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Abstract
Waste printed circuit boards (WPCBs) contain a plethora of valuable metals, considered an attractive secondary resource. 
In the current research, a hydrometallurgical process combined ammonia/ammonium chloride leaching and reduction (using 
L-ascorbic acid) to recover copper and its oxide (CuO) as nanosized particles from WPCBs was investigated. The results 
of leaching indicated that 96.7% of copper could be recovered at a temperature of 35 °C for a leaching duration of 2 h with 
ammonium chloride and ammonia concentration of 2 mol/L at a solid:liquid ratio of 1:10 g/cm3. The synthesized particles 
exhibit spherical and distorted sphere morphology with average particle size of 460 nm and 50 nm for Cu and CuO NPs, 
respectively. The antibacterial activity of Cu, CuO, and a (1:1) blend of both (Cu/CuO) has been examined against five dif-
ferent bacterial and fungal strains. The highest zone of inhibition was measured as 21.2 mm for Cu NPs toward Escherichia 
coli and 16.7 mm for Cu/CuO blend toward Bacillus cereus bacteria. The highest zone of inhibition was measured as 13 mm 
and 13.8 mm for Cu/CuO blend toward Fusarium proliferatum and Penicillium verrucosum fungi. Cu/CuO blend showed 
notable photocatalytic activity towards Rhodamine B dye under visible light irradiation with 96% degradation rate within 
120 min. Using the process developed in this study, copper and its oxide as nanoparticles can be produced from WPCBs and 
used for multifunctional applications.
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Introduction

A major challenge and opportunity of mining municipal 
waste is the management of waste electrical and electronic 
equipment (WEEE) (Abdelbasir et al., 2018a; Mdlovu et al., 
2018). According to estimates, the total generation of these 
wastes is currently around 52.20 million tonnes (Abdelbasir 
et al., 2020) that will rise to reach 74.7 million tons in 2030 
(Forti et al., 2020; Seif El-Nasr et al., 2020). WPCBs (waste 
printed circuit boards) account for approximately 10% of 

WEEE total production (Abdelbasir et al., 2018b). WPCBs 
contain approximately 30% of their total weight in metals 
such as copper, iron, tin, nickel, lead, zinc, silver, gold, and 
palladium, and as a result, its waste is regarded as a source 
of funds for urban metal mining (Abdo et al., 2021; Huynh 
et al., 2020; Tatariants et al., 2018).

Various recycling practices involving pyrometallurgy, 
hydrometallurgy, or combination of the two have been 
investigated in conventional approaches (Cucchiella et al., 
2015; Prasad et al., 2020). High energy consumption, large 
gaseous emissions (as furans), and large waste or slag gen-
eration have been identified as problems accompanied with 
pyrometallurgical methods (Ádám et al., 2021; Pathak et al., 
2017). Hydrometallurgical recycling, on the other hand, 
necessiated a large amount of chemicals. The unconsumed 
chemical discharge with effluent volume is a serious envi-
ronmental threat (Borthakur and Singh, 2017). As a result, 
significant efforts have been made to develop the environ-
mentally-friendly processing of e-waste.

Generally, nanomaterials have a specific field of appli-
cation due to their unique properties, such as copper 
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nanoparticles (Cu NPs) for high thermal conductivity, high-
strength alloys, and antibacterial and antiviral compounds 
(Aguilar et al., 2019; Akhavan and Ghaderi, 2010; Das Jana 
et al., 2021; Le et al., 2023; Lei et al., 2013). Cu NPs are 
also widely used in a variety of fields, including photochemi-
cal catalysis, electronics, optics, biosensing, and gas sensors 
(Akhavan and Ghaderi, 2011; Khodashenas and Ghorbani, 
2014; Patil et al., 2015; Tadjarodi et al., 2015). Cheap and 
abundant, cupric oxide (CuO) has a small band gap (Eg = 
1.2 eV) and is widely used as a semiconductor in various 
fields such as catalysts, electrochemicals, energy storage, 
and chemical transformations (Sonia et al., 2015; Verma and 
Kumar, 2019; Xue et al., 2017; Yan et al., 2015). Recently, 
some attempts were made to produce Cu-containing nano-
particles from WPCBs, for example, using electrokinetic, 
thermal micronizing, supercritical methanol, and green 
bio-inspired synthesis processes (Abdelbasir et al., 2020; 
Dabhane et al., 2023; Shokri et al., 2017; Xiu et al., 2017). 
Green methods are considered eco-friendly and cost-effec-
tive techniques for producing nanoparticles to be used in 
various applications (Daphedar et al., 2022; Hassanisaadi 
et al., 2021; Rahdar et al., 2020)

Different types of microorganisms cause problems in 
living conditions and have serious implications for health 
care. Increasing antibiotic resistance has sparked a lot of 
studies to overcome challenges in various fields including 
small antibiotics, cationic polymers, metal nanoparticles, 
and antimicrobial peptides (Akhavan et al., 2011; Ananth 
et al., 2015; Song et al., 2011; Zhou et al., 2020). Metal 
nanoparticles have been extensively studied because they 
possess a variety of instinctive antimicrobial mechanisms, 
such as disruption of the cell membrane; diffusion into and 
degradation of internal cellular components such as DNA, 
RNA, and enzymes; and the release ions with antimicrobial 
activity (Dizaj et al., 2014). There are a variety of materials 
available, including silver, gold, copper, zinc, and their cor-
responding oxides (Ingle et al., 2014).

The US Environmental Protection Agency (EPA) has rec-
ognized copper and its compounds as antimicrobial materi-
als (Arendsen et al., 2019). Copper and its oxides (i and ii) in 
the nanosize (less than 100 nm) display enhanced antimicro-
bial activity towards pathogenic microorganisms (Elsayed 
et al., 2020; Tatariants et al., 2018). Numerous studies have 
been conducted to investigate the antibacterial activities 
of elemental Cu and its oxides in relation to particle size 
(Chen et al., 2019), morphology (Chen et al., 2021), and 
dissolution of copper ions in different media (Alagarasan 
et al., 2021).

Copper and its oxides are considered also as the most 
attractive photocatalysts for the photodegradation of organic 
pollutants due to their low fabrication cost, high optical 
absorption, and optimal optical band gap for visible driven 
photocatalytic activity (Katal et al., 2018; Lu et al., 2015). 

They are well capable to absorb visible light and generate 
electron-hole pairs thus involving a chemical reaction with 
the organic pollutant (Mosleh et al., 2018; Sorekine et al., 
2022). In addition, they are readily available, have superior 
charge separation abilities, better chemical stability, are non-
toxic, and are easily shaped in a variety of shapes and sizes 
(Wang et al., 2021). In the last years, remarkable progress 
have been made in the photodegradation of dye pollutants 
under ultraviolet and visible light (Sinha and Ahmaruzza-
man, 2015; Sundararajan and Kennedy, 2017). Nevertheless, 
for better photocatalytic performance, a combination of both 
CuO and  Cu2O with Cu improved their photocatalytic (Mos-
leh et al., 2018; Sahoo et al., 2016) degradation performance 
toward dyes. Jiang et al. (2017) synthesized the CuO–Cu2O 
powder and investigated the effect of CuO morphology on 
the photocatalytic properties.

Herein, a simple, low-cost method for recovering copper 
and its oxide (CuO) as nanosized particles from WPCBs is 
presented. Copper is first retrieved from WPCBs by ammo-
niacal–ammonium chloride solution. The impact of various 
parameters affecting the copper recovery such as leaching 
time, temperature, solid/liquid ratio, and concentrations 
of the leachant solution is investigated. L-ascorbic acid 
has been proposed as a reductant as well as a stabilizing 
agent. Structural characteristics of the prepared NPs were 
examined by X-ray diffraction (XRD), field emission scan-
ning electron microscopy (FESEM) equipped with energy 
dispersive X-ray spectroscopy (EDX), and transmission 
electron microscopy (TEM). Antimicrobial activities of the 
prepared NPs were examined by a well disk diffusion assay 
and minimum inhibitory concentration (MIC) of the NPs 
against various bacterial strains. Photocatalytic activity of 
the NPs to break down Rhodamine B (Rhod-B) dye was 
investigated as well.

Experimental work

Materials

All of the chemicals used were of the highest purity. Ammo-
nium chloride  (NH4Cl; Alfa Aesar) was dissolved in 10% 
ammonia solution  (NH3; 25% Adwic Co., Egypt) to prepare 
the leachant solution. For the preparation of Cu and CuO 
NPs, L-ascorbic acid  (C6H6O8; Alpha Aesar) was used as a 
reductant and cetyltrimethylammonium bromide [(C16H33)
N(CH3)3Br, CTAB]; Sigma-Aldrich] as a crystal modifier. 
Rhodamine B dye was used for testing the photocatalytic 
degradation of the prepared particles and pure water was 
used throughout all experiments.

A local computer shop provided about 2 kg of WPCBs from 
old computers that were sliced to pieces of about 5  cm2. Using 
a laboratory-scale crusher, the slashes of the WPCBs were 
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crushed, and then ground to 0.5 mm in a disk mill (HER-
ZOG Maschinenfabrik GMBH Co.). Chemical composition of 
WPCBs was determined via X-ray fluorescence spectrometer 
(XRF) (Axios Advanced WDXRFP analytical, Netherlands) 
and confirmed by atomic absorption spectrometer (Savantaa, 
Australia). Table 1 shows the main element content of the 
WPCB sample.

Leaching experimentations

WPCB leaching experiments with ammoniacal ammonium 
chloride were performed in a 500-mL double-necked glass 
reactor mounted with a condenser and a thermometer for tem-
perature control. The reactor was dipped in a water bath on a 
stirring hotplate and stirring rate was kept constant at 400 rpm. 
Figure S1 in the supplementary file depicts a drawing of the 
used system. The reactor was loaded with leachant solution 
(concentration range of 0.5 to 2.0 M), followed by 10 g of 
WPCB powders. In all experiments, 20 mL of leaching solu-
tion was used with a L/S ratio of 10 except where specified. 
Temerature (25–80 °C) and alkaline salt concentration (0.5–2 
M) variations were considered. Experiments with L/S of 20 
and 30 were also carried out to determine the best conditions. 
Residue after leaching was filtered and thoroughly rinsed with 
water and metal concentrations in the filterae were measured 
using an atomic absorption spectrometer (AAS). The copper 
recovery percentage was calculated using mass balancing after 
analyzing the raw WPCB powder and the leach residue. For 
the optimal conditions, experimentations with L/S of 20 and 
30 were also conducted. The leaching residue was filtered and 
rinsed carefully with pure water. Atomic absorption spectrom-
eter (AAS) was used for analyzing metal concentration in solu-
tions. Copper recovery is defined as the percentage of copper 
leached into solution from the raw sample, as calculated by 
the following equation:

Synthesis of copper and coppper oxide 
nanoparticles

To prepare Cu NPs, a suitable weight of CTAB (0.01 g) was 
dissolved in 10 mL water, followed by the addition of 20 mL 
of leached copper solution and L-ascorbic acid, and the solu-
tion was heated at 70 °C for 30 min (Fig. S2 displays the used 
system for naanoparticle synthesis). The solution was then 

(1)
Copper recovery (%) =

Copper leached into solution

Total copper in WPCB original sample
× 100

allowed to cool overnight before being filtered, washed repeat-
edly with pure water and ethanol, and dried under vacuum..

For copper oxide nanoparticle (CuO NP) production, 10 g 
of WPCB powder was leached for 3 h with  NH4Cl (0.5–2.0 M) 
in 10% ammonia solution (S/L ratio 1/10). The solution was 
stirred constantly for 2 h and then left overnight. The formed 
CuO powder was centrifuged, washed with pure water and eth-
anol, and dried. Figure 1 displays the full procedure of the NP 
synthesis. A sample of both particles (1:1 ratio) was blended, 
and its photocatalytic and antibacterial properties were evalu-
ated and compared with the fabricated pure nanoparticles.

Material characterization

Composition and features of the produced nanoparticles (Cu, 
CuO, and Cu/CuO blend) were confirmed by different char-
acterization tools as fully described in the supplementary file.

Photocatalytic activity evaluation

The photocatalytic action of Cu/CuO NPs was assessed by the 
degradation of Rhod-B dye in an aqueous solution at different 
periods (0–120 min). Stock solution (10 mg/L) of Rhod-B was 
prepared (Fig. 2). In the experiment, 10 mg of Cu/CuO NP 
blend (ratio 1:1) was mixed with 100 mL of Rhod-B solution 
(10 mg/L) and pH was adjusted to 9.0 in the dark at normal 
temperature (Mali et al., 2020). The suspension was then treated 
with ultrasonic waves for 10 min and magnetically stirred for 
60 min in the dark to attain adsorption-desorption equilibrium. 
Following that, the solution was placed under visible light using 
Luzchem LZC 4V (Canada) multilamp photoreactor with regu-
lar stirring.

About 3-mL aliquot of the suspension was taken and cen-
trifuged at selected time intervals to remove Cu/CuO NPs. A 
UV-Vis spectrophotometer was used to measure the absorp-

tion spectrum, which was used to calculate the rate of dye 
degradation. The efficiency of photocatalytic degradation was 
calculated using the next equation:

where C0 stands for the initial dye concentration and C 
stands for the reminant dye concentration after time t.

(1)Degradation efficiency (%) =
C − C

0

C
0

× 100

Table 1  Analysis of WPCBs 
determined by XRF

Element Cu Sn Pb Fe Ni Au Ag Zn Cr Mn Ti Others

Content (wt%) 22.00 9.50 1.56 2.40 0.61 0.07 0.13 0.46 0.07 0.04 0.60 62.56
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Antibacterial activity testing

The inhibitory effect of Cu and CuO NPs was carried out 
on five strains of pathogenic bacteria: two gram positive, 
namely, Bacillus cereus EMCC 1080 and Staphylococcus 
aureus ATCC 13565, and three gram negative, namely, 
Salmonella typhi ATCC 25566, Escherichia coli 0157 
H7 ATCC 51659, and Pseudomonas aeruginosa NRRL 
B-272. Stock cultures were grown on nutrient agar slant 
for 24 h at 37 °C and then refrigerated until use. Also, 
five fungal species were used for antifungal assay: Asper-
gillus flavus NRR 3357, A. ochraceus ITAL 14, A. niger 
IM I288550, Fusarium proliferatum MPVP 328, and 

Penicillium verrucosum BFE 500. The stock cultures were 
grown on potato dextrose agar slant at 25 °C for 5 days 
before being stored in the refrigerator until use.

An inoculum of bacteria was inoculated into a 5-mL 
tube of tryptic soy broth after 24 h of incubation on nutri-
ent agar slants of each bacterial species. The broth culture 
is incubated at 35 °C for 4 h until it reaches the McFar-
land  BaSO4 turbidity standard of 0.5  (108 cfu  mL−1). The 
sensitivity tests of Cu and CuO NPs were performed on 
various bacterial cultures using disk diffusion method by 
Kirby-Bauer technique (Bauer et al., 1966; Marrez et al., 
2019). The negative control was DMSO and ceftriaxone (1 
mg  mL−1) was the positive control. The inoculated plates 
were then incubated at 37 °C for 24 h. Inhibition zones 
were then measured and expressed as the diameter of the 
clear zone plus the diameter of the paper disk. The fungi 
were grown on potato dextrose agar (PDA) for 5 days at 
25 °C. Each fungus’ spore suspension was prepared in 
0.01% Tween 80 solution. When the fungal suspension was 
compared to the 0.5 McFarland standard, the turbidity of 
the inoculum suspension represented approximately 2 × 
 108 cfu  mL−1. A negative control was made with DMSO 
and a positive control was made with the commercial 
fungicide miconazol (1 mg  mL−1). The inoculated plates 
were incubated for 24–48 h at 25 °C and the antifungal 
activity was assessed by measuring the zone of inhibition 
(mm) against the tested fungus (Medeiros et al., 2011). 

Fig. 1  A schematic representing 
the route of recovering copper 
and copper oxide nanoparticles 
from WPCBs

Fig. 2  Molecular structure of Rhod-B dye
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All treatments had three replicates, and the experimental 
results were averaged.

Results and discussion

Material preparation and characterization

To preferentially retrieve copper from the WPCBs, ammo-
nium salt reagent would react specifically with copper ions 
forming stable complexes at alkaline pH (9.0–11.0). As a 
result, by leaching with ammoniacal ammonium chloride 
leachant, it can be retrieved from other metals in WPCBs. 
During the process, ammonium chloride provides anions to 
the copper ammine complex [Cu  (NH3)n

2+] as well as  H+ to 
react with  OH− anion freed during the reaction as follows 
(Yoo and Kim, 2012):

(2)NH
4
OH → NH

3
+ H

2
O

(3)NH
3
+ H

2
O → NH

4

− + OH

(4)
Cu + 2NH

3
⋅ H

2
O + 2NH

4
Cl +

1

2
O

2
→

[

Cu
(

NH
3

)

4

]

Cl
2
+ 3H

2
O

Many variables influence copper leaching or retrieval 
such as ammonium chloride’s concentration, leaching 
temperature, and S/L ratio. Ammonia solutions are highly 
specific and they are a cost-effective choice for dissolving 
specific metals. Furthermore, its cost is low in comparison 
to many other solvents (Sun et al., 2015).

Copper leaching increases as leachant concentration 
increases over the same leaching period (Fig. 3(a)). Accord-
ing to Eq. (4), the theoretical amount of ammon ia solution for 
leaching is when the concentration reaches 2 mol/L. When 
the concentration of leachant is 0.5 mol/L, the highest copper 
recovery reaches 74% after 3-h leaching time. With the increase 
of the leachant concentration to 2 mol/L, the maximum recov-
ery of copper can reach 78.90%. This enhanced dissolution 
could be linked to the increased amount of  (NH4

+) as ligand 
in the leaching medium to form the stable cuprammine com-
plexes (Liu et al., 2010; Seif El-Nasr et al., 2020). Temperature 
can have a significant impact on ammonia vaporization in the 
leaching medium. Ammonia losses due to vaporization from 
solution would occur at high temperatures (50–80 °C), due to 
the high vapor pressure and volatility of the solution (Shi et al., 
2022). The copper recovery percentage would be affected by 
these ammonia losses through the retrieval process decreasing 
from 78% at 25 °C to 30% at 80 °C.

Fig. 3  Effect of a leaching time, 
b temperature, and c S/L ratio 
on the copper recovery percent-
age using ammonium chloride 
(2M), ammonia concentration 
of 8%, and constant stirring rate 
of 400 rpm
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The solid-to-liquid (S/L) ratio could also affect copper 
recovery from leachant solution. The leachant’s volume is 
increased while the concentrations of ammonia and ammo-
nium salt are maintained constant at ambient temperature 
and constant stirring. As seen from Fig. 3(c), an increase 
in S/L ratio from 1:10 to 1:20 considerably increases the 
recovery of Cu and CuO from 78 to 85% and from 80 to 
87%, respectively. As the S/L ratio approaches 1:30, retrieval 
decreases noticeably, possibly because the pulp consistency 
is reduced, aiding the diffusion of reactants and products in 
less liquid-to-solid ratios (Seif El-Nasr et al., 2020). Also, 
an increase in the S/L ratio raises the initial concentration of 
leachant and promotes higher mass transfer, which promotes 
the formation of cuprammine complexes (Pinho et al., 2021).

The structural composition of the produced Cu and 
CuO NPs was recognized from XRD pattern presented in 
Fig. 4(a). Bragg reflections at 2θ values 43.047°, 50.189°, 
and 73.910° characterize the crystallographic planes (111), 
(200), and (220) of cubic structure of copper (JCPDS 
card no. 85-1326). XRD patterns for CuO NPs validated 
its high purity according to the standard card (JCPDS 
48-1548). According to the strong peaks in the XRD pat-
terns, the CuO NPs were crystalline with no impurities. 
The broadening of the peaks indicates that the average 
crystal size is small (22 nm), as predicted by peak (111) 
and (022) using the Scherer formula (Nayak et al., 2019).

where D is the mean particle size, k (is a constant) = 0.9, 
λ is the wavelength of X-ray source (0.1541 nm), β is the full 
width at half maximum (FWHM), and θ is the half diffraction 
angle. According to the well-known Scherrer equation, the 
average crystal size for Cu NPs was calculated to be 41.7 nm.

FTIR spectroscopy was utilized to define the produced 
NPs, as represented in Fig.  4(b). A peak at 506  cm−1 

(5)D =
K�

� cos�

correlated to the Cu–O bond vibrations was observed con-
firming the presence of CuO NPs (Karuppannan et al., 2021; 
Kuppusamy et al., 2017). Strong and broad band at 3428 
 cm−1 corresponds to the stretching (O–H) of adsorbed water 
(Ananth et al., 2015b). The peak at 1041  cm−1 specified the 
occurrence of C–O stretching (Fuku et al., 2020), whereas 
the peak at 1632  cm−1 signified the C = C stretch vibra-
tions (Yousef et al., 2018). Furthermore, broad vibrational 
stretches were also recognized at 2918  cm−1 and 1455  cm−1, 
which were primarily credited to the adsorbed  H2O mol-
ecules on the surface of the synthesized particles (Ananth 
et al., 2015; Yousef et al., 2018).

TEM images in Fig.  5(a) revealed the formation of 
agglomerated non-uniform Cu NPs with different parti-
cle sizes varying from 343 to 460 nm. The corresponding 
Selected Area Electron Diffraction (SAED) pattern recorded 
was a ring-like pattern confirming the highly crystalline 
nature of the synthesized Cu NPs (Nagar and Devra, 2018). 
The images in Fig. 5(b) show spherical CuO NPs with size 
distribution range of 20–31 nm which are consistent with 
XRD results and also with previous reports (Badri et al., 
2021; Shah et al., 2022). The high surface energy of the 
synthesized CuO NPs causes aggregation. As shown in 
Fig. 5(c), Cu/CuO NPs were largely uniform and spherical 
in shape; this result agrees with the shape and uniformity 
of previously synthesized Cu/CuO nanoparticles (Khatami 
et al., 2017; Mohamed, 2020).

Figure 6 depicts the absorption peaks recorded for Cu, 
CuO, and Cu/CuO NPs using a UV-Visible double-beam 
spectrophotometer. The absorption peak edges of Cu, CuO, 
and Cu/CuO blend nanoparticles are observed at 403, 680, 
and 850 nm, respectively, which correspond to the distin-
guishing peak of copper ions  (Cu2+ and  Cu+ ions). However, 
the absorption peak below 850 nm confirmed the highly 
crystalline and monophase of CuO nanoparticles. These 
values are in good agreement with the reported results for 
copper and copper oxide nanoparticles (Abbasi-Kesbi et al., 

Fig. 4  a XRD patterns and b 
FTIR spectra of Cu, CuO, and 
Cu/CuO nanoparticles
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Fig. 5  TEM images and SAED 
patterns of a Cu, b CuO, and c 
Cu/CuO nanoparticles

Fig. 6  a UV-Visible spectrum and b optical band gap energy of Cu, CuO, and Cu/CuO nanoparticles
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2018; Sahai et al., 2016; Sudha et al., 2021). The peak at 
546 nm is ascribed to existence of Cu/CuO NPs (Bhattacha-
rjee and Ahmaruzzaman, 2015; Dagher et al., 2014). These 
findings are compatible with those found in literature (Sahai 
et al., 2016; Swarnkar et al., 2009; Vidyasagar et al., 2011). 
The data was used to calculate the samples’ indirect band 
gap values using Tauc plots, as shown in Fig. 6(b). The band 
gap values obtained from the linear intercept on the x-axis 
are ~2.38, 1.49, and 1.38 eV for Cu, CuO, and Cu/CuO 
blend, respectively, and the Cu/CuO blend is suitable for vis-
ible light absorbance. The value obtained is higher than the 
reported bulk values (Fuku et al., 2020; Nayak et al., 2020).

In the case of an infinitely powder samples, where 
thickness and sample holder have no influence on the 
reflectance (R) value, the Kubelka-Munk equation at any 
wavelength becomes (Yable et al., 2020)

F (R∞) is the Kubelka-Munk function. The band gap Eg 
and absorption coefficient α of a direct band gap semicon-
ductor are interrelated through Eq. (6) (Abdelbasir et al., 
2018a; Makuła et al., 2018):

where α is the material’s linear absorption coefficient, 
hν is the photon energy, and A is a proportionality con-
stant. When the material scatters evenly, the Kubelka-
Munk absorption coefficient (K) equals 2α (K = 2α). In 
this case, bearing in mind the K-M scattering coefficient 
S as constant with respect to λ, and using the remission 
function in Eq. (5), we get the following equation (Rayan 
and Ismail, 2018):

Thus, by plotting the [F (R∞)hν]2 versus hν, the band 
gap Eg of a nanoparticles’ sample can be easily obtained. 
Figure 6(b) depicts the band gap energy of Cu, CuO, and 
Cu/CuO NPs after Kubelka-Munk treatment.

(5)F(R∞) =
(100 − R)

(2R)

(6)�h� = A
(

h� − Eg

)1∕n

(7)(h�F(R∞))n = B
(

h� − Eg

)

Antibacterial activity testing

The antibacterial action of Cu NPs, CuO NPs, and (1:1) blend 
of Cu/CuO NPs against different strains of pathogenic bacteria 
are shown in Table 2. The most potent antibacterial action 
was exhibited by CuO NPs against E. coli with 21.2-mm zone 
of inhibition, followed by Cu NPs with inhibition zone 16.8 
mm against B. cereus. While the lowest zone of inhibition 8.3 
and 9.0 mm was detected against P. aeruginosa by CuO NPs 
and Cu NPs, respectively. On other hand, the mixture of Cu 
NPs and CuO NPs (1:1) had high antibacterial action against 
all tested pathogenic bacteria except E. coli with inhibition 
zone ranging between 10.2 and 16.7 mm. The negative control 
(DMSO) had no effect, whereas positive control, antibiotics 
ceftriaxone at concentration (1 mg  mL−1), exhibited inhibition 
of 10.8 mm in B. cereus, 15.8 mm in Staphylococcus aureus, 
34.8 mm in E. coli, 20.3 mm in S. typhi, and 16.3 mm in P. 
aeruginosa. Cu NPs are toxic to E. coli cells in a variety of 
ways including generation of reactive oxygen species, lipid 
peroxidation, protein oxidation, and DNA degradation (Chat-
terjee et al., 2014). CuO NPs have large surface area and are 
therefore extremely reactive (Nabila and Kannabiran, 2018). 
Having a high surface-to-volume ratio, copper nanoparticles 
interact directly with bacteria’s cell membranes, causing their 
deaths (Usman et al., 2013). Furthermore, Cu nanoparticles 
inhibit bacterial cell growth, which results in bactericidal 
effects (Nabila and Kannabiran, 2018).

Table 3 shows the antifungal activity of Cu NPs, CuO 
NPs, and the (1:1) blend of Cu/CuO NPs against different 
strains of mycotoxigenic fungi. The strongest antifungal 
action was demonstrated against A. niger by Cu NPs with 
inhibition zone 15.0 mm, followed by the mixture of Cu/
CuO (1:1) blend NPs against P. verrucosum with 13.8-mm 
zone of inhibition. Whereas the lowest inhibition zone value 
8.5 mm was recorded by CuO NPs against P. verrucosum. 
The same trend in bacteria was repeated in fungi; the blend 
of Cu/CuO NPs (1:1) showed high antifungal activity against 
all tested mycotoxigenic fungi except A. niger with inhibi-
tion zone values ranging from 12.0 to 13.8 mm.

Numerous studies have found Cu NPs to be antimicrobial 
against a variety of fungi (El-Shewy, 2019; Eslami Chalandar 

Table 2  Antibacterial activity 
of Cu, CuO, and Cu/CuO NPs 
against pathogenic bacteria

n = 3
SE: standard error, negative control: DMSO, positive control: ceftriaxone

Bacteria Negative 
control

Positive control Cu CuO (Cu/CuO) blend (1:1)

B. cereus 0 10.8 ± 1.04 16.8 ± 1.53 10.8 ± 1.25 16.7 ± 0.28
Staphylococcus aureus 0 15.8 ± 1.44 12.7 ± 1.04 11.2 ± 0.76 16.3 ± 1.04
E. coli 0 34.8 ± 1.25 10.3 ± 0.76 21.2 ± 2.56 11.3 ± 1.04
S. typhi 0 20.3 ± 1.04 9.3 ± 0.76 9.3 ± 1.25 10.2 ± 0.76
P. aeruginosa 0 16.3 ± 2.25 9.0 ± 1.00 8.3 ± 0.76 15.7 ± 1.46
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et al., 2017; Usman et al., 2013). A CFU method evaluation of 
copper oxide nanoparticles showed a decrease in the growth 
of the C. albicans pathogen by 77.06. Using the disk diffu-
sion method, the inhibition zone for C. albicans pathogen was 
15.33, in agreement with the CFU method and further con-
firming the effective antifungal effect of CuO nanoparticles.

In general, nanoparticles inhibit microorganisms mainly 
by releasing the NPs and copper ions (Wang et al., 2014). 
The nanoparticles’ antimicrobial process produces reduced 
oxygen species (ROS; Dutta et al., 2015), destroys cell walls 
and membranes (Omid Akhavan and Ghaderi, 2010), and 
reacts with proteins and DNA (Kumar et al., 2011). In this 
process, copper-containing NPs can damage different micro-
bial cell components through a variety of mechanisms. CuO 
NPs enhance bacterial activity by providing better contact 
with microorganisms. Cu ions released later, on the other 
hand, may also damage the DNA by binding with it (Salah 
et al., 2021), leading to total helical structure damage by 
cross-linking within and between the nucleic acid strands, 
as some researchers have suggested (Kumar et al., 2011; 
Malandrakis et al., 2019). The main mechanism of bacteri-
cidal activity is the generation of ROS, both dependent and 
independent of Fenton chemistry, and results in membrane 
damage (Wang et al., 2014). Cu NP influx is considered 
the primary mechanism in fungi resulting from ion uptake 
and physical deterioration of membranes. The activity of Cu 
NPs appears to depend more on their size rather than their 
concentration: the smaller the nanoparticles, the greater their 
efficiency. CuO NPs play an important role in cytoplasmic 

damage in fungi, which leads to the apoptotic nature of 
fungal strains. The main causes of bacteria and fungi death 
are presented in Fig.7. The performance comparison of Cu-
based nanoparticles’ antibacterial activity with previous 
reports is shown in Table S1 in the supplemental file.

The results clearly show that eco-friendly synthesized 
CuO NPs can outperform commercially available standards 
as fungicidal agents. Figure S3 in the supplementary file 
exhibits the zone of inhibition of Cu, CuO, and Cu/CuO 
(1:1) blend nanoparticles, using DMSO and ceftriaxone as 
negative and positive controls, against various five bacteria 
and fungi strains. Table S1 shows a comparison of various 
copper-based photocatalysts in degradation of Rhod-B dye.

Photocatalytic activity evaluation

Absorbance spectra of Rhod-B after light irradiation to dif-
ferent time in presence of Cu/CuO photocatalyst are dis-
played in Fig. 8(a). With illumination time, all dyes’ absorp-
tion spectra gradually reduce and nearly disappear after 120 
min, as seen in the absorbance spectra. The decrease in 
the concentration with irradiation of the dye can be clearly 
seen and the degradation was found to be about 97%, over a 
period of 120 min (Fig. 8(b)).

The chemical structure of the Rhod-B has a significant 
impact on the photodecolorization yield from a composi-
tional standpoint. The azo group N = N can be photode-
colorized. Besides having a high adsorption yield, Rhod-B 
with sulfonic groups displays increased dye reactivity when 

Table 3  Antifungal activity 
of Cu, CuO, and Cu/CuO NPs 
against mycotoxigenic fungi

n = 3
SE: standard error, negative control: DMSO, positive control: miconazol

Fungi Negative 
control

Positive control Cu CuO (Cu/CuO) blend (1:1)

A. flavus 0 17.8 ± 2.56 11.8 ± 1.89 10.5 ± 1.00 12.0 ± 0.50
A. niger 0 20.7 ± 1.61 15.0 ± 1.32 12.2 ± 0.76 12.3 ± 1.04
A. ochraceus 0 19.7 ± 1.04 9.8 ± 1.04 9.0 ± 1.32 12.7 ± 1.15
F. proliferatum 0 9.2 ± 0.28 8.8 ± 0.68 10.3 ± 0.76 13.0 ± 1.32
P. verrucosum 0 19.8 ± 1.75 10.0 ± 1.32 8.5 ± 0.50 13.8 ± 0.76

Fig. 7  The main mechanism of 
bacteria and fungi death caused 
by Cu and CuO NPs
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N = N is present. This is in line with previous research by 
Aljamali and colleagues (Aljamali, 2015). When Cu/CuO 
was added to the Rhod-B solution, the degradation started. 
A curve representing the absorption spectra of Rhod-B 
without Cu/CuO particles is shown at t = 0 min. When Cu/
CuO particles are added, the intensity of the adsorption 
band at 553 nm decreases. It indicates that the absorption 
of Rhod-B dye by Cu/CuO particle and the potential break-
down of the azo bond causes the solution decolorization. 
The BET specific surface area of Cu/CuO particles was 5.0 
 m2  g−1 as measured by the BJH plot (see Table S2 in the 
supplemental file). The Cu/CuO NP blend exhibited a type 
III isotherm with a type H3 hysteresis loop according to 
the IUPAC classification, which indicates that the internal 
porosity of the formed powders consisted of slit-like and 
panel-like pores (Aftab et al., 2019).

The photocatalyst’s cyclic stability and reusability are 
always critical. As shown in Fig. 8(c), the stability of the 
Cu/CuO photocatalyst was determined over five cycles. 
After each cycle, the photocatalyst was separated from the 
dye solution by centrifugation, washed, redispersed, and 
reused in the following cycle. The duration of light irradia-
tion for each cycle was 120 min, while all other experimental 
parameters remained constant. After five cycles, the Cu/CuO 
photocatalyst had 83.88% stability. As a result, the waste-
derived material is regarded as a highly efficient and stable 
photocatalyst for Rhod-B dye breakdown.

Mechanism of the dye degradation

It can be proposed that photodegradation occurs when vis-
ible light is irradiated on Cu/CuO blends, resulting in the 
production of active radicals at large band gaps for both 
CuO (1.49 eV) and Cu (2.83 eV). The excited electrons at 
the condu ction  band (CB) and holes at the valence band 
(VB) cause the generation of hydroxyl (•OH) and superoxide 
(•O2

−) radicals. These active radicals are responsible for the 
breakdown of harmful organic dye molecules (Ranjith et al., 
2018). Since Cu and CuO have different band gap values, 
the photoexcited electrons travel from the high-energy band 
edge to the lower energy band edge of individual material 
(Li et al., 2017; Mosleh et al., 2018).

CuO is a well-known semiconductor having a low band 
gap that absorbs visible light to generate electron-hole pairs. 
The presence of Cu NPs promotes photocatalytic efficiency, 
which can be explained by surface plasmon resonance (SPR) 
Cu NP increases visible light absorbance and helps improve 
the catalyst efficiency (Cheng et al., 2016). Furthermore, 
Cu has a low work function and is a good conductor, result-
ing in simple electron transport and a decrease in recom-
bination. CuO’s CB potential was lower than the standard 
redox potential of  O2/O2

−, but higher than the standard redox 
potential of OH/OH−. As a result, starting the Cu/CuO NP 
photocatalytic process with visible light excites the free elec-
trons and hole pairs at the catalyst surface. Superoxide ions 

Fig. 8  a Time-dependent 
absorbance spectra, b degrada-
tion efficiency, c cycling runs 
for the catalytic degradation of 
Rhod-B solution in the presence 
of the Cu/CuO photocatalyst, 
and d schematic illustration of 
Rhod-B dye degradation under 
visible light illumination
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are produced when dissolved oxygen reacts with conduction 
band electrons. The photocatalysis is carried out by the .OH 
which is prohibited to be formed directly from  H2O. There 
is a possibility that the holes on the surface of CuO can 
directly oxidize the dye and cause it to degrade (Barzegar 
et al., 2019). Cu particles, on the other hand, are excellent 
electron traps (Li et al., 2010; Liu et al., 2013; Phutanon 
et al., 2018) which further facilitates the separation of photo-
induced charge carriers and greatly enhances the catalyst 
stability. A schematic illustration of Rhod-B dye degradation 
under visible light illumination is shown in Fig. 8(d). Table 4 
compares various copper-based photocatalysts reported for 
the degradation of Rhod-B dye.

Conclusion

From e-waste as a starting material, Cu and CuO NPs were 
produced using eco-friendly methods. The use of ammonia-
cal ammonium salt leaching to preferentially retrieve copper 
from WPCBs with a high yield is proposed. The NPs were 
confirmed by XRD, FTIR, and UV-Visible analyses. TEM 
images exposed that the average particle size for Cu and 
CuO NPs was 460 nm and 50 nm, respectively. The as-pro-
duced NPs were tested for their potent antibacterial activity 
against five different bacterial and fungul pathogens. A 1:1 
blend of Cu/CuO nanoparticles exhibited good bactericidal 
activity when compared to Cu and CuO alone. Moreover, 
the naoparticle blend was used as a photocatalyst for the 
degradation of rhodamine B (Rhod-B) dye under visible light 
illumination. The blend showed excellent decomposition of 
Rhod-B at 120 min with an efficiency of 96.5%, which is due 
to the lower energy band gap of 1.3 eV compared to 1.49 eV 
and 2.38 eV for Cu and CuO, respectively. As a result, the 
WPCB-derived NPs can be used as an effective antibacte-
rial agent and photocatalyst in a variety of textile and food 
industries. Lastly, based on the previously mentioned results, 
the developed strategy appears to have the potential to be a 

reliable source of both Cu and CuO nanoparticles, as well 
as many other nanoparticles with various sizes and shapes, 
since WPCBs contain several metals aside from Cu, such as 
Sn, Ag, and Au. Further, the recovered metals can be applied 
for other applications like photochemical catalysis, optics, 
gas sensors, solar energy conversion, and electronic industry, 
where mineral resources are in short supply.
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Photocatalyst Degradation time Irradiation light Degradation 
efficiency (%)

Reference

CuO NPs 100 min Visible light 98.8–99.6 Dodoo-Arhin et al. (2021)
CuO NPs 100 min UV 98.31 Rafique et al. (2020)
CuO nanofiber 160 min Visible light 96 Zeng et al. (2018)
CuO//ZnO 180 min Sunlight 98 Truong et al. (2021)
Flower-like CuO 240 min UV NR Phutanon et al. (2018)
ZnO/CuO/Ag2O 105 min Solar light 97.38 Meena et al. (2021)
Cu2O 200 min UV 97 Kangralkar et al. (2021)
Cu2O/rGO 120 min Visible light 95 Huang et al. (2017)
Cu/CuO 120 Visible light 96.5 This work
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