus) aquaculture as the 
heavy metal residues are within the food safety limits (<0.5 
mg  kg−1) which is estimated to significantly reduce the feed 
expenditure along with other fish meal alternatives in tilapia 
farming. Mokolensang et al. (2021) conducted feeding trials 
on juvenile tilapia with a combination of tuna sidestream 
meal and blood meal. The study revealed that the combina-
tion of 20% of each significantly increased the weight gain 
and specific growth ratio. Table 5 gives an overview of tuna 
sidestream products application in animal nutrition.

Tuna protein hydrolysate as a source of bioactive 
peptides

The marine environment, compared to fresh and brackish 
water, provides certain conditions such as scarcity of light, 
significant salt concentrations, and water pressure that can 
create unique amino acid sequences (Li et al. 2020) with 
interesting and significant biological properties (Eghtedari 
et al. 2021). These bioactive peptide fragments generally 
consists of 2 to 20 amino acids are usually liberated from 
plant, microbial, or animal-based proteins through chemi-
cal, biological, or enzymatic degradation of protein mol-
ecules (Suo et al. 2022). In addition to the nutritional value, 
the bioactive peptides have important health significance 
owing to their significant biological properties such as anti-
oxidant (Wen et al. 2020), anti-inflammatory (Chakrabarti 
and Wu 2015), antihypertensive (Zhu et al. 2022), hypolipi-
demic (Wang et al. 2020), anticancer, and immunoregula-
tory (Chalamaiah et al. 2018) functions. Tuna being a rich 
source of protein provides an opportunity for the industry to 
extract valuable bioactive peptides from different sidestream 
sources.

Kiettiolarn et  al. (2022) standardized the hydrolysis 
parameters for harvesting antioxidant peptides from tuna 
cooking juice concentrate (TCJC). The ideal hydrolysis 
conditions of Alcalase quantity (2.2% w/v) and hydrolysis 
period (281 min) resulted in maximum DPPH scavenging 
activity of 66.5% or 0.98 μmol Trolox/mg protein. The 
vacuum-dried portions (<5 kDa and >10 kDa) reported 
elevated DPPH radical scavenging activity, ABTS radical 
scavenging activity, and ferric-reducing antioxidant capacity. 
Unnikrishnan et al. (2021) utilized tuna (Thunnus albac-
ares) dark meat, a by-product available from the canning 
industry as a source of antioxidant peptides. Enzymatic 
hydrolysis using papain with enzyme to substrate concentra-
tion of 0.98% E/S (w/w), hydrolysis time 240 min at 60°C, 
and pH 6.5 was found to be the ideal conditions. Wang 
et al. (2022b) prepared protein hydrolysate from the milt 
of skipjack tuna (Katsuwonus pelamis) utilizing different 
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proteolytic enzymes after defattening and a microwave 
pre-treatment. Hydrolysate prepared using Neutrase with a 
degree of hydrolysis of 29.5% had antioxidant properties, 
and approximately 13 oligopeptides with antioxidant activity 
were identified. Cai et al. (2022a) extracted myeloperoxidase 
enzyme activity inhibiting antioxidative peptides from tuna 
protein utilizing enzymatic (Alcalase) hydrolysis followed 
by purification with ultrafiltration and Sephadex G-15 gel 
filtration. Fifty-three of the 55 peptide sequences identi-
fied showed myeloperoxidase enzyme activity inhibiting 
property. Zhang et al. (2019) utilized heads of skipjack tuna 
(Katsuwonus pelamis) from canning industry to isolate anti-
oxidant peptides by employing enzymatic hydrolysis (pepsin 
and trypsin). Around 6 antioxidant peptides were isolated 
and purified using ultrafiltration and chromatography sepa-
ration techniques. Peptides with high antioxidant activity 
were isolated from the cardiac arterial bulbs of skipjack 
tuna (Katsuwonus pelamis) by Cai et al. (2022b). Pepsin-
assisted enzymatic hydrolysis conditions were standardized 
for the purpose. Utilizing ultrafiltration and chromatogra-
phy, around eleven antioxidant peptide components were 
isolated, including four tripeptides and seven pentapeptides 
which showed elevated radical scavenging activities, protec-
tion against oxidative stress. Roe from skipjack tuna (Kat-
suwonus pelamis) were utilized by Wang et al. (2022a), to 
produce antioxidant peptides. The roes were defatted and 
subjected to microwave pre-treatment and then subjected to 
hydrolysis with 5 protease enzymes. The tuna roe protein 
hydrolysate generated using Flavourzyme reported maxi-
mum DPPH radical scavenging activity. Around 12 antioxi-
dant peptides have been further isolated using ultrafiltration 
and electrophoretic methods. Some of the peptide fractions 
exhibited significant inhibition to lipid peroxidation, ferric 
reduction capacity, and protection of changes in Chang liver 
cells induced by  H2O2.

Recovery of collagen and gelatin from tuna skin

Gelatin is a hydrolytically degraded form of collagen, which 
is obtained from different animal components such as skin, 
connective tissue, tendons, and bones. There are 27 different 
varieties of this structural protein among which type I is the 
most common (Jiang 2015). Collagen has limited solubility 
which could be overcome by controlled denaturation through 
hydrolysis, transforming it into a functional, water-soluble 
polymer component called gelatin with wide application in 
the pharmaceutical, cosmetic, biomedical, and food indus-
try (Kumar et al. 2017). The demand for this versatile bio-
component has been on the rise in recent times achieving 
a global production of 0.45 million tons in 2018 with an 
economical contribution of around 4.52 billion USD (Tkac-
zewska et al. 2018). Typically, 29–23% of the gelatin pro-
duced are from bovine skin and bones, 46% from pig skin, 

and 1.5% from fish (Sultana et al. 2018). This indicates the 
potential of seafood sidestreams to be utilized as a bovine 
or porcine alternative.

The concentration of imino acids such as proline and 
hydroxyproline which makes up to 12% of the collagen 
can be considered as an indicator of collagen content in 
that particular tissue (Risteli and Risteli 2006). The sea-
food gelatin sourced from fishes like tuna was observed to 
have an imino acids content of 17–20% (Shyni et al. 2014) 
while the mammalian gelatins were observed to have 30% 
(Poppe 1992). Glycine extracted from tuna is reported to 
constitute up to 32% of glycine of the total amino acid 
content along with a substantial proportion of hydroxypro-
line, proline, and alanine (Venugopal 2021). Tuna gelatin 
was also reported to have a viscosity 4.37cP and a bloom 
value of 177 (Shyni et al. 2014), while the commercial 
bovine collagen reported a viscosity of 13cP (Johnston-
Banks 1990) and a bloom value up to 300 (Karim Rajeev 
and Bhat 2009). To overcome such shortcomings, attempts 
are being made to improve the gelation parameters of fish 
gelatin by incorporating polysaccharides from natural 
sources such as gellan and sodium alginate (Huang et al. 
2019; Sow et al. 2019). Because of the religious concerns 
associated with mammalian gelatin, there is a trend to 
find alternative sources. Seafood processing sidestreams 
could be utilized as a good source for extracting gelatin to 
it (Hermida-Merino et al. 2022). Tuna as one of the largest 
marine pelagic seafood categories produces considerable 
quantities of processing sidestreams such as skin and bone, 
which qualifies it as a potential source for the extraction 
of fish gelatin.

Tuna collagen

Several methods have been used to isolate/extract colla-
gen from tuna sidestreams. Ahmed et al. (2018) explored 
the possibilities of replacing pepsin derived from porcine 
sources with bacterial collagenolytic proteases for col-
lagen extraction. The total collagen yield was reported 
to be from 17 to 18% for both the strains with FTIR and 
SDS-PAGE analysis confirming their type I characteristics. 
Kaewdang et al. (2014) extracted acid and enzyme (pepsin) 
soluble collagen from yellowfin tuna (Thunnus albacares) 
swim bladders. The yield was around 1.07% for collagen 
extracted using the acid method and 12.10% for collagen 
extracted using pepsin. The electrophoretic analysis proved 
that the extracted collagens were of type I. Ahmed et al. 
(2019) extracted collagen from the skin, scale, and bone of 
big eye tuna (Thunnus obesus) using both acid and enzy-
matic (pepsin) methodologies with corresponding yields 
of 13.5% and 16.7% from skin, 4.6% (pepsin) from scale, 
and 2.6% (pepsin) from bones, respectively. They reported 
that all the extracted collagens were of type I with elevated 
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thermal transition (31.6–33.7 °C) and denaturation values 
(31.1–32.2 °C). A method for extracting acid soluble col-
lagen from the skin of albacore tuna (Thunnus alalunga) 
was studied by Hema et al. (2013). The extracted collagen 
was of type I with glycine (33%) being the dominant amino 
acid with high values of hydroxyproline (8%) and a yield of 
13.97% (w/v of tuna skin).

Tuna gelatin

Montero and Acosta (2020) optimized the acid-based 
extraction conditions of yellowfin tuna (Thunnus albac-
ares) skin gelatin. The acid concentration, treatment time, 
and treatment temperature were found to have a significant 
effect on gelatin yield and physical properties. The process 
was also successfully scaled up to a ratio of 80:1 (pilot 
scale:laboratory scale). Karayannakidis et al. (2014) ana-
lyzed the effect of acid concentration, pre-treatment time, 
extraction temperature, and extraction time on the yield, gel 
strength, viscosity, melting point, and sensory properties 
of gelatin extracted from the skin of yellowfin tuna (Thun-
nus albacares). The study showed that the ideal condition 
includes an initial alkaline pre-treatment in two stages with 
a following acid pre-treatment (0.1 mol/L acetic acid for 1 
h) and later extracting at 55°C with water for 6 h. Membrane 
filtration was explored by Montero et al. (2022), in extract-
ing tuna skin gelatin. The gelling and melting temperature 
of the tuna gelatin and the retentates was within a range of 
10–13.4°C and 18–20.6°C, respectively. The gel strength 
values of the retentates from the different membranes were 
between 228 and 440 g as maximum force. Azhar et al. 
(2018) evaluated the effect of different alkaline and acidic 
pre-treatments on bigeye tuna skin. The study concluded 
that the experiment with 0.1% alkaline (NaOH) and acidic 
 (H2SO4) treatment and a soaking period of 48 h with a 60 
°C hot water extraction for 5 h was the ideal combination 
for the extraction of gelatin from tuna skin based on the 
physical and chemical properties analyzed. Table 6 depicts 
the highlights of the technologies adapted for extraction of 
type I collagen/gelatin from tuna sidestreams.

Tuna sidestreams as a source of enzymes

Enzymes are an important biochemical component in major 
physiological functions of organisms including human beings. 
The digestive enzymes aid in the breakdown of nutritional 
components in the diet which are necessary for building and 
repairing body tissue as well as controlling major functions in 
the human body (Patil et al. 2022). The modern lifestyle along 
with aging has been reported to significantly affect the human 
digestive system (Patil et al. 2022). The secretion of proteolytic 
enzymes such as pepsin was reported to decrease by 40% in 
the geriatric population due to various health conditions (Lee 

et al. 2022) which further results in a reduced ability to absorb 
nutrients from the diet (Buamard et al. 2020). This indicates 
the significance of supplementing digestive enzymes for the 
affected populations through diet to mitigate the challenge. 
Popularly bovine and porcine-isolated pepsin is commercially 
used for this purpose (Jurado et al. 2012). Around 60% of the 
total enzyme market is made up by the protease enzymes with 
numerous applications in industries such as detergent, leather, 
food, paper, photography, and bioremediation (Naveed et al. 
2021). These enzymes could also be applied in therapeutics for 
inflammation and lesions (Fazilat 2016). Religious and cultural 
taboos have accelerated the search for alternative sources for 
digestive enzymes which has further aroused the interest 
in seafood sidestreams as a source for digestive enzymes 
(Nalinanon et al. 2010). The tuna viscera which is discarded 
as sidestream during the pre-processing stages is rich in 
proteolytic pepsinogen enzymes due to its stringent predatory 
diet. This provides an opportunity to the commercial enzyme 
industry to explore the possibilities to utilize tuna sidestreams 
as alternative source for enzyme harvesting.

Crude pepsin with comparable levels of hydrolytic activ-
ity to commercial pepsin extract was prepared from tuna 
viscera by Patil et al. (2022). Pasaribu et al. (2018) extracted 
pepsin from tuna (Thunnus albacares) visceral wall fluid 
using Tris-HCl buffer and fractional precipitation with 
ammonium sulfate and dialysis. The extracted crude pepsin 
(30–40% fraction) had a specific activity of 4.274 U/mg. 
Trypsin-like serine proteinases isolated from albacore tuna 
(Thunnus alalunga) spleen were found to have ideal enzyme 
activity at pH 9.5 and 50°C (Poonsin et al. 2017). Proteases 
extracted from albacore tuna (Thunnus alalunga) liver were 
observed to be with in the molecular weight range of 21–34 
kDa (Sripokar et al. 2016).

Recovery options for oil and liquid sidestreams 
from tuna processing

Tuna processing methods such as canning involve stages 
like pre-cooking, to ensure the ideal textural, color, micro-
bial, and moisture levels are maintained in the final prod-
uct. These pre-processing methods generate considerable 
quantities of solid and liquid sidestreams, rich in semisolids 
and fat that can be an open opportunity for the industry to 
recover these valuable nutritional components (Venugopal 
and Sasidharan 2021). Tuna canning industry produces 
condensates and liquid components which are abundant in 
proteins and fat (Sanchart et al. 2018b). Tuna oil is reported 
to be a rich source of EPA (5.11%) and DHA (23.89%) with 
a total PUFA content of 43% (Su Xiurong et al. 2015). Dif-
ferent techniques are employed for extraction of lipid from 
seafood sidestreams throughout the industry among which 
wet reduction is the most common.
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Table 6  Collagen/gelatin extraction from tuna sidestreams

Sl. no. Tuna species Sidestream source Type of collagen Extraction conditions and yield References

1 Bigeye tuna (Thunnus obesus) Skin Type I Collagenolytic proteases from 
Bacillus cereus (FORC005) 
and Bacillus cereus (FRCY9-
2)

Collagen yield:
FORC005: 188 g/kg
FRCY9-2: 177 g/kg

Ahmed et al. 2018

2 Albacore tuna  
(Thunnus alalunga)

Skin Type I 0.5M acetic acid
Collagen yield: 13.97%

Hema et al. 2013

3 Bigeye tuna  
(Thunnus obesus)

Skin Type I Alkaline/acid pre-treatment 
(0.1% NaOH and  H2SO4)

Soaking time: 48 h at hot water 
extraction: 60 °C for 5 h

Gelatin yield: 19.67%

Azhar et al. 2018

4 Yellowfin tuna  
(Thunnus albacares)

Swim bladders Type I Acid and pepsin hydrolysis
Pre-treatment: 0.15 M NaOH 

1:10 (w/v) at 4°C
Defattening: 10% butyl alcohol 

sample/solvent ratio of 1:10 
(w/v) for 12 h

Acid
Hydrolysis: 0.5 M acetic acid 

with a sample to solvent ratio 
of 1:10 (w/v) for 48 h at 4°C. 
Pepsin hydrolysis: 0.5 M 
acetic acid containing crude 
stomach extract (20 units/g 
swim bladder) using a solid/
solution ratio of 1:10 (w/v) 
for 48 h at 4°C

Collagen yield:
Acid method: 1.07%
Pepsin method: 12.10%

Kaewdang et al. 2014

5 Skipjack tuna  
(Katsuwonus pelamis)

Spine and skull Type I Acid and pepsin hydrolysis
Pre-treatment: 0.01 mol·L−1 

NaOH at a solid to alkali 
solution ratio of 1:10 (W/V) 
for 6 h demineralized with 
0.5 mol·L−1 EDTA-2Na (pH 
7.4) (solid to solution ratio 
1:10W/V) for 48 h

0.5 mol·L−1 acetic acid with a 
solid to solvent ratio of 1:15 
(W/V) for 48 h

Yield (spine):
Acid method: 2.47%
Pepsin method: 5.62%
Gelatin yield (skull):
Acid method: 3.57%
Pepsin method: 6.71%

Yu et al. 2014
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Nazir et al. (2017) utilized tuna heads for extracting lipids 
using wet reduction, acid ensilation, and solvent extraction. 
Wet rendering resulted in the highest yield (12.8%) followed 
by solvent extraction (8.49%) and acid silage (6.16%). Taati 
et al. (2018) extracted oil from tuna sidestreams using wet 
reduction and enzyme extraction. Both methods gave a 
similar yield for EPA and DHA (27.3% and 29.32%). Side-
streams from Atlantic bluefin tuna (Thunnus thynnus) were 
used by Cutajar et al. (2022) for the extraction of oil employ-
ing three different methods: cold extraction, warm extrac-
tion, and enzymatic (pepsin) extraction. The enzyme extrac-
tion method resulted in maximum yield (29%) compared 
to other methods with a high content of EPA and DHA. 
Ferdosh et al. (2016b) utilized supercritical fluid extraction 
with carbon dioxide for extraction of lipid components from 
long tail tuna (Thunnus tonggol) heads under standardized 
conditions. de Oliveira et al. (2017) extracted oil from the 
head of yellowfin tuna (Thunnus albacares) using physi-
cal reduction, solvent extraction, and enzymatic separation 
with a PUFA yield of 39% for enzymatically isolated tuna 
oil. Suriani and Komansilan (2019) utilized sidestream oil 
from tuna canning industry to enrich and separate omega-3 
fatty acids using urea crystallization technique. The con-
centrated oil was reported to have a PUFA concentration 
of 73%. Messina et al. (2022) utilized urea complexation 
and short path distillation (SPD) to enrich the PUFA frac-
tion obtained from tuna oil recovered from the filleting side-
streams of bluefin tuna (Thunnus thynnus) and obtained a 
PUFA content of 85%. SPD was also employed by Messina 

et al. (2021) to enrich the PUFA fraction of the fatty acid 
ethyl esters obtained from refined viscera oil of farmed gilt-
head sea bream (Sparus aurata) obtaining a concentration 
of PUFA of 56%. Transesterification was used by Rosyadi 
et al. (2020) to convert oil from the tuna canning industry 
sidestream into biodiesel. The biodiesel obtained reported 
fuel characteristics such as density (849 kg/m3), viscosity 
(3.53 cSt), moisture content (0.6%), calorific value (9390 
cal/gr), flash point (84° C), and acid number (3.6343 mg 
KOH/gr), respectively.

Khongnakorn and Youravong (2016) isolated protein 
from tuna cooking juice using forward osmosis as a low-
energy intensive process, which elevated the protein recov-
ery concentration to the level of 9% with a standard perme-
ate flux (2.54 L/m2h). Kanpairo et al. (2012) prepared spray 
dried tuna flavor powder from tuna pre-cooking juice from 
the canning industry. The pre-cooking juice was initially 
concentrated through centrifugation to achieve a total solu-
ble solid level of 15%. The process produced a tuna flavor 
powder with a pale brown coloration having moisture per-
centage of 4.63–7.46%, protein content of 28.49–42.06%, 
and an ash content of 3.44–4.25%. The extracted tuna flavor 
powder finds potential application as a flavoring agent in 
human as well as pet food. Ahmed et al. (2017) compared 
supercritical carbon dioxide extraction (SE) method and tra-
ditional Soxhlet extraction method using hexane (HE) for 
isolating oil from tuna sidestreams such as skin, scales, and 
bones. The SE oil was superior to the HE with respect to 
lower heavy metal concentration, better color, viscosity, and 

Table 6  (continued)

Sl. no. Tuna species Sidestream source Type of collagen Extraction conditions and yield References

6 Big eye tuna (Thunnus obesus) Skin, scale, and bone Type I Acid and pepsin hydrolysis
Pre-treatment: 0.1 M NaOH 

with continuous stirring for 
24 h, 40 volumes of 0.5 M 
acetic acid for 3 days treated 
with 0.5% pepsin of 250 units/
mg dry matter (w/v) (0.2 g 
pepsin/g of substrate) in 40 
volumes of 0.5 M acetic acid 
for 48 h

Collagen yield (skin):
Acid method: 13.5%
Pepsin method: 16.7%
Yield (scales):
Pepsin method: 4.6%
Yield (bones):
Pepsin method: 2.6%

Ahmed et al. 2019

7 Yellowfin tuna  
(Thunnus albacares)

Skin Type I Alkaline pre-treatment in two 
stages with a following acid 
pre-treatment (0.1 mol/L 
acetic acid for 1 h) and later 
extracting at 55°C with water 
for 6 h

Gelatin yield (skin): 11.02%

Karayannakidis et al. 2014
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lower acid, peroxide, and free fatty acid values. SE method 
was also utilized by Ferdosh et al. (2016a) to extract fish 
oil from tuna sidestreams with positive results reporting 
a PUFA yield of 48.93%. Šimat et al. (2020) qualitatively 
evaluated different tuna sidestreams such as tuna entrails and 
tuna liver for estimating the potential for fish oil extraction. 
The tuna entrails reported a total fish oil yield of 26.1% and 
tuna liver a total fish oil yield of 33.4%, emphasizing the oil 
extraction potential of the tuna sidestreams.

Miscellaneous technologies adopted for tuna 
sidestream recovery

Apart from widely adopted technologies such as meal pro-
duction and hydrolysate, gelatin, and enzyme extraction 
from tuna sidestreams, many other technologies have been 
introduced for isolating different nutritional components 
from the rest raw materials. Yoon et al. (2019) prepared pro-
tein isolates from yellowfin tuna (Thunnus albacares) roe 
using isoelectric solubilization precipitation (ISP) technique. 
The protein isolates from tuna roe were found to exhibit 
good buffering capacity, foaming ability, and emulsifying 
ability including antioxidative and antihypertensive activ-
ity. Sanchart et al. (2018a) utilized tuna condensate, a liquid 
sidestream available from the canning industry to isolate 
gamma-aminobutyric acid (GABA) via glutamic acid by 
converting glutamine, demonstrating the suitability of tuna 
canning sidestreams to be utilized as a source for extrac-
tion of GABA on an industrial scale. Sumogod et al. (2020) 
extracted hyaluronic acid (HA) from yellowfin tuna (Thun-
nus albacares) eyeballs through standardized process of tis-
sue extraction, tissue hydrolysis through enzymatic method, 
cetylpyridinium chloride (CPC)-sodium chloride (NaCl)-
induced precipitation, filtration, diafiltration, and alkaline 
hydroalcoholic precipitation followed by freeze drying. 
The ideal isolation conditions were observed to be recov-
ery and fractionation concentration (3% CPC:3M NaCl) 
and supernatant:ethanol ratio (1:3 mL·mL−1) for alcoholic 
precipitation. Murthy et al. (2014) extracted bone powder 
from yellowfin tuna (Thunnus albacares) through alkaline 
deproteinization, drying, and pulverizing. The bone powder 
was analyzed for elemental composition and was found to be 
a rich source of calcium and phosphorus with a Ca:P ratio of 
2.5–3.3:1. The powder was also found to be devoid of any 
heavy metal impurities such as cadmium and mercury. Pal-
lela et al. (2011) isolated microstructured and nanostructured 
hydroxyapatite (HAp) from big eye tuna (Thunnus obesus) 
bone through thermal calcination technique in the presence 
of synthetic polymers. The study demonstrated that the 
hydroxyapatite produced in the presence of the polymers 
had better crystallinity and biocompatibility properties.

Green extraction techniques for tuna 
sidestream recovery

Other than the conventional processes used for the 
recovery of tuna sidestreams, which usually employs 
strong chemicals, dangerous to the environment, expensive, 
and highly water consuming during the washing and 
neutralization stages, there are green technologies 
available to be employed for a more safe and sustainable 
recovery process (Venugopal and Sasidharan 2022). The 
green processes are generally less toxic with minimal 
environmental impact, with reusable option and highly 
efficient in extraction potential (Vicente et al. 2022). The 
sustainable technologies which come under the green 
category are enzymatic processes, methanogenesis, 
microbial fermentation, photosynthesis, oleaginous 
processes (Venugopal and Sasidharan 2022), ultrasound-
assisted techniques, high hydrostatic pressure, microwave-
assisted processes, pulsed electric field, dense phase carbon 
dioxide, membrane filtration, supercritical and subcritical 
fluids (Ali et al. 2021), and utilization of green solvents 
like water, ionic solvents, liquid polymers, acetone, 
methanol, ethanol, and propanol (Vicente et al. 2022). 
Saidi et al. (2014) hydrolyzed tuna dark muscle sidestream 
using Alcalase and applied a combined process of ultra 
and nanomembrane filtration in order to isolate peptides 
according to their molecular weight (1–4 kDa) with 
positive results. Yoon et al. (2019) successfully isolated 
fish roe protein from yellowfin tuna (Thunnus albacares) 
using alkaline solubilization and acid precipitation (pH 
11/4.5). Isoelectric solubilization/precipitation (ISP) 
was successfully employed by Lee et  al. (2016) for 
isolating tuna roe proteins from yellowfin tuna under 
several solubilization and precipitation conditions. The 
study observed that the isolated proteins maintained the 
functional and nutritional characteristics of the native 
protein. Cha et al. (2020) also utilized ISP method for 
isolating roe protein from skipjack tuna with similar results. 
de Oliveira et al. (2016) extracted oil from tuna sidestreams 
using enzymatic hydrolysis with Alcalase with an enzyme 
to sidestream ratio of 1:200 (w/w) at 60°C for 120 minutes 
and pH 6.5. Fang et al. (2019) compared different green 
technologies like supercritical carbon dioxide f luid 
extraction (SFE-CO2), subcritical dimethyl ether extraction 
(SDEE), and enzymatic extraction (EE) for extracting tuna 
oil rich in n-3 polyunsaturated fatty acids (PUFAs), vitamin 
D, and vitamin A from tuna liver sidestreams. The green 
technologies when compared to traditional extraction 
methods were successful in preventing the loss of valuable 
nutrients like vitamins as well as avoiding the deterioration 
of PUFA. Figure 3 shows the green technology options 
applicable to sidestream resource recovery from tuna.
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Future outlook

A seafood sidestream valorization system with a circular eco-
nomic perspective is necessary to foster an ecosystem with envi-
ronmental socioeconomic sustainability (Bhat 2021). Similarly, 
tuna sidestream biomass, which is an integral part of the blue 
bioeconomy, could be transformed into a circular economic 
framework, if proper utilization technologies are adopted. This 
is also important in the context of the Sustainable Develop-
ment Goals (SDGs), proposed by the United Nations aiming 
to achieve an end to different disparities in the food delivery 
system such as poverty and hunger by the year 2030 (United 
Nations 2015). The SDG 14 and 12.3 are particularly important 
considering seafood sidestream management as they concen-
trate on sustainable development of the marine environment 

and reducing food sidestream and food losses including the 
seafood sidestreams (Duarte et al. 2020). For successful imple-
mentation of the sidestream utilization and management plan, 
the tuna processing industry also needs to address certain chal-
lenges in the near future. One such challenge is the availability 
of proper logistics and handling infrastructure to guarantee the 
quality of the sidestreams generated over the period of time to 
sustain a sidestream valorization industry (Shahidi et al. 2019; 
Shavandi et al. 2019; Coppola et al. 2021). Another roadblock 
which needs to be addressed is the availability of valorization 
technologies. These are mostly developed at a laboratory scale 
rather than industrial scale. This limits their industrial adapta-
tion, and they need to be upscaled into a biorefinery concept 
in the most cost-effective manner possible (Mohan et al. 2020; 
Coppola et al. 2021). Other than those, an awareness among the 

Fig. 2  The circular blue 
economy perspective of tuna 
sidestream valorization

Fig. 3  Green technologies for 
tuna sidestream valorization
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stakeholders regarding the status of sidestreams as an equiva-
lent raw material as of the primary produce needs to be gener-
ated (Guillen et al. 2018; Mo et al. 2018). Figure 2 represents 
the circular blue bioeconomical perspective of tuna sidestream 
valorization as a blueprint for policymakers and industrialists 
to align their tuna utilization cycle with sustainable goals put 
forward by the United Nations.

Conclusion

The tuna fisheries in general are currently facing sustain-
ability issues associated with the fishing methods as well as 
the huge quantity of sidestreams generated during the pre-
processing and processing stages. The systematic utilization 
of solid and liquid sidestreams generated is essential to make 
sure the significant quantity of nutritional components asso-
ciated with the sidestreams is available for the consumers in 
the form of value-added products. This article highlights the 
potential of tuna processing sidestreams as a valuable raw 
material for resource recovery. Protein, one of the prominent 
components of the tuna solid sidestreams, can be recovered 
as collagen, gelatin, hydrolysate, meal, and bioactive pep-
tides with numerous applications in food, packaging, phar-
maceutical, and animal nutrition industry. The fat from the 
sidestreams can be recovered as PUFA or converted into bio-
fuel. The liquid sidestreams from tuna processing also hold 
potential for recovery of lipid and flavor components. The 
identification of these potential technologies along with their 
advantages and disadvantages can help the industry to adopt 
the optimum process according to the type and quantity of 
their sidestreams. Complementation of such technologies 
into the production process can ultimately result in more 
economically circular and sustainable tuna fisheries (Fig. 3).
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