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Abstract
Carbon disulfide  (CS2) is one of the sulfur components that are naturally present in petroleum fractions. Its presence causes 
corrosion issues in the fuel facilities and deactivates the catalysts in the petrochemical processes. It is a hazardous component 
that negatively impacts the environment and public health due to its toxicity. This study used zinc-carbon (ZC) composite 
as a  CS2 adsorbent from the gasoline fraction model component. The carbon is derived from date stone biomass. The ZC 
composite was prepared via a homogenous precipitation process by urea hydrolysis. The physicochemical properties of the 
prepared adsorbent are characterized using different techniques. The results confirm the loading of zinc oxide/hydroxide 
carbonate and urea-derived species on the carbon surface. The results were compared by the parent samples, raw carbon, 
and zinc hydroxide prepared by conventional and homogeneous precipitation. The  CS2 adsorption process was performed 
using a batch system at atmospheric pressure. The effects of adsorbent dosage and adsorption temperatures have been exam-
ined. The results indicate that ZC has the highest  CS2 adsorption capacity (124.3 mg.g−1 at 30 °C) compared to the parent 
adsorbents and the previously reported data. The kinetics and thermodynamic calculation results indicate the spontaneity 
and feasibility of the  CS2 adsorption process.
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Introduction

According to EIA (2021) and BP (2022), liquid petroleum 
fuels are considered the largest source of energy (EIA 2021; 
BP 2022). Petroleum or crude oil is composed mainly of 
hydrocarbon and may contain heteroatoms such as sulfur, 
oxygen, nitrogen, and metals. The type of crude oil can be 
classified according to the sulfur content, whether sweet 
or sour. Sour crude oil if it contains total sulfur of more 
than 0.5 wt%. Sulfur components have a corrosive action on 
pipelines, pumping, and refining equipment. Also, it deac-
tivates the catalysts during the refining processes (Kohl and 

Nielsen 1997; Hsu and Robinson 2017; Saleh 2020; Bhar-
gava et al. 2022). Different forms of sulfur species may be 
present in petroleum which vary according to their origin, 
such as hydrogen sulfide  (H2S), carbonyl sulfide (COS), car-
bon disulfide  (CS2), mercaptans, sulfides, and thiophenes 
(Stumpf et al. 1998; Han et al. 2018; Saleh 2020).

Carbon disulfide  (CS2) is a type of sulfur component that 
can be present naturally in petroleum fractions such as gaso-
line (Stumpf et al. 1998; Rhodes et al. 2000; Yi et al. 2014). 
It is a non-polar linear molecule. In the pure state,  CS2 is a 
colorless liquid with a pleasant smell; however, it has a pale 
yellow color with an offensive odor if it is impure (Bocos-
Bintintan and Ratiu 2020).

CS2 has many industrial applications, such as manu-
facturing viscous rayon, cellophane films, rubber, carbon 
tetrachloride, xanthates, thiourea, and mercaptans. It is a 
powerful solvent for materials such as resins, fates, rubbers, 
fertilizers, etc. (WHO 2002; DeMartino et al. 2017; Yue 
et al. 2020). Also, it can be used as an additive to the drill-
ing mud to increase the efficiency of the hydraulic fracturing 
extraction of unconventional oil and gas (WHO 2002; Rich 
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et al. 2016). However,  CS2 is considered a toxic chemical; it 
seriously impacts the environment and public health (Rho-
des et al. 2000; Rich et al. 2016; Saleh 2020; Printemps et al. 
2022).  CS2 can be released to the atmosphere due to biologi-
cal activities and anthropogenic actions such as burning fuel 
(petroleum, gas, coal) containing  CS2 (Bocos-Bintintan and 
Ratiu 2020). In atmosphere,  CS2 is the most important vola-
tile sulfur components that are responsible for the presence 
of sulfate aerosols in the stratospheric layer (Lennartz et al. 
2020). Aso,  CS2 is considered an indirect greenhouse gas, 
converted to  CO2, consequently increasing its amount in the 
atmosphere (Montero-Campillo et al. 2018). To meet the 
UN’s sustainable development goals (SDG 7 and 13) (UN 
2015) for providing a clean source of energy and accelerat-
ing climate change mitigation,  CS2 must be removed during 
fuel processing.

Sulfur components can be removed from the fuels by differ-
ent processes such as catalytic (hydro-or oxidative), biological, 
absorption by physical sorbents, or adsorption desulfurization 
(Speight 2011; Hsu and Robinson 2017; Sadare et al. 2017; 
Saleh 2020). It must be noted that the removal of the hydrogen 
sulfide (which is the major sulfur compound in the fuel) does 
not guarantee the removal of  CS2 (Dan et al. 2012). This is 
because it is much less acidic than  H2S, so conventional  H2S 
removal methods, such as physical solvents, do not effectively 
remove the  CS2 (Kohl and Nielsen 1997).

Among the desulfurization methods, we focused on 
adsorption desulfurization due to its advantages. It is eco-
nomically viable; it can be performed at mild tempera-
ture and pressure conditions, the sulfur component can be 
recovered and utilized, and the adsorbent can be regener-
ated and reused (Chen et al. 2017; Iruretagoyena and Mon-
tesano 2018). Several adsorbents such as modified zeolites, 
metal–organic framework (MOF), activated carbon, metal 
oxides, e.g., Cu, Fe, Zn), etc., have been reported (Ma et al. 
2005; Guo et al. 2006; Chen et al. 2017; Iruretagoyena and 
Montesano 2018; Georgiadis et al. 2020; Wang et al. 2021a; 
Hernández-Fernández et al. 2022).

Activated carbon is one of the most widely used adsor-
bents for pollutant removal, including gaseous and liquid 
contaminants. Coal, peat, wood, and various waste bio-
mass are examples of carbonaceous substances employed 
as carbon precursors (Haggag et al. 2021). Date stone 
biomass contributes significantly to agricultural waste 
despite having little commercial value. According to the 
FAO, Egypt is also the world’s top producer of dates (El-
Sharabasy and Rizk 2019). Date stone usage as a carbon 
source is economically advantageous (Ebiad et al. 2020). 
The biomass-derived materials have several applications 
environmental, wastewater treatment, climate change 
mitigation, and soil health improvement. Thus, biomass 
utilization is a way to achieve the UN sustainability goals 
(Wang et al. 2022).

Zinc oxide has been reported previously as a desulfurization 
adsorbent at medium to high temperatures (Frilund et al. 2020; 
Georgiadis et al. 2020). Also, it was reported that  CS2 could react 
with primary and secondary amines (Kohl and Nielsen 1997). 
Zinc oxide can be synthesized by a homogeneous precipitation 
process using urea hydrolysis (Table S1) (Bitenc et al. 2008; Pad-
manabhan et al. 2009; Alhawi et al. 2015; Mantovani et al. 2017). 
Our previous studies indicated that controlling the urea hydroly-
sis conditions results in the insertion of nitrogen-containing ani-
ons  (NH2CO−, isocyanate, or cyanate) within the structure of the 
adsorbent (Sakr et al. 2013, 2018, 2021).

In this work, we aimed to remove  CS2 from the gasoline 
fraction using zinc hydroxide loaded on the surface of carbon 
material produced from biomass as an adsorbent. We focused 
on these materials due to the following features:

• The date stone biomass is considered a renewable feedstock 
for carbon (Mehmandoust et al. 2023).

• Zinc-based materials and carbon-derived date stones are 
reported to be low toxic and biodegradable (Zhang et al. 
2013; Moustafa et al. 2018; Verma et al. 2021; Fan et al. 
2022). After adsorption, if happened with carbon disulfide, 
the presence of a disulfide group in both zinc and carbon 
materials enhances their biodegradability and lowers their 
toxicity (Li et al. 2014; Onwudiwe et al. 2016; Martín et al. 
2019; Saiyed et al. 2021).

• The adsorbent under investigation could be regenerated by heating 
(~ 100 ℃) under a flow of nitrogen, under a flow of steam, or boil-
ing water (Yang et al. 2006; Wang et al. 2015; McGuirk et al. 2018).

• Even though the spent adsorbent is becoming inactive, it 
can be treated properly and optimized to produce a valuable 
product such as biogas (Chen et al. 2020; Wang et al. 2021b.

We synthesized zinc-carbon composite in situ using homo-
geneous precipitation of zinc hydroxide by controlled urea 
hydrolysis with the assistance of microwave irradiation (as a 
green source of energy) (Baghbanzadeh et al. 2011). These 
anions may affect  CS2 adsorption. The  CS2 removal was stud-
ied using a batch adsorption system at low temperature and 
atmospheric pressure. To the best of our knowledge, there is no 
reported data considering the loading of Zn-based material on 
carbon surfaces using controlled urea hydrolysis. Also, there 
is no reported data about using this composite as an adsorbent 
of  CS2 from gasoline fraction (Tables S2 and 2).

Material and methods

The chemicals used are zinc nitrate, hexahydrate 
(Zn(NO3)2.6H2O) (assay ≥ 99%), and urea (assay = 99%) pur-
chased from Sigma-Aldrich. Ammonium hydroxide are from 
Caledon Laboratories and heptane from CARLO ERBA. All 
chemicals are used without any further purification. The 
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water was distilled and then deionized using LABCONCO, 
Water Pro (USA) deionizer.

Material synthesis

Zinc materials were prepared either by conventional/
homogenous precipitation pathways. The pH meter model 
pH-213 was used to measure the changes in pH in all of the 
synthesis reactions (Hanna, USA).

Synthesis of zinc hydroxide by conventional precipitation 
method

To a solution containing zinc nitrate (0.05 M), ammonia 
solution (0.5 M) was added dropwise until the white pre-
cipitate was formed. The final pH reached 7.15. The pre-
cipitate (ppt) was then collected, centrifuged using MPW-
352, Poland, and washed with deionized water several times. 
Then it dried in an oven at 80 °C.

Synthesis of zinc hydroxide by homogenous precipitation 
method

This synthesis protocol is similar to our previous work 
(Sakr et al. 2018). In a typical synthesis, a solution con-
taining zinc nitrate (0.05 M) and urea (0.5 M) was sub-
jected to microwave irradiation (180 W) in a domestic 
microwave oven for 90 min. The temperature reached 
95 °C after 10 min and was constant along the reaction 
time. The synthesis reaction was done in an open glass 
vessel under atmospheric pressure. After the time for 
synthesis, the reaction was terminated immediately by 
cooling it down. As in step 1, the white-formed ppt was 
centrifuged, washed, and dried.

Synthesis of carbonized date stones

The carbon was prepared from date stones, and the 
detailed synthesis method was described (Ebiad et al. 
2020). The typical synthesis cleaned date stones (washed 

with distilled water) were dried at 105 °C and sieved from 
1 to 2 mm. Then it is placed in a quartz tube inside a 
horizontal tube furnace (Nabertherm, Labothem Model 
R50/250/12; Germany) and heated up to 600 °C under 
nitrogen flow (100 mL/min) for 3 h. The obtained carbon 
was then ground and sieved.

Synthesis of zinc‑carbon composite

In a glass container, 2 g of the carbonized date stones was 
added to the solution containing zinc nitrate (0.05 M) and 
urea (0.5 M), then subjected to microwave irradiation. The 
same procedure was applied as in step 2 to compare the 
results. A gray ppt is formed, collected, and centrifuged; 
washed several times with deionized water; and dried at 
80 °C. For simplicity, samples were coded as indicated 
in Table 1.

Characterization

The crystalline structures of the synthesized solids were ana-
lyzed by X-ray diffraction (XRD) (X Pert PRO, PANalytical, 
the Netherlands) using Ni-filtered Cu Kα radiation operated 
at 40 kV. The spectra were recorded in an angular region of 
2Ɵ = 4–80° with a step size at 2Ɵ = 0.02° and a scanning 
step time of 0.6 s.

The prepared adsorbents’ Fourier transform infrared 
(FT-IR) spectra were analyzed using a Nicolet IS 50FTIR 
Spectrometer (Thermo-Fisher, USA). Each adsorbent was 
diluted with potassium bromide (KBr) and compressed in 
the form of a thin disc and subjected to IR irradiation. The 
spectral wavelength region was from 4000 to 400  cm−1.

The surface textural properties of the prepared adsorbents were 
characterized using nitrogen adsorption/desorption isotherm data 
obtained at 77 K (NOVA, Quantachrome Instruments).

The surface morphology of the prepared adsorbents was 
examined using field emission scanning electron micro-
scope (Carl ZEISS, sigma VP 300). The instrument also 
allows energy-dispersive spectroscopy (EDS) using the Zeiss 
SmartEDX detector.

Table 1  The sample codes for the prepared adsorbents

Sample code Material Synthesis method Precipitating agent Heating source Synthesis temperature Final pH

Z Zinc hydroxide Conventional precipi-
tation

Ammonium hydrox-
ide

–– Room temperature 7.15

ZU Zinc hydroxide Homogenous precipi-
tation

Urea M.W 95 ℃ 6.22

ZC Zinc-carbon com-
posite

Homogenous precipi-
tation

Urea M.W 95 ℃ 6.01

C Carbonized date 
stones

Calcination of date 
stones

–- Horizontal tube 
furnace

600 ℃ –-
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Adsorption activity

The  CS2 adsorption ability of the prepared adsorbents was 
tested using a batch reactor (60-mL closed glass tube). A 
known amount of adsorbent was placed, mixed with a known 
volume of model component (heptane), representing the gas-
oline faction containing  CS2 with an initial concentration 
of 500 ppm. This mixture was stirred for 90 min (using a 
Thermo-scientific Stirrer, USA) at the required temperature. 
The  CS2 concentration was analyzed before and after the 
adsorption process using gas chromatography–chemilumi-
nescence detector (GC-SCD) instrument, Agilent Technol-
ogy, USA. The analysis method is performed according to 
the ASTM D5623 (D5623 2004) standard method, which 
is specified for analyzing sulfur compounds in low boiling 
point petroleum fractions.

The effect of temperature (30, 50, and 60 °C) on the 
adsorption process for all adsorbents under investigation is 
tested. Its dosage effect is tested for the most active adsor-
bent (20, 40, 60, 80, and 100 mg). The effect of time is also 
examined (60, 90, 120, 180, 210, and 240 min) at a working 
temperature of 30 °C.

The adsorption capacity was calculated as follows (Swat 
et al. 2017; Ebiad et al. 2020):

Co (mg/L) and C (mg/L) are the initial and at equilibrium 
solution concentrations of  CS2, respectively; V (L) is the 
volume of the solution; and w (g) represents the mass of 
adsorbents. The removal % (ɳ) can be calculated as follows:

Adsorption kinetics

Two main kinetic model groups describe the adsorption 
reaction (Vareda 2023):

(a) Pseudo-first order and pseudo-second order are the 
two widely used kinetic models that could be applied 
to the experimental adsorption data to assess adsorp-
tion reaction kinetics. The pseudo-first-order model of 
adsorption’s differential form can be written as follows 
(Lagergren 1898):

 where k1 is the equilibrium constant  (min−1), and qe 
and qt (mg.g−1) are the amounts of  CS2 adsorbed at 

(1)q = (Co − C)
V

w

(2)� = (
Co − C

Co
)100

(3)
dqt

dt
= k

1
(qe − qt)

equilibrium and at time t, respectively. Using Eq. (3)’s 
integration and the initial conditions qt = 0 at t = 0, 

(b) The pseudo-second-order reaction equation’s differen-
tial version can be expressed as (Ho and Mckay 1999): 

 where k2 (mg.g−1.min−1) is the pseudo-second rate 
constant. The linearized form of this model is produced 
after integration, taking the boundary conditions into 
account as follows:

Mechanism of adsorption

Based on the kinetic data  CS2 diffusion during the adsorption 
process could be predicted using the following models.

Intraparticle diffusion model

Weber and Morris are the first to descript the intraparticle 
diffusion model, where the rate-controlling step is due to the 
intraparticle diffusion (Weber and Morris 1963), where the 
adsorbate uptake during adsorption was proportional to the 
square root of the contact time:

Kid is the intraparticle diffusion rate constant [mg.g−1 
 (min0.5)−1]. While C is the intercept, the value of Kid is deter-
mined by the slope of the straight line. The thickness of the 
boundary layer is evaluated by the value of C. The boundary 
layer effect increases with increasing intercept C.

Boyd’s film‑diffusion model

This model assumes that the layer surrounding the adsorbent 
particle is responsible for resistance to adsorbate diffusion. The 
Boyd kinetic equation (Boyd et al. 1947) is denoted as

where F is the fractional attainment of the equilibrium at a 
different time (t) and B(t) is a mathematical function of F.

(4)log
(
qe1 − qt

)
= log qe1 − (

k1

2.303
)t

(5)
dqt

dt
= k

2
(qe − qt )

2

(6)
t

qt
=

t

qe2
+

1

k
2
q2
e2

(7)qt = Kidt
0.5 + Ci

(8)F(t) = 1 −
6

�2

∑∞

n=1

e−n
2Bt

n2

(9)F =
qt

qe



82018 Environmental Science and Pollution Research (2023) 30:82014–82030

1 3

where qt and qe are the amounts adsorbed at the time (t) and 
equilibrium, respectively.

Reichenberg was successful in getting the following esti-
mates (Reichenberg 1953):

Adsorption thermodynamics

Thermodynamic parameters such as Gibbs free energy 
(∆Go), entropy (∆So), and enthalpy (∆Ho) were calculated 
using the following equations:

where Ce is the equilibrium concentration (mg.L−1) of  CS2 
in the solution, Kd is the adsorption distribution coefficient, 
and Cs is the quantity of  CS2 adsorbed on the adsorbent 
surface per liter of the solution at equilibrium. R is the gas 
constant and T is the temperature. The slope and intercept 
of Van’t Hoff plots of (ln Kd) vs. 1/T were used to derive 
∆Ho and ∆So.

Results and discussion

pH change monitoring

The changes in the pH during the synthesis reaction of the 
Z.U. and ZC samples are discussed in detail in Section S1, 
Table S3, and Figs. S1 and S2 in the supplementary file. 
Under MW irradiation, the urea hydrolysis reaction is 
affected by the presence of carbon particles in the synthesis 
mixture (Figs. S1 and S2). Also, the final pH is higher in 
the absence of the carbon sample. This may indicate that 
the released  OH− is consumed to neutralize the acid sites in 
the carbon surface as well as precipitate the zinc hydroxide.

It was reported that urea decomposes in aqueous media 
when subjected to heating (Shaw and Bordeaux 1955; 
Fernández et al. 2009) according to the following equation:

(10)For F values > 0.85 B(t) = −0.4977 − ln(1 − F)

(11)

And for F values < 0.85 B(t) =

⎛⎜⎜⎝
√
𝜋 −

�
𝜋 −

�
𝜋2F(t)

3

�⎞⎟⎟⎠

2

(12)Kd =
Cs

Ce

(13)ΔGo = ΔHo − TΔSo

(14)ln Kd =
ΔS

R
−

ΔH

RT

The release of the hydroxyl groups during the hydrolysis 
process is responsible for the precipitation of the  Zn2+ ions 
in the form of zinc hydroxide or carbonate (Zhang and Li 
2003). However, according to the synthesis conditions, sev-
eral intermediate anionic groups could be formed, which in 
the end affects the structural features such as carbamates, 
cyanates, isocyanates, and carbonates (Saber and Tagaya 
2005; Kloprogge et al. 2006; Mavis and Akinc 2006; Sakr 
et al. 2013, 2018, 2021; Faramawy et al. 2018).

XRD analysis

The XRD patterns of the prepared samples are represented 
in Figs. 1 and S3. The XRD pattern for the (C) sample 
(Fig. S3) shows the presence of two broad diffraction peaks 
at around 23.19 and 44.41 2Ɵ°, which correspond to the 
reflections of the (002) and (100) planes, respectively. The 
broadening and small intensity of the (002) plane may indi-
cate the low degree of orientation of the aromatic layer in 
the three-dimensional aromatic carbon arrangement, while 
the broadening in the (001) plane may be related to the small 
aromatic layer slice in the carbon material (Qiu et al. 2019). 
This pattern indicates the presence of amorphous carbon 
with a low graphitization degree (Ebiad et al. 2020; Liu et al. 
2021).

As indicated in Fig. 1, the Z sample (prepared conven-
tionally) exhibits the diffraction peaks at 15.40, 15.87, 
17.02, 18.99, 25.99, 26.96, and 27.76 2Ө°, revealing the 
presence of zinc hydroxide as compared to the zinc hydrox-
ide (β-Zn(OH)2) reference (JCPDS 20–1435). The diffrac-
tion peaks detected at 31.8, 34.6, 36.4, and 47.7 2Ө° corre-
spond to ZnO as compared to the reference pattern (JCPDS 
05–0664) of ZnO.

The XRD pattern for the ZU sample (papered by homog-
enous precipitation) shows the presence of diffraction 
peaks at 12.99, 24.03, 27.88, and 33.14 2Ө° corresponding 
to hydrozinicite phase (zinc hydroxide carbonate, (JCPDS 
14–0256)). In addition, a minor amount of ZnO diffraction 
peaks is also observed with diffident peak intensities com-
pared to the Z sample. The low-intensity peak at 10.63 2Ө° 
could be a result of the existence of intercalated anion other 
than carbonate (Sakr et al. 2013).

For the composite sample (ZC), the XRD pattern resa-
mples that of the ZU sample and reveals the hydrozinicite 
phase (zinc hydroxide carbonate (JCPDS 14–0256) and ZnO 
(JCPDS 05–0664), respectively). The main difference was 
the relatively high intensity of the peak at 36.23 2Ө° cor-
responding to the (101) phase. This may suggest that the 

(15)(NH
2
)
2
CO + 3H

2
O →HCO

3−
+ OH− + 2NH

4+
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presence of carbon material in the precipitation media stimu-
lates the formation of the ZnO phase with different aspect 
ratios. The Zn oxide/hydroxide carbonate species may have 
uniformly covered the carbon material’s surface in the C 
sample, as evidenced by the loss of the amorphous carbon’s 
distinctive peak.

FTIR spectra

The structural vibrational region in the Z sample (Fig. 2) 
shows an absorption band at 481  cm−1, corresponding to the 
Zn–O bond stretching vibration in ZnO nanorods (Bundit 

and Wongsaprom 2018). The presence of the split peaks 
514 and 431  cm−1 indicates the diversity of the particle 
morphology (Verges et al. 1990). A broad band in the region 
3000–4000   cm−1 corresponds to the hydrogen-bonded 
hydroxyl groups. Bands at 1507  cm−1 and 1392  cm−1 (with 
the shoulder at 1363  cm−1) correspond to the vibration of 
hydroxyl groups bonded to Zn atoms and water (Gianna-
koudakis et al. 2015). The presence of 1363  cm−1 could 
result from C = O vibration from adsorbed  CO2 on the sur-
face. The band at 1041  cm−1 is assigned to Zn–OH bending 
vibration. The OH deformation band is detected at 830  cm−1 
(Giannakoudakis et al. 2015) (Sec. S2).

Fig. 1  XRD patterns for (Z), 
(ZU), and (ZC) materials. The 
shape ( ) represents the zinc 
hydroxide (β-Zn(OH)2) phase, 
( ) indicates the würtzite ZnO 
phase, and ( ) for the hydro-
zinicite phase
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The IR spectrum for the ZU sample is represented in 
Fig. 2. Two absorption bands appeared in the structural 
vibrational region 415  cm−1 and 467  cm−1 which could be 
attributed to the starching vibrational mode of the octahe-
dral  Zno–O cluster and the Zn–OH translation vibration in 
the hydrozincite structure, respectively (Kloprogge et al. 
2004; Gordeeva et al. 2020). The bands at 1550, 1386, and 
732  cm−1 could correspond to the vibration modes of carbon-
ate groups. The presence of a split at 1364  cm−1 could be 
due to the different modes of symmetric vibration of carbon-
ate anion (bidentate) (Padmanabhan et al. 2009; Sakr et al. 
2018). The broad band centered at 3385  cm−1 indicates the 
presence of hydrogen-bonded adsorbed water molecules with 
surface hydroxyl groups. The spectrum also exhibits a small 
absorption band at 2202  cm−1, corresponding to the cyanate 
group’s presence. The cyanate group is formed due to incom-
plete urea hydrolysis under the reaction conditions (Sakr et al. 
2013). The results indicate the formation of the hydrozincite 
phase as well as of the zinc oxide phase. These results are in 
agreement with that observed by Padmanabhan et al. (2009), 

who stated that an amorphous intermediated Zn(OH)2 could 
be formed and transformed into the ZnO as a result of the 
synthesis conditions (Padmanabhan et al. 2009).

The IR spectrum of the sample ZU resembles that of 
the ample ZC (Fig.  2). However, the structural vibra-
tion region shows a little shift in the bands 514  cm−1 and 
418  cm−1 in sample Z to be 499  cm−1 and 408  cm−1 in 
sample ZC, which could indicate the presence of another 
particle morphology-like prism formation (Verges et al. 
1990). The presence of carbonate anions is detected with 
the characteristic band at 1386  cm−1 and a small shoulder 
at 1364  cm−1 (compared to that of the Z.U. sample). This 
may indicate that the monodentate carbonate anions pre-
sent on the composite surface are predominating. The pres-
ence of urea-derived anions is also detected in the form of 
a cyanate group with a peak centered at 2208  cm−1.

The FTIR results are in agreement with those obtained 
from the XRD data. Under the synthesis conditions, the 
formed composite contains the zinc oxide/hydroxide car-
bonate with the presence of urea-derived anions as well.

Fig. 2  FTIR spectra for Z, ZU, 
and ZC materials
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Field emission scanning electron microscope 
(FESEM) images

The morphology of the prepared solids is shown in the 
FESEM images represented in Fig. 3. The C material shows 
irregular aggregates of stacked sheets (Fig. 3a). The Z mate-
rial shows the formation of semispherical and rode-like par-
ticles (Fig. 3b), whereas the ZU sample images (Fig. 3c) 
indicate the presence of flakey-like particles (Padmanabhan 
et al. 2009) aggregated in large spherical particles. This is 
consistent with Molefe et al. (2015), who stated that tem-
perature could act as a structural directing agent to gather 
the sphere-like particle to form a larger flak-like one (Molefe 
et al. 2015).

The particles of the ZC sample appeared in the form of 
a prism shape as well as flaky-like particles that coated the 
carbon particles (Fig. 3d). These data are confirmed from 
the EDS analysis of the ZC sample (Fig. S5), which reveals 
the formation of the Zn-carbon composite. The data from 
the FESEM images agree with those obtained from the XRD 
and FTIR results.

Surface textural properties

The textural characteristics of the prepared materials 
were tested using the nitrogen adsorption–desorption 

isotherm at low-temperature (Figs. 4 and S6 and Table S4). 
The specific surface area was calculated according to 
Brunauer–Emmett–Teller (BET) method. The pore size dis-
tribution and pore volume were calculated from the desorp-
tion curve in the isotherm using the Barrett-Joyner-Halenda 
(BJH) model.

The isotherm of the C sample reveals the presence of type 
III isotherm (according to the International Union of Pure 
and Applied Chemistry (IUPAC) classification), which indi-
cates the presence of silt-like pores formed from the aggre-
gation of plate-like particles (Ramimoghadam et al. 2013). 
The hysteresis indicates the presence of some mesoporosity 
that may be formed due to the aggregation of the particles. 
The BET surface area of the C sample was 26.89  m2  g−1. 
After loading with zinc hydro(oxide) particles, the BET sur-
face area is slightly increased to 35.64  m2  g−1, which could 
be due to the C particle acting as a nucleus that helps the for-
mation of a web or network from the Zn hydro(oxide) par-
ticles on its surface (Seredych et al. 2012; Giannakoudakis 
and Bandosz 2014). The surface area of the ZC is intermedi-
ate between that of the C and ZU samples, indicating the Zn 
material’s loading on the C surface (Mantovani et al. 2017) 
and confirming that obtained from the FE-SEM results. The 
isotherm of ZC samples is type IV with H3 hysteresis, which 
indicates mesoporosity due to the aggregation of the formed 
layered particles (Guo et al. 2016).

Fig. 3  FESEM images for a C, 
b, Z, c ZU, and d ZC materials
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The BJH model was used to calculate the average pore 
size distribution (PZD) results, which show that the C sam-
ple has a PZD of < 15.33 Å, while the ZU sample has two 
modes of the pore size distribution (< 15.37 and 19.77 Å). 
The ZC sample possesses a narrow PZD of 19.75 Å. All the 
prepared solids show a PZD in the mesopore range which 
gives them an advantage in the adsorption of organic pollut-
ants (Han et al. 2006).

Adsorption activity

The adsorption process was carried out using a batch reac-
tor at atmospheric pressure. The adsorption capacity and 
removal % (ɳ) were calculated using Eqs. (1) and (2), respec-
tively. The  CS2 adsorption capacities are shown in Fig. 5 at 
30 °C and a constant weight of 20 mg. The data reveal that 
the adsorbents for capturing  CS2 from the gasoline model 
component follow the order of C (91.6) < Z (118.2) < Zu 
(122) < ZC (124.3 mg  (CS2)/g (adsorbent)).

The maximum adsorption capacity was found to be by 
the ZC adsorbent with an adsorption capacity of 124.3 mg 

 (CS2)/g (adsorbent) with 49.7%. The obtained data is higher 
than reported in the literature using the adsorption technique 
at low temperatures (Table 2).

This higher reactivity could be due to the surface tex-
ture of the prepared Zn-carbon composite, where the 
basic surface nitrogen species are formed during the urea 
hydrolysis and confirmed by the IR and XRD. This con-
clusion is supported by those reported previously (Kohl 
and Nielsen 1997; Guo et al. 2006; McGuirk et al. 2018; 
Orhan et al. 2019; Cao et al. 2020), where the presence of 
a nitrogen-containing group enhances the  CS2 adsorption. 
In addition, the presence of the hydroxycarbonate group on 
the surface due to the urea hydrolysis reaction contributes 
to the  CS2 adsorption (Kowalik et al. 2020). Also,  CS2 can 
be physically adsorbed on the ZnO surface (Sahibed-Dine 
et al. 2000). In this work, the morphology of the ZnO 
oxide species with a prism shape on the surface of carbon 
particles in the ZC adsorbent may positively affect the  CS2 
adsorption process. This is in agreement with Ghenaatian 
and co-workers, who confirmed that the structural mor-
phology of the ZnO particles plays an important role in the 
 CS2 capture and storage process (Ghenaatian et al. 2013). 

Fig. 4  The  N2 adsorption–desorption isotherm for C, ZU, and ZC materials. The insert figures indicate the BJH pore size distribution corre-
sponding to each material



82023Environmental Science and Pollution Research (2023) 30:82014–82030 

1 3

Thus, according to the surface texture of the composite, 
the possible accessible active sites on the composite sur-
face could be Scheme 1:

• At the carbon surface,  CS2 could interact with the carbon 
atoms on the surface forming monodentate or bidentate 
interactions (Scheme 1a). The interaction, in this case, 

Fig. 5  CS2 adsorption capacity 
diagram at 30 °C for the tested 
adsorbents

Table 2  Previously reported data on  CS2 adsorption by activated carbon

Type of material Reaction Adsorption capacity Temperature Source Reference

Zinc-carbon composite Batch reactor 124.3 mg of  CS2/g 30 °C Hydrocarbon This work
Cu/CoSPc/Ce modified 

activated
carbon  (ACCu-CoSPc-Ce)

Fixed-bed quartz reactor
system

Adsorption capacity of
17.39 mg of  CS2/(g of 

activated carbon)

20 °C Gas (Wang et al. 2014)

Activated carbons Batch system The adsorption capacity 
of  CS2 in damp gas is 
60%–80% less than that 
in dry

gas

50 °C Gas (Wang et al. 2011)

Active carbon fiber (ACF) Batch system The adsorption capacity 
of ACF is

more extensive (72–
104%) than that of GAC 

150 °C Water (Yang et al. 2006)

Ion-exchanged zeolites Y Fixed-bed adsorption 
column

The highest
CS2 breakthrough adsorp-

tion capacity up to 
44.8 mg/g

20 °C Air (Chen et al. 2017)

Polyacrylonitrile (PAN)-
based activated carbon 
fiber (ACF)

A fixed-bed glass reactor The best breakthrough 
adsorption capacity of 
 CS2 was 55.63 mgS/g 
when CO activated the 
ACF

Room temperature N2 gas (Li et al. 2020)

Hydrophobization of 
activated carbon fiber 
(ACF) using vinyltri-
methoxysilane

Glass vacuum system The adsorption selectiv-
ity is improved under 
humid conditions

25 ℃ N2 gas in 
dynamic 
conditions

(Xie et al. 2011)

Activated carbon modified 
with KOH and ethylen-
ediamine

Glass vacuum system The  CS2 adsorption is 
improved

30–60 ℃/0–30,000 Pa – (Guo et al. 2006)
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is considered very weak and  CS2 capture is dependent 
mainly on the carbon porous structure (Yang et al. 2006).

• It can bind to the oxygen present in the ZnO crystal forming 
the carbonate which could be adsorbed by mono- or biden-
tate interaction, Scheme 1b (Sahibed-Dine et al. 2000).

• Carbon disulfide could interact with the nitrogen spe-
cies that are present on the composite surface as a 
result of the controlled urea hydrolysis, forming thio-
carbamate species (DeMartino et al. 2017; McGuirk 
et al. 2018). Thiocarbobamtes could be bound to the 
Zn by different intercalation modes (monodentate or 
bidentate), Scheme 1c (Saiyed et al. 2021).

Figure 6 depicts the effect of the adsorbent dose on 
the adsorption process at 30 °C. It was observed that the 
adsorption capacity decreased with increasing the mass 
of the adsorbent. This may be due to the aggregation and 
accumulation of the adsorbent particles, which could hin-
der the active site of the adsorbent, making it less acces-
sible to the  CS2 molecules (Wang et al. 2010, 2015).

Adsorption kinetics

We studied the kinetic behavior of  CS2 adsorption onto ZC 
adsorbent at a working temperature of 30 °C and atmospheric 
pressure, considering the effect of time on the adsorption pro-
cess (Fig. 7a). The  CS2 adsorption increased quickly at first 
with time, then slowed down until equilibrium (which is not 

reached obtained under the experimental conditions). This 
increase may be due to the high concentration of  CS2 and free 
active sites on the adsorbent surface between 0 and 120 min. 
Following that time, the number of available free active sites 
on the adsorbent surface became limited, resulting in a grad-
ual decrease in the adsorption process.

Studying the adsorption process kinetics indicates its effi-
ciency and applicability to process scaling up (Doǧan et al. 
2009). The pseudo-first-order and pseudo-second-order 
kinetic models are applied to describe the adsorption reaction 
(“Adsorption kinetics” section; Eqs. (3)–(6)). The first model 
could predict the adsorption reaction through the adsorption 
rate on the adsorbent surface, and the second could predict the 
adsorption mechanism (Ebelegi et al. 2020).

From the results listed in Table 3 and Fig. 7(b and c), 
the pseudo-second-order (PSO) kinetic model offers the 
best agreement between the estimated values of qe2 and 
the experimental qe data, with a high correlation coeffi-
cient of 0.9895. These findings imply that the PSO kinetic 
model was followed by the  CS2 adsorption process on the 
ZC adsorbent. This alludes to the fact that chemisorption, 
which involves valence forces through sharing (cova-
lent force) or exchange of electrons between sorbent and 
sorbate, regulates the adsorption process (Haggag et al. 
2021). These results may reflect the role of the active sites, 
including the nitrogen-containing anions and Zn-species 
loaded on the carbon surface during the  CS2 adsorption 
process.

Scheme 1  Possible accessible 
sites for  CS2 adsorption on the 
ZC surface

(a) Possible formed species carbon surface

b) possible interaction modes with surface Zn-O 

c) possible interaction modes with surface functionalized groups
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Mechanism of adsorption

Three steps are typically used to illustrate the adsorption 
mechanism based on the kinetic data (Wu et al. 2009; Loga-
nathan et al. 2014; Youssef et al. 2014): (i) film diffusion is 
the transfer of adsorbate molecules from the main body of 
the solution to the adsorbent’s surface; (ii) ions are moved 
from the surface to the intraparticle active sites (particle 
diffusion); and (iii) ions are adsorbed by the adsorbent’s 
active sites. The third step does not fall within the rate-
controlling phases because it is a relatively quick process. 
Therefore, either film diffusion or particle diffusion is pri-
marily responsible for the rate-controlling stages. Weber and 
Morris model (intraparticle diffusion model) is described in 
the “Mechanism of adsorption” section (Eq. (7)). Table 3 
provides the results of the kinetic parameter variables Kid, 
C, and R2.

The dual linear regions of this curve, according to this 
concept, can be attributed to the different adsorption extents 
at the beginning and final stages. The second region section 
rises gradually with the intraparticle diffusion, while the first 
steep represents the exterior surface adsorption. The plot 
of qt vs. t1/2 should be linear and pass through the origin 
if intraparticle diffusion is the rate-limiting step. None of 
the intraparticle diffusion plots crossed through the origin, 
indicating that the intraparticle diffusion mechanism is not 
the only rate-controlling step and the film diffusion had an 
impact as well (boundary layer diffusion).

The kinetic data were subsequently examined using the 
Boyd kinetic model to discriminate between film diffusion 
and particle diffusion to forecast the slow step involved 
(“Mechanism of adsorption” section; Eqs. (8)–(11)) (Boyd 

et al. 1947; Loganathan et al. 2014). We investigate the 
linearity of the experimental value and the data listed in 
Table 3 by plotting B(t) against time t, as depicted in Fig. 7e. 
Particle-diffusion mechanisms govern the adsorption process 
if the plots are linear and pass through the origin. According 
to the findings, film diffusion governs the adsorption of  CS2 
on the ZC sample at 30 °C because the plot line does not 
pass through the origin (Fig. 7e) (Chen et al. 2010).

Adsorption thermodynamics

Figure 8 shows the effect of temperature on the  CS2 adsorp-
tion capacity using ZC as an adsorbent with constant weight 
(20 mg) and atmospheric pressure. The data indicate that 
the capacity slightly decreased with increasing temperature 
in the physical adsorption process. The adsorption process 
is exothermic; consequently, it is favored at low tempera-
tures (Wang et al. 2015). These results are assisted with the 
thermodynamic calculation (“Adsorption thermodynamics” 
section; Eqs. (12)–(14)). The thermodynamic consideration 
is important to evaluate the feasibility and spontaneity of the 
adsorption process (Ebelegi et al. 2020).

Table 4 lists the  CS2 adsorption thermodynamic char-
acteristics. The data reveals the negative ∆G° values 
which indicate the spontaneous adsorption of  CS2 onto 
the ZC adsorbent. The adsorption of  CS2 onto the ZC 
sample could be categorized as physisorption adsorp-
tion, with the change in free energy for this process rang-
ing between − 2.14 and − 1.76 kJ.mol−1. It was reported 
that the ∆G° for chemisorption ranges between − 80 and 
– 400 kJ.mol−1 and that for physisorption ranges from − 20 
to 0 kJ.mol−1 (Ebiad et al. 2020).

Fig. 6  Effect of ZC adsorbent 
dose on the  CS2 adsorption 
capacity
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The positive ∆H° values (1.77 kJ.mol−1) indicate that 
the adsorption of  CS2 is endothermic. The ∆S° calculated 
positive values for ZC sample 0.0116  kJ.mole−1   K−1. 
These show an increase in unpredictability at the inter-
face between the solid and the solution. To break through 
the activation energy barrier and increase the intraparticle 
diffusion rate, mobility must be increased. Based on the 
adsorption kinetic and thermodynamic results, it can be 
concluded that the  CS2 adsorption on the Zn-carbon com-
posite is a spontaneous and feasible process.

Conclusion

In this study, the composite was formed from carbon-
derived date stone biomass, and zinc hydroxide (ZC) 
was formed to be used as a  CS2 adsorbent from the 
gasoline fraction. The loading of zinc hydroxide on the 

Fig. 7  a Effect of time on  CS2 
adsorption by ZC sample at 
30 °C, b pseudo-first-order 
kinetic model for adsorption, 
c pseudo-second-order kinetic 
model, d intraparticle diffusion 
plots, and e)Boyd plots for  CS2 
adsorption

Table 3  Kinetic parameters for the adsorption of  CS2 onto CZ sample 
at 30 °C

Model Constant parameter 30 °C

q e, exp (mg.g−1) 85.096
Pseudo-first-order qe1 (mg.g−1) 8.758

k1 (L.min−1) 0.0187
R2 0.9737

Pseudo-second-order qe2 (mg.g−1) 128.205
k2 (g.  mg−1.  min−1) 2.78E − 5
R2 0.9895

Intraparticle diffusion Kip 8.044
C  − 20.39
R2 0.9909

Boyd plot Intercept  − 0.9394
R2 0.9896
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carbon surface was assisted by microwave irradiation 
using homogenous precipitation by urea hydrolysis. The 
study of the physicochemical characteristics shows the 
presence of flake-like zinc hydroxide particles formed 
on the carbon surface, making a net-like morphology. 
Prism-shaped zinc oxide particles were also detected, 
which were not detected in the sample zinc hydroxide 
prepared under the same conditions without carbon. This 
reflects the role of the presence of carbon particles in 
the synthesis reaction media.

The  CS2 adsorption process from the gasoline frac-
tion was done in a batch reactor at atmospheric pressure. 
The effects of temperature and the adsorbents’ dose on 
adsorption were examined. The best adsorption capacity 
(124.3 mg  (CS2)/g) was for a zinc-carbon composite at 
30 °C and atmospheric pressure compared with the par-
ent materials (C, Z, and ZU). The obtained adsorption 
capacity was higher than that previously reported in the 
literature. The enhanced capacity is attributed to the ZC 
characteristics, where, Zn–O species, carbon active cent-
ers, urea-derived anions, formed zinc oxide particles, and 
composite surface texture properties could contribute to 
the  CS2 adsorption process. These results highlight the 
efficiency of the proposed composite synthesis process and 
the role of urea-derived species in enhancing the adsorp-
tion capacity. The kinetics studies indicate that the adsorp-
tion process follows the pseudo-second-order kinetic 
model and that the adsorption mechanism is governed by 

film diffusion. From the obtained results, it can be con-
cluded that the  CS2 adsorption on the Zn–carbon compos-
ite is a spontaneous and feasible process.

Supplementary Information The online version contains sup-
plementary material available at https:// doi. org/ 10. 1007/ 
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