Skip to main content
Log in

A review of self-cleaning coatings for solar photovoltaic systems: theory, materials, preparation, and applications

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Photovoltaic power generation is developing rapidly with the approval of The Paris Agreement in 2015. However, there are many dust deposition problems that occur in desert and plateau areas. Traditional cleaning methods such as manual cleaning and mechanical cleaning are unstable and produce a large economic burden. Therefore, self-cleaning coatings, which have unique mechanisms and high adaptability, have attracted wide attention in the photovoltaic industry and scientific community, especially the super-hydrophobic and super-hydrophilic coatings. The paper systematically reviewed the theory, materials, preparation, and applications of the super-hydrophobic and super-hydrophilic coatings on the photovoltaic modules. Super-hydrophobic materials such as organosilicon compounds, fluorinated polymers, and some inorganic materials are popular. TiO2 is widely used to prepare super-hydrophilic coatings on glass covers of photovoltaic panels due to its good photocatalytic activity. CVD-based surface treatment is suitable for preparing photovoltaic self-cleaning surfaces. These methods prepare self-cleaning surfaces by reacting gaseous substances with hot surfaces and depositing them on the surface. They are efficient but difficult to control accuracy. When applied to photovoltaic modules, it is crucial to consider the factors such as self-cleaning, transparency, anti-reflection, anti-icing, and durability. In future research, it is significant to improve the transparency, durability, and self-cleaning properties of coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adden N, Gamble LJ, Castner DG, Hoffmann A, Gross G, Menzel H (2006) Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir 22(19):8197–8204

    CAS  Google Scholar 

  • Aruna ST, Binsy P, Richard E, Basu BJ (2012) Properties of phase separation method synthesized super-hydrophobic polystyrene films. Appl Surf Sci 258(7):3202–3207

    CAS  Google Scholar 

  • Ball P (1999) Engineering Shark skin and other solutions. Nature 400(6744):507–509

    CAS  Google Scholar 

  • Banerjee S, Dionysios D, Pillai SC et al (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176:396–428

    Google Scholar 

  • Bayer IS (2020) Super-hydrophobic coatings from ecofriendly materials and processes: a review. Adv Mater Interfaces 7(13):2000095

    CAS  Google Scholar 

  • Cai Z, Lin J, Hong X (2018) Transparent super-hydrophobic hollow films (TSHFs) with superior thermal stability and moisture resistance. RSC Adv 8(1):491–498

    CAS  Google Scholar 

  • Cao C, Ge M, Huang J, Li S, Deng S, Zhang S et al (2016) Robust fluorine-free super-hydrophobic PDMS–ormosil@ fabrics for highly effective self-cleaning and efficient oil–water separation. J Mater Chem A 4(31):12179–12187

    CAS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    CAS  Google Scholar 

  • Chakraborty A, Mulroney AT, Gupta MC (2021) Super-hydrophobic surfaces by microtexturing: a critical review. Prog Adhes Adhes 6:621–649

    Google Scholar 

  • Chen Y, Zhang Y, Shi L, Li J, Xin Y, Yang T et al (2012) Transparent super-hydrophobic/super-hydrophilic coatings for self-cleaning and anti-fogging. Appl Phys Lett 101(3):033701

    Google Scholar 

  • Dalawai SP, Aly MAS, Latthe S, Xing R, Sutar RS, Nagappan S et al (2020) Recent advances in durability of super-hydrophobic self-cleaning technology: a critical review. Prog Org Coat 138:105381

    CAS  Google Scholar 

  • Darband GB, Aliofkhazraei M, Khorsand S, Sokhanvar S, Kaboli A (2020) Science and engineering of super-hydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability. Arab J Chem 13(1):1763–1802

    Google Scholar 

  • Das S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) A review on super-hydrophobic polymer nanocoatings: recent development and applications. Ind Eng Chem Res 57(8):2727–2745

    CAS  Google Scholar 

  • Dorrer C, Rühe J (2009) Some thoughts on super-hydrophobic wetting. Soft Matter 5(1):51–61

    CAS  Google Scholar 

  • Elbert DL, Hubbell JA (1996) Surface treatments of polymers for biocompatibility. Annu Rev Mater Sci 26(1):365–394

    CAS  Google Scholar 

  • El-Shobokshy MS, Hussein FM (1993) Degradation of photovoltaic cell performance due to dust deposition on to its surface. Renew Energy 3(6–7):585–590

    CAS  Google Scholar 

  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Super-hydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2(1):152–161

    CAS  Google Scholar 

  • Fadeev AY, Helmy R, Marcinko S (2002) Self-assembled monolayers of organosilicon hydrides supported on titanium, zirconium, and hafnium dioxides. Langmuir 18(20):7521–7529

    CAS  Google Scholar 

  • Fan D, Dong B, Wang S, Zhao L, Wan L, Xu Z et al (2015) Research process of Self-cleaning technologies on solar panels. Mater Rev 29(10):111–115

    CAS  Google Scholar 

  • Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc 126(1):62–63

    CAS  Google Scholar 

  • Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322

    CAS  Google Scholar 

  • Ge JC, Kim JH, Choi NJ (2016) Electrospun polyurethane/loess powder hybrids and their absorption of volatile organic compounds. Adv Mater Sci Eng 2016

  • Gholami A, Saboonchi A, Alemrajabi AA (2017) Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications. Renew Energy 112:466–473

    Google Scholar 

  • Gong X, He S (2020) Highly durable super-hydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability. ACS Omega 5(8):4100–4108

    CAS  Google Scholar 

  • Goossens D, Van Kerschaever E (1999) Aeolian dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance. Sol Energy 66(4):277–289

    Google Scholar 

  • Guo ZG, Liu WM, Su BL (2008) A stable lotus-leaf-like water-repellent copper. Appl Phys Lett 92(6):063104

    Google Scholar 

  • Guo Z, Liu W (2007) Biomimic from the super-hydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci 172(6):1103–1112

    CAS  Google Scholar 

  • Hegazy AA (2001) Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renew Energy 22(4):525–540

    CAS  Google Scholar 

  • He G, Zhou C, Li Z (2011) Review of self-cleaning method for solar cell array. Proc Eng 16:640–645

    Google Scholar 

  • Herminghaus S (2000) Roughness-induced non-wetting. Europhys Lett 52(2):165

    Google Scholar 

  • Hooda A, Goyat MS, Pandey JK, Kumar A, Gupta R (2020) A review on fundamentals, constraints and fabrication techniques of super-hydrophobic coatings. Prog Org Coat 142:105557

    CAS  Google Scholar 

  • Hou W, Shen Y, Tao J, Xu Y, Jiang J, Chen H et al (2020) Anti-icing performance of the super-hydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids Surf, A 586:124180

    CAS  Google Scholar 

  • Hsieh CT, Yang SY, Lin JY (2010) Electrochemical deposition and super-hydrophobic behavior of ZnO nanorod arrays. Thin Solid Films 518(17):4884–4889

    CAS  Google Scholar 

  • Jeevahan J, Chandrasekaran M, Britto Joseph G, Durairaj RB, Mageshwaran J (2018) Super-hydrophobic surfaces: a review on fundamentals, applications, and challenges. J Coat Technol Res 15(2):231–250

    CAS  Google Scholar 

  • Jia W, Kharraz JA, Guo J, An A (2020) Super-hydrophobic (polyvinylidene fluoride-co-hexafluoropropylene)/(polystyrene) composite membrane via a novel hybrid electrospin-electrospray process. J Membr Sci 611:118360

    CAS  Google Scholar 

  • Joshi DN, Atchuta SR, Reddy YL, Arkoti NK, Sakthivel S (2019) Super-hydrophilic broadband anti-reflective coating with high weather stability for solar and optical applications. Sol Energy Mater Sol Cells 200:110023

    CAS  Google Scholar 

  • Jung Y, Jung K, Park SH, Kim DH, Kwak DH, Tak HJ et al (2022) Room temperature synthesis of highly transparent CuO and Cu(OH)2 nanowire films via a simple wet chemical method. Appl Surf Sci 590:153083

    Google Scholar 

  • Khan MZ, Militky J, Baheti V, Fijalkowski M, Wiener J, Voleský L et al (2020) Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on super-hydrophobic and UV-blocking properties. Cellulose 27(17):10519–10539

    CAS  Google Scholar 

  • Kumar A, Nanda D (2019) Methods and fabrication techniques of superhydrophobic surfaces. Superhydrophobic Polymer Coatings. Elsevier, pp 43–75

  • Kumar N, Ravikumar MNV, Domb AJ (2001) Biodegradable block copolymers. Adv Drug Deliv Rev 53(1):23–44

    CAS  Google Scholar 

  • Lai Y, Tang Y, Gong J, Gong D, Chi F, Lin C et al (2012) Transparent super-hydrophobic/super-hydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J Mater Chem 22(15):7420–7426

    CAS  Google Scholar 

  • Latthe SS, Sutar RS, Kodag VS, Bhosale AK, Kumar AM, Sadasivuni KK et al (2019a) Self–cleaning super-hydrophobic coatings: potential industrial applications. Prog Org Coat 128:52–58

    CAS  Google Scholar 

  • Latthe SS, Sutar RS, Bhosale AK, Nagappan SH, Chang-SikSadasivuni KK, ShanhuXing R (2019b) Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Prog Org Coat 137:105373

    CAS  Google Scholar 

  • Latthe SS, Sutar RS, Shinde TB, Pawar SB, Khot TM, Bhosale AK et al (2019c) Superhydrophobic leaf mesh decorated with SiO2 nanoparticle-polystyrene nanocomposite for oil-water separation. Acs Appl Nano Mater 2(2):799–805

    CAS  Google Scholar 

  • Li B, Ouyang Y, Haider Z, Zhu Y, Qiu R, Hu S et al (2021) One-step electrochemical deposition leading to super-hydrophobic matrix for inhibiting abiotic and microbiologically influenced corrosion of Cu in seawater environment. Colloids Surf, A 616:126337

    CAS  Google Scholar 

  • Li Q, Yan Y, Yu M, Shi S, Gong Y (2016) Synthesis of polymeric fluorinated sol–gel precursor for fabrication of super-hydrophobic coating. Appl Surf Sci 367:101–108

    CAS  Google Scholar 

  • Liao Y, Zheng G, Huang JJ, Tian M, Wang R (2020) Development of robust and super-hydrophobic membranes to mitigate membrane scaling and fouling in membrane distillation. J Membr Sci 601:117962

    Google Scholar 

  • Liu G, Xia H, Niu Y, Yan M, Li H, Song L (2022) Preparation and performance of photocatalytic NO degradation superhydrophobic coatings for tunnel. Environ Sci Pollut Res 29(35):53420–53432

    CAS  Google Scholar 

  • Liu L, Shan X, Hu X, Lv W, Wang J (2021) Super-hydrophobic silica aerogels and their layer-by-layer structure for thermal management in harsh cold and hot environments. ACS Nano 15(12):19771–19782

    CAS  Google Scholar 

  • Liu S, Latthe SS, Yang H, Liu B, Xing R (2015a) Raspberry-like superhydrophobic silica coatings with self-cleaning properties. Ceram Int 41(9):11719–11725

    CAS  Google Scholar 

  • Liu S, Liu X, Latthe SS, Gao L, An S, Yoon SS et al (2015b) Self-cleaning transparent superhydrophobic coatings through simple sol–gel processing of fluoroalkylsilane. Appl Surf Sci 351:897–903

    CAS  Google Scholar 

  • Liu S, Xu Q, Latthe SS, Gurav AB, Xing R (2015c) Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation. RSC Adv 5:68293

    CAS  Google Scholar 

  • Love JC, Wolfe DB, Haasch R, Chabinyc ML, Paul KE, Whitesides GM et al (2003) Formation and structure of self-assembled monolayers of alkanethiolates on palladium. J Am Chem Soc 125(9):2597–2609

    CAS  Google Scholar 

  • Lu H, Cai R, Zhang LZ, Li L, Longfei Z (2020) Experimental investigation on deposition reduction of different types of dust on solar PV cells by self-cleaning coatings. Sol Energy 206:365–373

    Google Scholar 

  • Luo Z, Zhang Z, Hu L, Liu W, Guo Z, Zhang H et al (2008) Stable bionic super-hydrophobic coating surface fabricated by a conventional curing process. Adv Mater 20(5):970–974

    CAS  Google Scholar 

  • Mahadik SA, Mahadik SS (2021) Surface morphological and topographical analysis of multifunctional super-hydrophobic sol-gel coatings. Ceram Int 47(20):29475–29482

    CAS  Google Scholar 

  • Mardosaitė R, Jurkeviciute A, Rackauskas S (2021) Super-hydrophobic ZnO nanowires: wettability mechanisms and functional applications. Cryst Growth Des 21(8):4765–4779

    Google Scholar 

  • Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, Riehle MO (2005) Super-hydrophobicity and super-hydrophilicity of regular nanopatterns. Nano Lett 5(10):2097–2103

    CAS  Google Scholar 

  • Milionis A, Loth E, Bayer IS (2016) Recent advances in the mechanical durability of superhydrophobic materials. Adv Coll Interface Sci 229:57–79

    CAS  Google Scholar 

  • Moghadam SG, Parsimehr H, Ehsani A (2021) Multifunctional super-hydrophobic surfaces. Adv Coll Interface Sci 290:102397

    Google Scholar 

  • Mohamed AMA, Abdullah AM, Younan NA (2015) Corrosion behavior of super-hydrophobic surfaces: a review. Arab J Chem 8(6):749–765

    CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343

    CAS  Google Scholar 

  • Notsu H, Kubo W, Shitanda I, Tatsuma T (2005) Super-hydrophobic/super-hydrophilic patterning of gold surfaces by photocatalytic lithography. J Mater Chem 15(15):1523–1527

    CAS  Google Scholar 

  • Nundy S, Ghosh A, Mallick TK (2020) Hydrophilic and super-hydrophilic self-cleaning coatings by morphologically varying ZnO microstructures for photovoltaic and glazing applications. Adv Mater 5(2):1033–1039

    CAS  Google Scholar 

  • Nundy S, Ghosh A, Mesloub A, Noaime E, Touahmia M (2022) Comfort analysis of hafnium (Hf) doped ZnO coated self-cleaning glazing for energy-efficient fenestration application. Materials 15(14):4934

    CAS  Google Scholar 

  • Nundy S, Ghosh A, Tahir A et al (2021) Role of hafnium doping on wetting transition tuning the wettability properties of ZnO and doped thin films: self-cleaning coating for solar application. ACS Appl Mater Interfaces 13(21):25540–25552

    CAS  Google Scholar 

  • Ogawa T, Ding B, Sone Y, Shiratori S (2007) Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology 18(16):165607

    Google Scholar 

  • Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies[J]. Renew Sust Energ Rev 15(3):1625–1636

    CAS  Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34

    CAS  Google Scholar 

  • Parvate S, Dixit P, Chattopadhyay S (2020) Super-hydrophobic surfaces: insights from theory and experiment. J Phys Chem B 124(8):1323–1360

    CAS  Google Scholar 

  • Pellerite MJ, Dunbar TD, Boardman LD, Wood EJ (2003) Effects of fluorination on self-assembled monolayer formation from alkanephosphonic acids on aluminum: Kinetics and structure. J Phys Chem B 107(42):11726–11736

    CAS  Google Scholar 

  • Piliougine M, Canete C, Moreno R, Carretero J, Hirose J, Ogawa S et al (2013) Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates. Appl Energy 112:626–634

    Google Scholar 

  • Quan YY, Jiang PG, Zhang LZ (2014) Development of fractal ultra-hydrophobic coating films to prevent water vapor dewing and to delay frosting. Fractals 22(03):1440002

    Google Scholar 

  • Ravi K, Sulen WL, Bernard C, Ichikawa Y, Ogawa K (2019) Fabrication of micro-/nano-structured super-hydrophobic fluorinated polymer coatings by cold-spray. Surf Coat Technol 373:17–24

    CAS  Google Scholar 

  • Roslizar A, Dottermusch S, Vüllers F, Kavalenka MN, Guttmann M, Schneider M et al (2019) Self-cleaning performance of super-hydrophobic hot-embossed fluoropolymer films for photovoltaic modules. Sol Energy Mater Sol Cells 189:188–196

    CAS  Google Scholar 

  • Ryu J, Kim K, Park JY, Hwang BG, Ko YC, Kim HJ et al (2017) Nearly perfect durable super-hydrophobic surfaces fabricated by a simple one-step plasma treatment. Sci Rep 7(1):1–8

    Google Scholar 

  • Sarkın AS, Ekren N, Sağlam Ş (2020) A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol Energy 199:63–73

    Google Scholar 

  • Sas I, Gorga RE, Joines JA, Thoney KA (2012) Literature review on super-hydrophobic self-cleaning surfaces produced by electrospinning. J Polym Sci, Part b: Polym Phys 50(12):824–845

    CAS  Google Scholar 

  • Shahid M, Maiti S, Adivarekar RV (2022) Biomaterial based fabrication of superhydrophobic textiles — a review. Mater Today Chem (24-):24

  • Shen H, Ie IR, Yuan CS, Hung C, Chen W (2016) Removal of elemental mercury by TiO2 doped with WO3 and V2O5 for their photo-and thermo-catalytic removal mechanisms. Environ Sci Pollut Res 23:5839–5852

    CAS  Google Scholar 

  • Shyichuk AV, White JR, Craig IH, Syrotynska ID (2005) Comparison of UV-degradation depth-profiles in polyethylene, polypropylene and an ethylene–propylene copolymer. Polym Degrad Stab 88(3):415–419

    CAS  Google Scholar 

  • Simpson JT, Hunter SR, Aytug T (2015) Super-hydrophobic materials and coatings: a review. Rep Prog Phys 78(8):086501

    Google Scholar 

  • Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization-a review. Plasma Processes Polym 3(6–7):392–418

    CAS  Google Scholar 

  • Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D et al (2005) Artificial lotus leaf by nanocasting. Langmuir 21(19):8978–8981

    CAS  Google Scholar 

  • Sun S, Leggett GJ (2007) Micrometer and nanometer scale photopatterning of self-assembled monolayers of phosphonic acids on aluminum oxide. Nano Lett 7(12):3753–3758

    CAS  Google Scholar 

  • Sutar RS, Nagappan S, Bhosale AK, Sadasivuni KK, Park KH, Ha CS et al (2021) Super-hydrophobic Al2O3–polymer composite coating for self-cleaning applications. Coatings 11(10):1162

    CAS  Google Scholar 

  • Syafiq A, Pandey AK, Adzman NN, Rahim NA (2018a) Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol Energy 162:597–619

    Google Scholar 

  • Syafiq A, Vengadaesvaran B, Pandey Ak, Rahim NA (2018b) Superhydrophilic smart coating for self-cleaning application on glass substrate. J Nanomater 6412601

  • Tao G, Gong A, Lu J, Sue HJ, Bergbreiter DE (2001) Surface functionalized polypropylene: synthesis, characterization, and adhesion properties. Macromolecules 34(22):7672–7679

    CAS  Google Scholar 

  • Tian M, Su Y, Zheng H, Pei G, Li G, Riffat S (2018) A review on the recent research progress in the compound parabolic concentrator (CPC) for solar energy applications. Renew Sustain Energy Rev 82:1272–1296

    Google Scholar 

  • Tian X, Verho T, Ras RHA (2016) Moving superhydrophobic surfaces toward real-world applications. Science 352(6282):142–143

    CAS  Google Scholar 

  • Tuo Y, Chen W, Zhang H, Li P, Liu X (2018) One-step hydrothermal method to fabricate drag reduction super-hydrophobic surface on aluminum foil. Appl Surf Sci 446:230–235

    CAS  Google Scholar 

  • Vivar M, Herrero R, Anton I, Martínez-Moreno F, Moretón R, Sala G et al (2010) Effect of soiling in CPV systems. Sol Energy 84(7):1327–1335

    Google Scholar 

  • Wan Y, Chen M, Liu W, Shen X, Min Y, Xu Q (2018) The research on preparation of super-hydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance. Electrochim Acta 270:310–318

    CAS  Google Scholar 

  • Wang D, Sun Q, Hokkanen MJ, Zhang C, Lin F, Liu Q et al (2020) Design of robust superhydrophobic surfaces. Nature 582(7810):55–59

    CAS  Google Scholar 

  • Wang N, Tang L, Tong W, Xiong D (2018a) Fabrication of robust and scalable super-hydrophobic surfaces and investigation of their anti-icing properties. Mater Des 156:320–328

    Google Scholar 

  • Wang N, Wang Q, Xu S (2022) A review on applications of super-hydrophobic materials in civil engineering. Adv Eng Mater 24(6):2101238

    Google Scholar 

  • Wang P, Xie J, Ni L, Wan L, Ou K, Zheng L et al (2018b) Reducing the effect of dust deposition on the generating efficiency of solar PV modules by super-hydrophobic films. Sol Energy 169:277–283

    Google Scholar 

  • Wang S, Li Y, Fei X, Sun M, Zhang C, Li Y et al (2011) Preparation of a durable super-hydrophobic membrane by electrospinning poly (vinylidene fluoride)(PVDF) mixed with epoxy–siloxane modified SiO2 nanoparticles: A possible route to super-hydrophobic surfaces with low water sliding angle and high water contact angle. J Colloid Interface Sci 359(2):380–388

    CAS  Google Scholar 

  • Wang Y, Wang W, Zhong L, Wang J, Jiang Q, Guo X (2010) Super-hydrophobic surface on pure magnesium substrate by wet chemical method. Appl Surf Sci 256(12):3837–3840

    CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Trans Faraday Soc 28(8):988–994

    CAS  Google Scholar 

  • Wong WSY, Stachurski ZH, Nisbet DR, Tricoli A (2016) Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks. ACS Appl Mater Interfaces 8(21):13615–13623

    CAS  Google Scholar 

  • Wu Y, Kouno M, Saito N, Nae F, Inoue Y, Takai O (2007) Patterned hydrophobic–hydrophilic templates made from microwave-plasma enhanced chemical vapor deposited thin films. Thin Solid Films 515(9):4203–4208

    CAS  Google Scholar 

  • Xiao X, Xie W, Ye Z (2019) Preparation of corrosion-resisting super-hydrophobic surface on aluminium substrate. Surf Eng 35(5):411–417

    CAS  Google Scholar 

  • Xie A, Cui J, Chen Y, Lang L, Li C, Yan Y et al (2019) One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation. Surf Coat Technol 361:19–26

    CAS  Google Scholar 

  • Xie L, Tang Z, Jiang L, Breedvel V, Hess DW (2015) Creation of super-hydrophobic wood surfaces by plasma etching and thin-film deposition. Surf Coat Technol 281:125–132

    CAS  Google Scholar 

  • Yan H, Yuanhao W, Hongxing Y (2017) TEOS/silane coupling agent composed double layers structure: a novel super-hydrophilic coating with controllable water contact angle value. Appl Energy 185:2209–2216

    CAS  Google Scholar 

  • Yan S, Li M, Sun L, Jiao Q (2018) Fabrication of nano-and micron-sized spheres of CL-20 by electrospray. Central Eur J Energ Mater 15(4):572–589

    CAS  Google Scholar 

  • Yan YY, Gao N, Barthlott W (2011) Mimicking natural super-hydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing super-hydrophobic surfaces. Adv Coll Interface Sci 169(2):80–105

    CAS  Google Scholar 

  • Yang C, Huang Y, Li F, Li T (2016) One-step synthesis of Bi2WO6/TiO2 heterojunctions with enhanced photocatalytic and super-hydrophobic property via hydrothermal method. J Mater Sci 51(2):1032–1042

    CAS  Google Scholar 

  • Yeganeh M, Mohammadi N (2018) Super-hydrophobic surface of Mg alloys: a review. J Magnes Alloys 6(1):59–70

    CAS  Google Scholar 

  • Yin Y, Huang R, Zhang W, Zhang M, Wang C (2016) Super-hydrophobic–super-hydrophilic switchable wettability via TiO2 photoinduction electrochemical deposition on cellulose substrate. Chem Eng J 289:99–105

    CAS  Google Scholar 

  • Yong J, Chen F, Yang Q, Huo J, Hou X (2017) Superoleophobic surfaces. Chem Soc Rev 46(14):4168–4217

    CAS  Google Scholar 

  • Yong J, Yang Q, Chen F, Zhang D, Du G, Bian H (2014) Super-hydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Appl Surf Sci 288:579–583

    CAS  Google Scholar 

  • You JB, Chen CC, Dou LT, Murase S, Duan HS, Hawks SA et al (2012) Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells. Adv Mater 24(38):5267–5272

    CAS  Google Scholar 

  • Yu X, Wang Z, Jiang Y, Zhang X (2006) Surface gradient material: from superhydrophobicity to superhydrophilicity. Langmuir 22(10):4483–4486

    CAS  Google Scholar 

  • Zhang J, Lu X, Huang W, Han Y (2010) Reversible super-hydrophobicity to super-hydrophilicity transition by extending and unloading an elastic polyamide film. Macromol Rapid Commun 26(6):477–480

    Google Scholar 

  • Zhang L, Zhao N, Xu J (2012) Fabrication and application of superhydrophilic surfaces: a review. J Adhes Sci Technol 28(8–9):769–790

    CAS  Google Scholar 

  • Zhang P, Lv FY (2015) A review of the recent advances in super-hydrophobic surfaces and the emerging energy-related applications. Energy 82:1068–1087

    Google Scholar 

  • Zhong H, Hu Y, Wang Y, Yang H (2017) TiO2/silane coupling agent composed of two layers structure: a super-hydrophilic self-cleaning coating applied in PV panels. Appl Energy 204:932–938

    CAS  Google Scholar 

  • Zhong L, Gong X (2019) Phase separation-induced super-hydrophobic polylactic acid films. Soft Matter 15(46):9500–9506

    CAS  Google Scholar 

  • Zhou S, Zhu X, Yan Q (2018) One-step electrochemical deposition to achieve super-hydrophobic cobalt incorporated amorphous carbon-based film with self-cleaning and anti-corrosion. Surf Interface Anal 50(3):290–296

    CAS  Google Scholar 

  • Zhou Y, Shang Q (2016) Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging. Ceram Int

Download references

Funding

The authors appreciate the financial supports provided by National Oversea High-level Talents Program of China, National Natural Science Foundation of China (No. 52266017) and the Major Project of the National Social Science Foundation of China (No. 21&ZD133). It is also supported by the Xinjiang Natural Science Fund for Distinguished Young Scholars (No.2021D01E08), the Xinjiang Regional Coordination Special Project-International Science and Technology Cooperation Program (No.2022E01026), the Xinjiang Major Science and Technology Special Project (No.2022401002-2,2022A01007), the Xinjiang Key Research and development Project (No.2022B03028-2, No.2022B01033-2, No.2022B01022-1, 2022B01020-4), the Central Guidance on Local Science and Technology Development Project (No.ZYYD2022C16), the Innovation Team Project of Xinjiang University (500122006021) and High-level Talents Project of Xinjiang University (No.100521001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Writing—original draft preparation, J. Q.; writing—review and editing, H. L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hao Lu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Not applicable.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Lu, H. A review of self-cleaning coatings for solar photovoltaic systems: theory, materials, preparation, and applications. Environ Sci Pollut Res 30, 91591–91616 (2023). https://doi.org/10.1007/s11356-023-28550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28550-5

Keywords

Navigation