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Abstract
Accurate prediction of carbon emissions is vital to achieving carbon neutrality, which is one of the major goals of the global 
effort to protect the ecological environment. However, due to the high complexity and volatility of carbon emission time 
series, it is hard to forecast carbon emissions effectively. This research offers a novel decomposition-ensemble framework 
for multi-step prediction of short-term carbon emissions. The proposed framework involves three main steps: (i) data 
decomposition. A secondary decomposition method, which is a combination of empirical wavelet transform (EWT) and 
variational modal decomposition (VMD), is used to process the original data. (ii) Prediction and selection: ten models are 
used to forecast the processed data. Then, neighborhood mutual information (NMI) is used to select suitable sub-models from 
candidate models. (iii) Stacking ensemble: the stacking ensemble learning method is innovatively introduced to integrate the 
selected sub-models and output the final prediction results. For illustration and verification, the carbon emissions of three 
representative EU countries are used as our sample data. The empirical results show that the proposed framework is superior 
to other benchmark models in predictions 1, 15, and 30 steps ahead, with the mean absolute percentage error (MAPE) of the 
proposed framework being as low as 5.4475% in Italy dataset, 7.3159% in France dataset, and 8.6821% in Germany dataset.

Keywords Carbon emission prediction · Multi-step prediction · Stacking ensemble learning · Empirical wavelet transform · 
Variational mode decomposition · Neighborhood mutual information

Introduction

Background and motivation

Global warming is a major concern of the international com-
munity. Since the late nineteenth century, the global aver-
age surface temperature has increased by 0.4 to 0.8 °C. A 
warming climate will lead to melting glaciers, rising sea 
levels, and an increase in the frequency of extreme weather 
events, which in turn causes serious irreversible damage to 

the natural environment (Kong et al. 2022a). Carbon dioxide 
is a primary greenhouse gas, which is a major contributor 
to global warming (Qader et al. 2022). Since the 1970s, we 
have witnessed the astonishing data of average growth rate 
of carbon emissions per decade as 3%, 1%, 1%, 3%, and 2%, 
respectively. Global emissions reached 33.3  GtCO2 in 2020 
and 34.9  GtCO2 in 2021, an increase of 4.8% far exceeding 
the average growth of the last decade (Liu et al. 2022a).

In order to reduce carbon emissions and address global cli-
mate change, the international community has held many talks 
and signed relevant agreements. Following United Nations 
Framework Convention on Climate Change and Kyoto Proto-
col, nearly 200 countries worldwide signed the Paris Agree-
ment in 2016. The long-term goal of the Paris Agreement is to 
limit global average temperature rise to 2 °C pre-industrial and 
work towards limiting it to 1.5 °C (Meinshausen et al. 2022). To 
achieve this goal, a growing number of countries are incorporat-
ing carbon neutrality targets into their long-term national strate-
gies, such as China (Shi 2022), the USA (Qin et al. 2022), the UK 
(Abbasi et al. 2021), and Russia (Safonov et al. 2020).
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As a global pioneer in the effort against climate change 
and development of renewable energies, the EU has set 
ambitious carbon neutral targets for itself. In March 2019, 
The Resolution on Climate Change of the European Par-
liament endorsed an overall target of achieving net zero 
greenhouse gas emissions by 2050. And the EU plans to 
fully achieve the mid-term climate change target in 2030: 
a reduction in greenhouse gas emissions of at least 40% 
from 1990 levels (Salvia et al. 2021). In July 2021, the EU 
released “Fit for 55 packages” which includes a commit-
ment to reduce greenhouse gas emissions by 55% in 2030 
compared to 1990, and 12 aggressive initiatives in energy, 
industry, transport, and construction.

As shown in Fig. 1, the proportion of EU carbon emis-
sions in the global pool gradually decreased from 2016 to 
2019, indicating that EU countries actively strived to reduce 
carbon emissions effectively after the signing of the Paris 
Agreement. In 2020, due to the impact of COVID-19, global 
economic activities and production were severely affected, 
resulting in a drop in carbon emissions. In 2021, due to fur-
ther developments occurred among international trade and 
the global political climate, the proportion of EU carbon 
emissions rebounded, but was still lower than 8% of global 
carbon emissions, indicating that the EU’s emission reduc-
tion policies have achieved initial success.

The federal formulation of practical environmental poli-
cies plays a key role in achieving carbon neutrality goals, 
and accurate prediction of carbon emissions can provide a 
scientific basis for government policy formulation and man-
agement decisions (Salvia et al. 2021). Short-term carbon 
emission prediction can dynamically monitor the progres-
sion and trend of carbon emission reduction, which is con-
ducive to flexible adjustment of carbon reduction measures 
by various functional departments. If the prediction results 
show high emissions, the government can consider dynam-
ically adjusting its efforts to strengthening carbon taxes 

(Cheng et al. 2021) and tightening carbon emission trading 
scheme to reduce carbon emissions in various sectors of the 
society. And if the prediction results show low emissions, 
governments can in turn react appropriately to ease the pres-
sure to reduce emissions, promote economic development, 
and support the research and development of low-carbon 
technologies. In addition, short-term carbon emission pre-
diction can provide more meaningful reference drawing data 
when unexpected events occur. For example, the COVID-19 
pandemic has led to an overall reduction in global carbon 
emissions in 2020. It is difficult for annual prediction to 
forecast small probability events affecting carbon emission 
based on historical data, while short-term carbon emission 
prediction can provide accurate prediction results based on 
recent data. It can provide scientific data support for poli-
cymakers to formulate carbon emission policies according 
to current socioeconomic conditions, thus better balancing 
the relationship between economic development and carbon 
emissions (Zhao et al. 2022).

Related works

There are currently two main dimensions of carbon emission 
projection studies: multivariate and univariate prediction 
methods (Kong et al. 2022b). Multivariate methods forecast 
carbon emissions by analyzing the influencing factors, such 
as economic development (Sun and Huang 2022), energy 
consumption (Nguyen et al. 2021), and population growth 
(Musah et al. 2021). However, the degree of influence of 
these factors on carbon emissions has proved hard to deter-
mine (Yang and O’Connell 2020); in addition, multivariate 
methods may lead to generation of cumulative errors and 
reduction in prediction accuracy. Univariate methods use 
historical data to make forecast for a certain period of time 
in the future, relying on only pre-existing solid data (Ziel and 
Weron 2018). It emphasizes the importance of time factor 

Fig. 1  EU’s carbon emissions 
and their share of global carbon 
emissions (https:// ourwo rldin 
data. org/)
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in prediction, thus reducing forecast uncertainties caused by 
the accumulation of multi-factor errors. Therefore, this paper 
adopts univariate methods for carbon emission prediction.

Table 1 shows the literature review of carbon emission 
projection. The prediction model, research location, data fre-
quency, and step length are listed. It can be observed that the 
application scenarios of short-term carbon emissions in the 
existing literature are mainly focused on China, with fewer 
studies on other countries and regions. Carbon neutrality is 
a common goal of the international community, and short-
term carbon emission projection can fully portrait the daily 
dynamics of carbon emissions and provide scientific data 
support for promoting carbon neutrality. Thus, it is essential 
to conduct short-term carbon emissions research on other 
countries and regions. Moreover, most studies focus on only 
one dataset, their application scopes are too small, and the 
universality of their models is difficult to verify. Therefore, 
in this paper, carbon emissions of three representative EU 
countries are selected as experimental data to verify the 
validity and universality of the model.

Pre-existing univariate carbon emission prediction can be 
broadly classified into three main categories: (i) statistical 
models, (ii) artificial intelligence models, and (iii) hybrid 
models. Statistical models, such as exponential smoothing 
models (ETS), autoregressive moving average (ARMA), and 
autoregressive integrated moving average (ARIMA), are 
more frequently used in carbon emission prediction due to 
their simple operation and cost-effectiveness. In particular, 
the ARIMA model, one of the most popular independent 
statistical methods for predicting greenhouse gas emissions, 
focuses more on data points with significant autocorrela-
tion without putting more weight on the last observation 
data point (Yang and O'Connell 2020). However, the sta-
tistical model is based on the assumption of approximate 
linearity (Zeng et al. 2023), which does not capture well the 
nonlinear and frequent fluctuations of carbon emission time 
series (Sohail et al. 2022). Artificial intelligence models with 
powerful nonlinear mapping and adaptive learning capabili-
ties can effectively capture the characteristics of nonlinear 
series (Lu et al. 2020). For example, back propagation (BP) 
(Zhao et al. 2018), support vector machine (SVM) (Zhao 
et al. 2018), extreme learning machine (ELM) (Wang and 
Wang 2021), long short-term memory (LSTM) (Liu et al. 
2022b), K-nearest neighbor (KNN) (Lee et al. 2019), random 
forest (RF) (Smith et al. 2022), and XGB (Sun et al. 2022) 
have been applied to carbon research forecasting with great 
results. However, artificial intelligence models suffer from 
parameter sensitivity and easily fall into overfitting or local 
optimum (Yu et al. 2022), and their prediction performance 
require further improvement. Hybrid models use methods 
such as data processing and optimization algorithms to 
capture the complex features of nonlinear time series. In 
short-term carbon emission forecasting, data processing 

methods include series decomposition (Sun and Ren 2021) 
and feature selection (Kong et al. 2022a), and model opti-
mization algorithms include the Whale Optimization Algo-
rithm (WOA) (Sun and Huang 2022) and Genetic Algorithm 
(GA) (Zhang et al. 2022). The hybrid model can overcome 
the limitations inherited to single-model solutions, better 
extract the hidden factors that cannot be captured by tradi-
tional methods, and effectively improve the accuracy and 
stability of prediction. Table 1 shows the literature review of 
carbon emission projection. The prediction model, research 
location, data frequency, and research results are listed.

Analyzing the related work, it can be concluded that 
the decomposition method is applied more in the hybrid 
models. Yu et  al. (2008) proposed the TEI@I complex 
system research methodology, emphasizing the idea as to 
decompose before integration. Decompose the complex 
raw data into relatively stable and regular subsequences, 
which improves model prediction accuracy (Yue et  al. 
2022). The decomposition presents promising results in 
diverse nonlinear time series applications, such as financial 
(Lv et al. 2022), wind energy (Liu et al. 2021), traffic flow 
(Tian 2021), and air pollution (Liu et al. 2020). Despite the 
aforementioned effect, Liu et al. (2014) noted that the first 
intrinsic mode function (IMF1) obtained using decompo-
sition is highly volatile and irregular, which could affect 
the overall prediction accuracy. To solve this problem, Yin 
et al. (2017) used wavelet packet decomposition (WPD) to 
decompose IMF1 obtained from empirical mode decomposi-
tion (EMD) and forecasting success in wind power predic-
tion. Sun et al. (2020) used variational mode decomposition 
(VMD) to further decompose IMF1 with high complexity 
obtained by the first decomposition, proving that the sec-
ondary decomposition strategy can significantly improve the 
prediction performance. The signal decomposition methods 
used in the existing carbon emission literature are mainly 
EMD, EEMD, and ICEEMDAN, and these methods still 
possess many problems. For example, EMD has the problem 
of modal aliasing. Although EEMD overcomes modal alias-
ing, it still has the problem of residual noise. However, the 
empirical wavelet transform (EWT) eliminates the modal 
aliasing by reasonable segmentation and boundary setting 
(Wang and Wang 2020) and filters out the noise residual 
by automatically generating an adaptive wavelet (Liu et al. 
2018). To some extent, EWT makes up for the shortcomings 
of the above methods and has a solid theoretical foundation. 
Therefore, this paper introduces the EWT method, a com-
monly used decomposition method in engineering (Shi et al. 
2021), into the field of carbon emission prediction, taking 
advantage of its small computational effort and high robust-
ness as the first decomposition method.

Although hybrid models perform effectively in the field 
of carbon emission prediction, the characteristics of carbon 
emission data vary widely in different countries and regions, 
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and no single hybrid model can be considered suitable for 
all prediction scenarios (Jiang 2021). Combined predic-
tion utilizes several individual models of varying ability to 
capture nonlinearities and perform differently on various 
datasets, to obtain better generalization performance (Ling 
et al. 2019). Allende and Valle (2016) considers that the use 
of suitable ensemble methods contributes to improve the 
overall prediction accuracy, and the commonly used integra-
tion methods are simple averaging (Graefe et al. 2014) and 
weighted averaging (Kourentzes et al. 2019). In recent years, 
the stacking ensemble learning method (Wolpert 1992) has 
received much attention in the field of machine learning, 
and introduced the idea of a higher-level meta-learner into 
combined prediction. Zhao and Cheng (2022) employed the 
stacking method to ensemble different linear and nonlinear 
individual stock return prediction models. The experimental 
results show that the stacking method outperforms Mallows 
model averaging, simple combination prediction, and others. 
Cui et al. (2021) used heterogeneous integration of different 
types of base learners to enhance the generalization ability 
of the model, and the stacking ensemble learning method 
can effectively fuse the prediction results of base learners 
to improve the model performance for earthquake casualty 
studies. Most of the existing carbon emission literature uses 
a single model for prediction and seldomly use integrated 
learning method to improve model performance. Each model 
has advantages and disadvantages, and using just one model 
for prediction leads to limitations in the extent of possible 
improvements to the model’s accuracy when processing 
nonlinear data. The integrated learning approach combines 
multiple models and utilizes the advantages of each of them, 
providing better prediction ability and stability than a single 
model. This paper uses the stacking method to ensemble the 
results of different prediction models, to enrich the applica-
tion of the stacking method in the field of carbon emissions.

In general, combined prediction achieves better results than 
single prediction models (Atiya 2020). The choice of which sin-
gle models to combine is one of the challenges in the field of 
prediction. Many studies incorporated single models with more 
mature applications in this field into the combined model, result-
ing in a massive computational effort and little effect on predic-
tion performance improvement (Che 2015). Kışınbay (2010) 
used encompassing test to select sub-models, so as to reduce 
the correlation of sub-models. It is superior to the benchmark 
model in the empirical analysis of American macroeconomic 
datasets. Model trimming is essentially a shrinkage strategy, 
which generally cuts down candidate single models according to 
their prediction accuracy. Samuels and Sekkel (2017) proposed a 
new approach based on model confidence sets, which has better 
robustness and more space for performance improvement. Based 
on the perspective of information theory, Cang and Yu (2014) 
proposed an algorithm for selecting optimal subsets of combined 

prediction based on mutual information (MI). When the prob-
ability distribution of variables and their joint distribution are 
known, mutual information can measure the correlation between 
different random variables (Zhang et al. 2020a). However, prob-
ability distributions are difficult to measure in practice (Xiao 
et al. 2019). Therefore, this paper introduces the neighborhood 
mutual information (NMI) (Hu et al. 2011) measure to the corre-
lation between two variables, without calculating the probability 
distribution of dataset.

Contributions and article organization

Considering the inadequacy of existing studies, this study is 
aimed at proposing a hybrid prediction model that combines 
EWT and VMD with prediction models and STACK. The 
model will preprocess the dataset by secondary decomposi-
tion and use NMI to select sub-models for the ensemble, 
striving to forecast the carbon emissions in a multi-step 
ahead manner (1, 15, 30 days ahead). The main contribu-
tions of this paper can be summarized as follows:

(1) The stacking ensemble learning method is innovatively 
introduced into the field of carbon emission prediction. 
There are few studies on carbon emissions using com-
bined forecasting in existing literature. In this paper, the 
stacking ensemble learning method is used for combi-
nation prediction, and the results show that the stack-
ing ensemble learning method is better than traditional 
linear method.

(2) A new hybrid model, which involves secondary decom-
position, sub-model selection, and stacking ensemble 
learning, is proposed to conduct carbon emission multi-
step prediction. The ablation experiments show that all 
three components of this hybrid model are effective and 
can improve the overall prediction accuracy.

(3) We apply the proposed decomposition-ensemble frame-
work to carbon emission datasets of three countries: 
Italy, France, and Germany. Numerical experiment 
indicates that the proposed model has higher level 
prediction accuracy compared with other models in 
multi-step prediction. And the experimental results of 
multiple datasets also confirm the effectiveness and 
generality of the framework.

The rest of this paper is structured as follows. The “Meth-
odologies” section introduces the basic methods used in this 
paper and describes the modeling process of the proposed 
model in detail. The “Empirical analysis” section introduces 
the experimental data sources and details and conducts com-
parative experiments from three perspectives. The “Conclu-
sions” section summarizes this study and provides an out-
look for future research.
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Methodologies

In this section, the basic methods taken in the proposed 
model are described. In the “Data preprocessing methods” 
section, we briefly introduce the two decomposition meth-
ods and the method for quantifying sequence complexity. 
Then, the “Neighborhood mutual information (NMI)” sec-
tion describes the stacking ensemble learning method. Next, 
the “Stacking ensemble learning” section introduces the 
method NMI to determine sequence similarity. Finally, the 
“Construction of the proposed model” section describes the 
proposed model framework in detail.

Data preprocessing methods

Empirical wavelet transform (EWT)

The EWT decomposition method is a novel adaptive signal 
processing method proposed by Gilles (2013). The amplitude 
modulation-frequency modulation (AM-FM) components of 
the Fourier spectrum are extracted by adaptive segmentation 
of the signal spectrum, construction of wavelet functions with 
compact support characteristics in the segmentation interval, and 
construction of appropriate orthogonal wavelet filters. It can not 
only solve the problem of mode aliasing existing in empirical 
mode decomposition (EMD) but also has good noise robustness.

Suppose that the Fourier support interval [0, π] is parti-
tioned into N consecutive components, and the boundaries of 
its partitioned segments are denoted as Λn = [ωn − 1, ωn], and 
then, ∪N

n=1
�n = [0,�] . ωn is the boundary of each segment 

and defines a transition region Tn with ωn as the center point 
and 2λn as the width. The empirical wavelet is a bandpass 
filter on interval Λn. Drawing on the construction method of 
Meyer wavelet, for any n > 0, the empirical scaling function 
�̂�n(ω) and the empirical wavelet function �̂�n(ω) are obtained.

where ∀x ∈ [0, 1], 0 < γ < minn

(
ωn−1−ωn

ωn−1+ωn

)
 , λn = γωn, and β(x

) = x4(35 − 84x + 70x2 − 20x3).
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According to the traditional wavelet transform method, 
the empirical wavelet transform is reconstructed, and the 
detail function is obtained from the inner product of the 
empirical wavelet function and the signal, and the approxi-
mate coefficient is obtained from the inner product of the 
empirical scale function and the signal. The original time 
series can be reconstructed as

where ∗ denotes the convolution symbol; 
∧

W�
f
(0,w), 

∧

W�
f
(0,w) 

denote Fourier transform of W�
f
(0, t), W�

f
(n, t) respectively. 

The empirical mode function fk(t) is

Variational mode decomposition (VMD)

VMD decomposition is a fully intrinsic, adaptive non-recur-
sive decomposition technique proposed by Dragomiretskiy 
et  al. (2014). It uses an alternating direction multiplier 
algorithm to continuously iteratively calculate each modal 
function and its central frequency to solve the problem of 
signal noise and avoid modal confusion to some extent. The 
specific decomposition steps are as follows:

(1) For each mode uk, the one-sided spectrum is obtained by 
calculating the corresponding resolved signal through the 
Hilbert transform. Then, an exponential term is added to 
adjust the respective center frequency, and the spectrum of 
each mode function is modulated to the baseband. Applying 
Gaussian smoothing to the demodulated signal to estimate 
the corresponding bandwidth can be regarded as a con-
strained variational problem.

(3)
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where t is the time, δ(t) is the unit impact function, uk is the 
decomposition mode, wk is the center frequency correspond-
ing to the mode, and the constraint condition is that the sum 
of all modes of ∑kuk = f(t) is equal to the original signal f(t).

(2) Introduction of quadratic penalty factors α and 
Lagrange multipliers λ to transform the variational 
problem into an unconstrained optimization problem.

(3)The alternating direction multiplier method (ADMM) is 
used to solve the above equation, and the original signal is 
decomposed into K narrowband modal components to obtain 
the optimal solution of the constrained variational model. 
The solution expressions of modal components uk and wk 
are as follows:

where f(w), λ(w), ui(w), and un+1
k

(w) are the Fourier trans-
forms of f(t), λ(t), ui(t), and un+1

k
(t) , respectively.

Sample entropy (SE)

Sample entropy is a method proposed by Richman and 
Moorman to measure the complexity of time series. This 
method does not depend on the length of data and has better 
robustness and consistency than approximate entropy. The 
higher the complexity of time series, the higher the entropy 
value, and vice versa, the smaller the entropy value. The 
algorithm is as follows:

(1) Calculate the absolute value distance of corresponding 
elements between time series vectors of length N, and 
define its maximum value as the distance between vec-
tors.

where k is an integer and k ∈ [1, m − 1], 1 ≤ i, j ≤ N − m + 1, 
i ≠ j.

For given threshold r, calculate its ratio Bm
i
(r) and the 

ratio average Bm(r).
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(2) Sequence sample entropy can be expressed as:

Neighborhood mutual information (NMI)

Due to the difficulty of probability density calculation, the 
commonly used Shannon information entropy is hard to 
quantify the correlation between features. Hu et al. extended 
the concept of neighborhood mutual information on this 
basis. The greater the neighborhood mutual information 
value, the greater the correlation between the two variables.

Let a nonempty finite set X = {x1, x2, ⋯, xn}, f ⊆ F on the 
space of real numbers inscribed by the characteristic set F be 
any characteristic subset. For any object xi, δ ≥ 0 on x defines 
its δ neighborhood on the characteristic subset f as

where Δ(x, xi) represents the distance between sample x and 
sample xi, and the distance function usually uses the Euclid-
ean distance. δ is the neighborhood parameter, which deter-
mines the size of the neighborhood.

Given S ⊆ F is a subset of the feature set F, define the 
average neighborhood entropy of the sample set x on the 
feature subset S as

in which ‖δS(xi)‖ is the base of the set δS(xi). For any xi, there 
are δS(xi) ⊆ X, ‖�S(xi)‖

n
≤ 1 . Therefore, 0 ≤  NHδ(S) ≤ log n. 

This shows that the size of δ determines the neighborhood 
entropy of the sample set.

Given S and R are two subsets of the feature set F, and 
define the joint neighborhood entropy of the sample set x on 
the feature subset S ∪ R as

where δS ∪ R(xi) is the neighborhood of sample xi on S ∪ R.
Define the neighborhood mutual information of the sam-

ple set x on the feature subset S ∪ R as
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Stacking ensemble learning

The stacking ensemble learning method introduces the idea 
of an advanced meta-learner. By combining different predic-
tion models in the same model, an asymptotically optimal 
learning system is constructed and obtains higher accuracy 
by reducing the bias of the generalization. The stacking 
ensemble learning method is generally divided into two lev-
els. Level 0 is the base learners for training different models, 
and level 1 is the meta-learner for learning the prediction 
results of level 0 models. The flow diagram of stacking 
ensemble learning method is shown in Fig. 2.

The base learners, also known as weak models, train dif-
ferent weak models on the dataset, and the prediction results 
are used as the input of the meta-learner. The base learners 
generated by different induction algorithms will contain var-
ious objective functions, hyperparameters, and covariates, 
which can increase the diversity of the base learners. The 
more multiformity the base learners are, the more generali-
zation and flexibility the model has, and it can adapt to data 
with different characteristics (Mendes-Moreira et al. 2012).

In this paper, BP, SVM, ELM, random vector functional-
link (RVFL) (Zhang et al. 2019), LSTM, RF, KNN, XGB, 
ARIMA, and THETA (Spiliotis et al. 2020) are selected as 
base learners. Among them, BP, SVM, ELM, RVFL, LSTM, 
RF, KNN, and XGB are machine learning models, which 
have achieved good application results in the field of carbon 
emissions. ARIMA and THETA are linear models, which 
are better at capturing linear features of sequences. The 
characteristics of the above models are completely differ-
ent, which ensures the diversity of base learners for better 
prediction results.

Instead of using simple averaging for combination pre-
diction, the meta-learner trains a generalized model for 
aggregation. This allows every single model to be weighted 
differently, and some single models with better prediction 
performance receive greater weight, which improves the 
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‖‖‖�S
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(
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prediction quality. In addition, the complex aggregation 
helps the model maintain overall stability (Ribeiro and Dos 
Santos Coelho 2020). Some single models cannot identify 
sharp changes in the series, and some single models forecast 
well when the series fluctuates drastically. The aggregation 
of the two models can get a better prediction result even 
when the series shows non-stationary fluctuations.

In this paper, the Cubist model is used as a meta-learner. 
The Cubist model is a regression model based on the pro-
posed M5 model tree. The Cubist model creates a tree struc-
ture where each path through the tree is collapsed into a 
rule. Unlike the M5 model tree, the Cubist model creates 
a series of “if after after” rules that can overlap. That is, a 
sample can be assigned to multiple rules, and all predictions 
are averaged to produce the final value (Yang et al. 2017). 
The Cubist model adds boosting with training committees, 
which is similar to developing a series of trees with adjusted 
weights to make the weights more balanced (Zhou et al. 
2019). The Cubist model has been applied to wind speed 
(Da Silva et al. 2021), electric power (Moon et al. 2022), 
and engineering (Zhou et al. 2019), which has achieved good 
prediction results.

Construction of the proposed model

As shown in Fig.  3, the proposed model in this study 
includes three modules: data decomposition, prediction and 
selection, and stacking ensemble. The specific modeling 
steps are as follows:

Step 1: Data decomposition. Firstly, the original carbon 
emission time sequence is decomposed by the EWT 
decomposition method, autonomously resulting in a cer-
tain amount of IMF components. Next, the complexity of 
IMF is calculated using SE, to find the IMF with higher 
complexity than the original time series. Lastly, the 
selected IMF is decomposed for a second time by VMD.
Step 2: Prediction and selection. Firstly, ten models are 
used to multi-step forecast all IMF separately, and the 
results of the same model for each IMF are summed to 
obtain the prediction results. Secondly, sub-model selec-
tion is performed in the validation set section. The model 

Fig. 2  Stacking ensemble learning method framework
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with the highest accuracy is selected as the preferred 
model and included in the set of selected sub-models. 
Then, calculate the NMI for the remaining 9 models and 
the preferred model, and find the average of all NMIs as 
reference. At last, models below the average NMI are also 
added to the set of selected sub-models.
Step 3: Stacking ensemble. The selected sub-models are 
used as base learners, and their prediction results are 
input to the meta-learner built by Cubist. The final car-
bon emission prediction result is obtained by the stacking 
ensemble learning method.

Empirical analysis

Data description

The EU has 27 member states, and the five countries with 
the highest carbon emissions in the last decade are Germany, 
Italy, France, Poland, and Spain. Figure 4 shows the carbon 
emission trends of these five countries from 2012 to 2021, 
which clearly shows that Germany is the highest carbon 

emitter in the EU. While Germany’s carbon emissions are 
trending downward, they are still twice as high as those of 
second-placed Italy. Therefore, it is necessary to research 
Germany’s carbon emissions.

Figure 5 shows the per capita carbon emissions of the five 
countries in the last decade. It can be seen that the per capita 
carbon emissions of Germany and Poland are higher than the 
EU average, and the per capita carbon emissions of Italy and 
Spain have similar trends. Significantly, France’s per capita 
carbon emissions over the past 2 years are lower than the 
world’s per capita carbon emissions, which indicates that 
France has made faster progress in carbon neutrality and is 
worth learning from by other countries. Thus, we conclude 
that the data for Italy and France are more representative.

In addition, these three countries have different progress in 
policy-making on carbon neutrality, which we consider are suf-
ficient to represent the EU governments’ focus on carbon neu-
trality. Germany adopted the Climate Protection Act in 2019, 
which sets the goal of achieving a carbon neutrality target by 
2050 in legal form. Furthermore, a new Climate Protection Act 
was passed in Germany in 2021, aiming to advance the date of 
achieving carbon neutrality to 2045. France developed the French 

Fig. 3  The process of proposed 
model
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National Low-carbon Strategy in 2015, intending to become car-
bon neutral by 2050 and reduce the carbon footprint of national 
consumption. And Italy has not yet issued a relevant policy docu-
ment (Zhao et al. 2022). Therefore, in this paper, Germany, Italy, 
and France are chosen as the subjects of the study.

This article selects January 1, 2019, to May 31, 2022, car-
bon emission daily detection data to carry on the empirical 
analysis (data from https:// carbo nmoni tor. org. cn/ downl oads/), 
with 1247 data, as shown in Fig. 6. The data from January 1, 
2019, to September 22, 2021, are selected as the training set to 
train the model. The data from September 23, 2021, to January 
26, 2022, with 250 data, are selected as the validation set to 
perform a preliminary evaluation of the model. The data from 
January 27, 2022, to May 31, 2022, with 249 data, are selected 
as the test set to obtain the final prediction results. The ratio of 
the training set, validation set, and test set is about 60%, 20%, 
and 20%. According to the central limit theorem (Bianucci 

2021), this experiment assumes that the carbon emission time 
series can be reasonably extended, and the overall distribution 
follows normally distribution when the sample size is large 
enough. The descriptive statistics of carbon emissions of Italy, 
France, and Germany are shown in Table 2.

Experimental settings

Evaluation indicators

To better evaluate the prediction results of the model, root 
mean square error (RMSE) and mean absolute percentage 
error (MAPE) are used as evaluation criteria. RMSE reflects 
the statistical characteristics of the error between the pre-
dicted value and the observed value, that is, the dispersion 
of the sample. MAPE does not deal with the absolute value 
of deviation to avoid the situation of positive and negative 

Fig. 4  Carbon emissions of the 
top five countries in the EU over 
the past decade (https:// ourwo 
rldin data. org/)

Fig. 5  Per capita carbon 
emissions of the EU’s top five 
countries over the past decade 
(https:// ourwo rldin data. org/)
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value cancellation, to reflect the real prediction effect. The 
smaller RMSE and MAPE are, the closer the prediction 
result is to the actual value, and the higher the prediction 
accuracy of the model is. The math is as follow:

where N is the number of observations, yt is the actual value 
at time t, and ŷt is the predicted value at time t.

Parameter setting

The setting of model parameters affects the prediction per-
formance of the model, and appropriate parameter setting 
can improve the prediction accuracy. In this paper, the core 
parameters are determined by referring to previous studies 

(18)RMSE =

√
1

N

∑N

t=1

(
yt − ŷt

)2

(19)MAPE = 100 ×
1

N

∑N

t=1

||||
yt − ŷt

yt

||||

and trial-and-error tests, as shown in Tables 3 and 4, in par-
ticular, ARIMA and THETA forecast by the R language 
package “predict” and CUBIST forecast by the R language 
package “Cubist,” using the default parameters.

Experimental particulars

Data decomposition

The original carbon emission time series is highly volatile 
and irregular, making it hard to achieve great results in direct 
prediction. Therefore, in this paper, the original series is 
primary decomposed by EWT and divided into a series of 
IMFs with more regularity and stability, which can facilitate 
the analysis of the fluctuation characteristics of the original 
series.

Among them, IMF1 is a noise series, which is greatly 
affected by various uncertain factors and has complex fluc-
tuations without obvious regularity. The fluctuation trend 
of IMF2 is consistent with the original time series, effec-
tively capturing the inflection point of rapid change of car-
bon emissions in the short term. For example, Germany’s 
carbon emissions decreased by 296 ton from December 11, 
2020, to December 12, 2020, and also showed a sharp down-
ward trend from point 711 to point 712 in Fig. 9b. France’s 
carbon emissions increased by 139 ton from December 2, 
2019, to December 3, 2019, and also showed a sharp upward 
trend from point 336 to point 337 in Fig. 8b. Italy’s carbon 
emissions decreased by 53 ton from December 24, 2019, to 
December 25, 2019, also falling sharply from points 358 
to 359 in Fig. 7b. It can be seen that the carbon emissions 
in winter vary considerably in each country. The energy 
consumption of these three countries is dominated by fos-
sil fuels, the burning of which produces large amounts 
of carbon dioxide. Winter temperature changes; energy 

Fig. 6  Time series data of 
carbon daily emissions in three 
countries

Table 2  Basic descriptive statistics of three carbon emission time series

Italy France Germany

Maximum 1323.1640 1330.2918 3077.3849
Minimum 447.2859 291.3712 789.6739
Median 840.7706 765.1621 1707.6856
Mean 855.0156 781.1145 1767.0738
Standard deviation 183.9744 194.9637 459.8242
Skewness 0.2214 0.1465 0.3353
Kurtosis 2.4468 2.4339 2.5466
Statistic for Jarque-Bera 26.2148 21.2524 34.1279
P value for Jarque-Bera 0.0010 0.0010 0.0010
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consumption changes (Shirizadeh and Quirion 2022), result-
ing in a large change in the overall carbon emissions.

Compared with IMF3, the vibration amplitude of IMF4 
increased, and the regularity of fluctuations was enhanced. 
Different time-scale features are extracted as different fre-
quency component series, which effectively reduces the 
difficulty of modeling work. IMF5 fluctuates gently with 
an overall U-shaped trend, reflecting the long-term changes 
in carbon emissions under the influence of temperature. 
The value decreases in cold weather and increases in hot 
weather. Germany’s IMF5 ranges from 1249 to 2297, about 
twice as high as France and Italy. Germany is the biggest 
emitter of carbon dioxide in the EU, with overall carbon 
emissions roughly twice as high as the other two countries. 
This is due to the fact that Germany, as a large industrial 
country, requires higher energy consumption to fuel its eco-
nomic growth (Jia et al. 2022), which leads to higher carbon 
emissions. And Germany is strongly opposed to the devel-
opment of nuclear power and is gradually shutting down 
nuclear power plants. However, no clean energy alternative 
to nuclear power has yet been found, leading to increased 
generation from coal-fired power plants and increased car-
bon emissions.

Although the IMF trend after EWT decomposition is 
enhanced, some sub-series are still highly unstable, which 
will affect the overall prediction accuracy. For this reason, 
this paper uses SE to quantify the complexity of IMF and 
selects the selected IMF with secondary decomposition. As 
shown in Table 5, after the primary decomposition of each 
dataset, there is an IMF with SE higher than the original 
sequence, which means the complexity is higher than the 
original sequence. If this IMF is forecasted directly, the 
decomposition effect will be weakened, and the prediction 
accuracy will be lowered. To solve this problem, this IMF 
is decomposed twice to reduce the sequence complexity and 
improve the model prediction accuracy.

The VMD is used to secondarily decompose the IMF 
which is selected. Choosing a reasonable decomposition 
modulus number K is the key to effective decomposition 
of VMD. In this paper, SE is used to optimize the value 
of decomposition K (Zhang et al. 2020b). Firstly, decom-
position is attempted using VMD with different K values. 

And then, calculate the decomposition to get the SE value 
of each IMF. In the next step, the SE average value of IMF 
is obtained when comparing different K values. When the 
value of K is small, the SE value is large, indicating that 
the IMF complexity after decomposition is high, and the 
time series is not fully decomposed. With the increase of K 
value, the SE value gradually decreases, and the decompo-
sition effect is significantly improved. Meanwhile, in order 
to avoid excessive decomposition, this paper chooses the 
inflection point where SE tends to be stable as the K value 
of VMD, the number of decomposition. In Germany dataset, 
when the value of K is higher than 8, the value of SE tends 
to be stable, so the value of K is chosen as 8. Analogously, 
Italy and France both chose K values of 7. The result of 
the secondary decomposition of three dataset are shown in 
Figs. 7c, 8c, and 9c.

Sub‑model selection based on NMI

Using all models as base learners does not necessarily lead 
to better prediction results. There may be redundancy among 
models, which increases unnecessary computation. Further-
more, different data characteristics are different, and one 
model cannot be suitable for any dataset. Combining all 
models which includes an underperforming single model 
will lead to a poor final prediction effect. Since putting 
diverse and distinct single models in the base learner can 
improve the effectiveness of stacking, this paper adopts NMI 

Table 3  Parameter values of decomposition methods

Method Parameters Value

EWT Global trend Poly
Degree 10
Reg None
Type detect Empirical law

VMD Intrinsic mode function Determined by SE
Tolerance of convergence criterion 1.00E−07

Table 4  Parameter values of prediction models

Model Parameters Value

BP Iterations number 1000
Learning rate 0.1
Training requirements precision 0.001

SVM Iterations number 1000
Kernel function RBF
Gamma 0.03125

ELM Iterations number 1000
Kernel function RBF

RVFL Iterations number 1000
Kernel function RBF

LSTM Iterations number 500
Initial learn rate 0.005
Number of neurons 128

KNN n_neighbors 8
Weights Distance

RF n_estimators 50
Random state 50

XGB Learning rate 0.1
Max depth 4
Booster gbtree
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to measure the correlation between different single models. 
The process of selecting sub-model is performed in the vali-
dation set. Firstly, the single model with the best outcome is 
selected according to the prediction accuracy index. Then, 
the NMI of this single model and other models is calcu-
lated. Finally, the model whose NMI value is higher than 
the average NMI of the optimal model and all other models 
is selected as the base learner.

Figure 10 shows the models selected at various steps for 
three datasets, where orange stands for the single model with 
the best prediction performance, yellow stands for the sub-
model selected based on NMI, and blue stands for unselected 
models. It can be seen that the selected models of different 
datasets are not completely the same. For example, at the 
advance one step, only RVFL in Italy’s selected model is 
consistent with the other two datasets, which is because the 

different models can capture different dataset features more 
effectively, indicating the necessity of sub-model selection. 
In addition, as shown in Table 6, the number of sub-model 
with different step selection is also inconsistent, but none of 
them exceed 7, which is in line with the number of sub-model 
commonly used in combined prediction (Liu et al. 2022c).

Comparison experiments

In order to fully verify the effectiveness and feasibility of 
the proposed model, three types of comparative experiments 
are designed in this paper. In each subsection in 3.5, we 
compared our proposed model with itself, making several 
alterations commonly used in the field and representative 
of the references mentioned in the introduction section, to 
realistically test the effectiveness of our proposed model.

VMD

Fig. 7  Secondary decomposition results of Italy

Table 5  SE result for 
IMF obtained by EWT 
decomposition

Note: The bolded numbers represent the complexity of the corresponding IMF is higher than the original 
sequence

Original IMF1 IMF2 IMF3 IMF4 IMF5

Italy 1.3301 1.373 0.8177 0.6437 0.2755 0.0445
France 1.4174 1.4568 0.6858 0.7034 0.3665 0.0466
Germany 1.4692 1.5564 0.7266 0.7215 0.3385 0.0442
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VMD

Fig. 8  Secondary decomposition results of France

VMD

Fig. 9  Secondary decomposition results of Germany
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We construct a naming system for ease of reference, 
as shown in Table 7. Each model’s name consists of three 
components: decomposition level, sub-model selection 
method, and combination method. Our proposed model can 
be denoted as “secondary-NMI-stacking,” which refers to 
the hybrid model using a secondary decomposition method, 
sub-model selection method based on NMI, and stacking 
ensemble learning method. Furthermore, in the following 
figures and tables, the black bold text indicates the optimal 
error value, and H1, H15, and H30 show 1, 15, and 30 steps 
ahead of prediction.

Comparison with different decomposition levels

In order to verify the effectiveness of the secondary decom-
position method in improving the prediction performance, 
the proposed model is compared with the same model but 
without secondary decomposition.

Considering the situation where no NMI sub-model 
selection method and stacking ensemble learning method 

are used, the single models with different decomposition 
levels are compared with the proposed model in this paper. 
Figure 11 shows the comparison of the prediction perfor-
mance of the 10 single models and the proposed model in 
three datasets. It can be seen that compared with the non-
decomposition model, the effect of the 1-step decomposition 
model was significantly improved. The prediction accuracy 
was improved by more than 50% on average for 1 step ahead, 
more than 25% for 15 steps ahead, and more than 30% for 
30 steps ahead. The shorter the prediction step, the better 
the improvement effect, and the prediction error was greatly 
reduced. Furthermore, the IMF with high complexity after 
the first decomposition was decomposed for secondary. In 
the experiments of 1-step, 15-step, and 30-step experiments, 
the prediction error RMSE of RVFL was reduced by 15.43%, 
5.5%, and 3.33%, respectively, and the prediction accuracy 
MAPE of 10 single models is improved by 7.48%, 4.29%, 
and 2.07% on average. The results showed that the secondary 
decomposition has a good effect in advanced multi-step pre-
diction and is an effective method to improve the prediction 
accuracy and perform data preprocessing. In addition, this 
paper proposed model with lower prediction accuracy than 
that of all the single models with different decomposition 
levels. A black dotted line in Fig. 11 represents the predic-
tion accuracy by MAPE of the proposed model, and it can 
be seen that the black line is lower than the cylinder of the 
10 single models. For example, in Italy dataset, the average 
improvement in prediction accuracy of the proposed model 
was 44.54% relative to the 10 single models, indicating that 
the hybrid model proposed in this paper is better than the 
single model without preprocessing and ensemble learning.
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Fig. 10  NMI between selected model and candidate models

Table 6  Sub-model selected for multi-step prediction of three countries

H1 H15 H30

Italy RVFL, XGB, KNN, RF, BP ELM, SVM, RF, KNN, XGB, BP, RVFL ELM, LSTM, RF, KNN, XGB
France RVFL, ARIMA, THETA, LSTM ELM, SVM, XGB, KNN ELM, XGB, RF, KNN, SVM, LSTM
Germany RVFL, ARIMA, THETA, ELM RVFL, THETA, LSTM, BP, KNN, SVM, XGB ELM, THETA, XGB, LSTM, BP, KNN

Table 7  Introduction of benchmark models

Method Symbol Details

Decomposition Non Non-decomposition
Single Single decomposition
Secondary Secondary decomposition

Sub-model selection Full No sub-model selection
TRI Model trimming
NMI Neighborhood mutual information

Combination AVE Simple average
ER Error reciprocal based on RMSE
Stacking Stacking ensemble learning
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Considering the situation where the NMI sub-model 
selection method and stacking ensemble learning method 
are used to integrate single models with different decom-
position levels, to verify the effectiveness of the second-
ary decomposition in the proposed hybrid model, Fig. 12 
shows the prediction results of the non-decomposed 

model, the single decomposition model, and the secondary 
decomposition model using the same integration method. 
It can be seen that the integration effect of the non-decom-
posed model is the worst, the single decomposition is 
the next best, and the secondary decomposition integra-
tion is the best. In the 1-step prediction, the secondary 

Fig. 11  Prediction results of models using multi-layer decomposition of three countries
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decomposition of Germany dataset has the best integration 
effect, with 90.43% and 45.06% improvement in RMSE 
compared with the non-decomposed and single decompo-
sition, respectively. In the 15-step prediction, the MAPE 
of the secondary decomposition integration of Italy dataset 
improved from 16.0238 to 7.4751, which was 53.35% bet-
ter than that of the non-decomposed integration, indicating 
that the performance of the secondary decomposition is 
still outstanding in the multi-step prediction. In the 30-step 
prediction, our proposed model improved the prediction 
error RMSE by 20.88% on average in France dataset, and 
the MAPE decreased from 14.0491 to 10.9263. The pre-
diction error is larger than that of 1 step ahead and 15 steps 
ahead, mainly because there are more uncertain factors 
in multi-step ahead prediction. The longer the prediction 
step, the higher the prediction difficulty, and the prediction 
error will increase relatively. However, the performance 
of the model proposed in this paper still maintains good 
prediction performance at 30 steps in advance, which fur-
ther demonstrates the effectiveness of the proposed model.

To sum up, the above experimental results illustrate 
three conclusions. First of all, the secondary decomposi-
tion method is more effective than non-decomposed method 
and single decomposition method, which is due to the fact 
that the secondary decomposition method can decompose 
the time series high-frequency data more completely and 
effectively and reduce the difficulty of prediction. Secondly, 

EWT is used for single decomposition and VMD is used 
for secondary decomposition, which can capture the valid 
data characteristics of nonlinear and non-stationarity of 
carbon emissions. Finally, preprocessing the data using the 
secondary decomposition method is very necessary in the 
proposed hybrid model, which enhances the overall predic-
tion performance.

Comparison with different sub‑model selection methods

To further ensure the effectiveness of sub-model selection 
in the proposed hybrid framework, we used other sub-model 
selection methods and the NMI method for comparison 
under the premise that the decomposition method and the 
integration method remain unchanged.

First, the proposed model is compared with and without the 
sub-model selection method, that is, the prediction results of the 
10 single models after secondary decomposition were directly 
integrated by the stacking ensemble learning method. Next, com-
paring of two different sub-model selection methods using trim-
ming and NMI. Model trimming is a commonly used method 
for sub-model selection, which censors candidate single models 
according to their prediction accuracy. In this paper, we choose 
to remove the single models with the smallest and largest predic-
tion errors, which means that eight single models are integrated.

As can be seen from Fig. 13, using the NMI sub-model 
selection method has the smallest error at all three steps 

Fig. 12  Performance comparison of different decompose levels of three countries
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and achieves the best prediction in all three datasets. In 
Germany dataset, the proposed model performs well in 
both 1-step ahead and 15-step ahead predictions. However, 
in 30-step ahead prediction, the NMI sub-model selec-
tion method has a higher RMSE than trimming by 1.11% 
and a lower MAPE than trimming by 0.13%. This is due 
to the increased difficulty of advance multi-step predic-
tion, and the individual extreme values in the model pre-
diction values selected by the NMI sub-model selection 
method. RMSE will amplify the prediction error, resulting 
in poor effect of RMSE. And MAPE represents the rela-
tive size of the deviation between predicted and true val-
ues, indicating that the NMI sub-model selection method 
has improved in the overall prediction effect. In France 
dataset, the average improvement of prediction accuracy 
RMSE in 1-step and 15-step ahead was 9.96%, which also 
achieved a good improvement effect. But in 30-step ahead 
prediction, the prediction accuracy of the model using the 
NMI sub-model selection method was the same as that of 
the model without the sub-model selection method. This 
is because when using the stacking method, we choose 
the Cubist model, which is a decision tree model, and the 
model itself will prune the data in complexity. In other 
words, the selected models obtained by the NMI sub-
model selection method at this point are the same as the 
result of pruning 10 single models into the Cubist model. 

But its prediction accuracy is much higher than that of 
the single model without integration, and the necessity of 
sub-model selection cannot be denied.

The model prediction results can be visualized from 
Fig. 14 scatter plot. The straight line y = wx + b (wx rep-
resents the line gradient and b represents the intercept) 
represents the line fitted from the predicted value and 
which line has w closer to one indicates that the model 
has a better fitting effect. In other words, when the fitted 
straight line is closer to the diagonal, the higher the predic-
tion accuracy of the model. It can be seen that the model 
without sub-model selection and trimming-based selec-
tion have an unsatisfactory prediction, and the deviation 
from the real value is large. The prediction performance 
of the model selected by the NMI sub-model is better, 
and the fitting degree is higher compared with the real 
value. In Italy dataset, compared with the model with-
out sub-model selection, the proposed model prediction 
accuracy of RMSE was increased by 29.89%, and MAPE 
was increased by 10.95%, which fully demonstrates the 
effectiveness of sub-model selection. And compared with 
the trimming sub-model selection method, the proposed 
model has better prediction accuracy, with an average 
improvement of 37.17%. In 1-step ahead prediction, the 
NMI sub-model selection method performed well on 
both France and Germany datasets. In France dataset, the 

Fig. 13  Performance comparison of different sub-model selection methods of three countries
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proposed model prediction error RMSE decreased from 
10.9002 to 9.9292, and MAPE improved by 6.55%, which 
also achieved a good improvement effect. According to 
Germany data, the prediction accuracy of using NMI sub-
model selection method was significantly higher than that 
using trimming, with RMSE decreasing from 36.3815 to 
21.1808 and MAPE decreasing from 1.1984 to 0.8762. 
In summary, it is important to use the sub-model selec-
tion algorithm before integrating, and the NMI sub-model 
selection method adopted in this paper is superior to the 
trimming method.

From the above experiments, it can be shown that it 
is necessary to use the sub-model selection method for 
integration input selection. Because there will be redun-
dancy among the candidate single models, the effect of 
combining all candidate models may not be better than 
that of single models. The sub-model selection method 
can remove the redundant models and select the optimal 
sub-model. In addition, the prediction performance of the 
NMI sub-model selection method is higher than trimming 
because of the specificity of the integration method. Using 
selection models with differences as a base learner can 
effectively improve the prediction accuracy of the stacking 
ensemble learning method. The NMI sub-model selection 

method can select the sub-models with a high difference 
and strong diversity among the candidate models, which is 
more suitable for the stacking ensemble learning method.

Comparison with different ensemble methods

To evaluate the performance of stacking ensemble learning 
method used in this paper, the commonly used simple 
average method and error reciprocal method are used as 
control methods for the experiments, while the secondary 
decomposition method and NMI sub-model selection 
method remained unchanged. The simple average method 
is the simplest weight determination method, that is, to 
give the same weight to each prediction model. The error 
reciprocal method gives more weight to models with 
smaller errors. In this paper, RMSE is used as the error 
measure index. Assuming that the errors of two single 
models in the validation set are RMSE1 and RMSE2, the 
weights of model 1 is RMSE1

RMSE1+RMSE2
 , and model 2 is 

RMSE2

RMSE1+RMSE2
.

Table 8 shows the MAPE and RMSE indicators of the 
error between the actual value and the multi-step pre-
dicted value. It can been seen that comparing with sim-
ple average and error reciprocal methods, the stacking 

Fig. 14  Scatter plot of predicted and true values 1-step ahead of three countries
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ensemble learning method has lower prediction error in 
three countries. In Italy dataset, at 15-step ahead predic-
tion, the stacking ensemble learning method improved the 
prediction accuracy by 2.612% on average. And at 30-step 
ahead prediction, the simple average method prediction 
error RMSE was 104.9658, and MAPE was 8.479, and the 
stacking method prediction accuracy RMSE was improved 
by 5.86%, and MAPE was improved by 7.62%, with bet-
ter prediction performance. In France dataset, the average 
prediction error RMSE for the stacking ensemble learning 
method multiple steps ahead is 68.01, and MAPE is 5.45. 
Relative to simple average method reduces the prediction 
error RMSE by 9.49% and MAPE by 8.73%. Relative to 
error reciprocal method, the prediction error was reduced 
by 13.41% for RMSE and 12.76% for MAPE. In Germany 
dataset, the average prediction error MAPE of the stack-
ing ensemble learning method is less than 28.58%, and 
the RMSE is less than 29.86% for the other two methods.

To allow readers a better visualization of the effect of 
the model predictions, we selected prediction results for 
1-step ahead of the three countries as indicated in a line 
graph. From Fig. 15, the use of the stacking ensemble 
learning method still has a certain impact on the prediction 
results. In Italy dataset, compared with the error recip-
rocal method, RMSE decreased from 34.085 to 11.4523, 
MAPE decreased from 2.7781 to 1.0355, and the predic-
tion accuracy increased by 64.56% on average. In France 

dataset, the ensemble method used in this paper has supe-
rior performance in advance multi-step prediction and a 
better fitting effect. Compared with the simple average 
method and error reciprocal method, RMSE increased by 
59.12% and 70.85%, and MAPE increased by 56.66% and 
68.33%, indicating that the stacking ensemble learning 
method is very effective in 1-step prediction. In Germany 
dataset, the stacking ensemble learning method performed 
more prominently in the 1-step ahead prediction, with a 
more significant improvement in prediction accuracy. In 
the RMSE error index, the simple average method was 
90.0833, the inverse error method was 169.8419, and the 
stacking ensemble learning method was 21.1808, with an 
average improvement of 81.66% in prediction accuracy.

In general, the combined effect of the stacking ensem-
ble learning method is significantly better than that of sim-
ple average method and error reciprocal method. This is 
because the stacking ensemble learning method can make 
full use of different learning strategies of the input model, 
enhance the fitting ability of a single model, and combine 
them for accurate prediction. Unlike the other two combi-
nation methods, the combined function of stacking ensem-
ble learning method is a complex model, rather than a 
simple function such as average or error reciprocal, which 
is more suitable for non-stationary, noisy and volatile data. 
In addition, it can be found through experiments that the 
performance of the error reciprocal method in carbon 

Table 8  The error results of 
multi-step prediction for three 
datasets

Dataset Model 1-step 15-step 30-step
RMSE MAPE RMSE MAPE RMSE MAPE

Italy Non-NMI-stacking 73.91 5.90 166.47 16.02 182.86 17.05
Single-NMI-stacking 15.87 1.33 97.99 7.98 104.77 8.41
Secondary-full-stacking 16.34 1.16 108.69 8.97 101.93 8.20
Secondary-TRI-stacking 21.85 1.41 99.86 8.08 98.89 7.87
Secondary-NMI-AVE 25.08 2.05 95.37 7.69 104.97 8.48
Secondary-NMI-ER 34.09 2.78 96.10 7.74 105.53 8.53
Proposed model 11.45 1.04 93.76 7.48 98.82 7.83

France Non-NMI-stacking 82.79 7.64 154.85 13.06 169.97 14.05
Single-NMI-stacking 16.34 1.45 113.39 10.64 132.76 12.70
Secondary-full-stacking 10.71 1.00 138.48 12.30 117.96 10.93
Secondary-TRI-stacking 10.90 1.01 111.43 10.32 121.79 11.45
Secondary-NMI-AVE 24.29 2.17 113.56 10.60 125.39 11.78
Secondary-NMI-ER 34.06 2.97 113.82 10.63 126.04 11.85
Proposed model 9.93 0.94 108.86 10.08 117.96 10.93

Germany Non-NMI-stacking 221.25 9.22 409.77 17.69 450.09 19.25
Single-NMI-stacking 38.55 1.65 288.26 12.53 308.26 13.75
Secondary-full-stacking 23.41 0.94 372.04 15.30 303.73 13.63
Secondary-TRI-stacking 36.38 1.20 278.20 12.18 300.16 13.41
Secondary-NMI-AVE 90.08 3.95 278.77 12.40 300.43 13.45
Secondary-NMI-ER 160.84 7.03 284.07 12.79 300.20 13.47
Proposed model 21.18 0.88 266.94 11.77 303.51 13.40
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emission data is not stable, especially on Germany dataset, 
and the prediction accuracy of 30-step prediction is poor. 
The simple averaging method has poor performance in 
1-step prediction, and the prediction error is much higher 
than that of stacking method. In comparison, the stack-
ing ensemble learning method has stronger generalization 
ability and has stable and excellent performance in all 
three datasets.

Results and discussion

The prediction results of the three comparative experiments 
can be found as follows.

(1) Consistent with the experimental results of Kong et al. 
(2022a), the data decomposition method can effectively 
improve the prediction accuracy of carbon emissions. 
By using the signal decomposition method to preproc-
ess the original time series data, the data can be decom-
posed into subsequences with stronger fluctuation regu-
larity and lower complexity, and the accuracy of model 
prediction can be improved.

(2) The secondary decomposition of the subsequence with 
the highest sample entropy value can make the sequence 
decomposition more complete, and the prediction 
model can better grasp the sequence characteristics and 
reduce the modeling difficulty. This is the same as the 
experimental conclusion of Li et al. (2021). The EWT-
VMD decomposition method adopted in this paper has 
obtained better prediction results in the datasets of three 

countries, indicating that the decomposition method can 
decompose complex carbon emission data effectively.

(3) The RVFL and ELM models perform outstandingly in 
the field of carbon emission prediction, among which 
RVFL performs better in single-step prediction and 
ELM performs well in multi-step prediction. In addi-
tion, the ARIMA model, while not a single model with 
the lowest predictive accuracy, can capture data points 
that AI models ignore and perform well in combined 
prediction (Yang and O’Connell 2020).

(4) Sub-model selection method is crucial for combined 
forecasting. For different datasets, not all submodels 
can play an active role in combined prediction due to 
different data characteristics (Fu and Zhang 2022). Sub-
model selection can select appropriate models from 
the candidate models of that dataset and effectively 
improve forecasting accuracy. The NMI sub-model 
selection method is superior to the trimming-based 
selection method. For example, in the Italy single-
step prediction, the prediction accuracy using the NMI 
sub-model selection method is higher than that of the 
unused model, with RMSE and MAPR improving by 
26.74% and 29.89%, respectively.

(5) The stacking ensemble learning method is an effective 
combined prediction method for carbon emission. The 
meta-learner of the stacking ensemble learning method 
uses complex functions, which is better than the tradi-
tional simple average method. This is consistent with 
the experimental results of Zhao and Cheng (2022). 
For example, in the France single-step prediction, 

Fig. 15  Prediction result of 1-step ahead of three countries
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the prediction accuracy of the model using the stack-
ing ensemble learning method is significantly higher 
than that of the simple average method, with MAPE 
increased by 56.66% and RMSE increased by 59.11%.

In addition, it can be found that the carbon emissions 
of these three countries have seasonal characteristics, with 
a general trend of high in winter and low in summer, and 
a U-shaped curve throughout the year. The cold winter 
weather increases the demand for heating, leading to the cor-
responding increase in energy generation, which produces 
large amounts of carbon dioxide, resulting in the annual peak 
of carbon emissions occurring in winter. Then, as tempera-
tures rise, society’s demand for heating decreases and so 
does the supply of energy. And the vegetation gradually 
flourishes and the carbon sequestration capacity increases, 
which makes the carbon emissions in the summer lower.

The three countries exhibit different volatility character-
istics due to different carbon neutral policies and economic 
environments. Germany, whose carbon emissions fluctuate 
wildly, is the biggest carbon emitter in the EU, accounting 
for roughly one-fifth of the EU’s greenhouse gas emissions. 
This is caused by Germany’s high degree of industrializa-
tion; the industrial sector’s share of total emissions is sig-
nificantly higher than the EU average. On the other hand, 
Germany’s electricity structure is dominated by coal and 
natural gas, supplemented by renewable energy sources. 
Renewable energy sources mainly refer to wind and solar 
energy. During undesirable weather, weather, gas, and coal-
fired power plants have to compensate for reduced wind and 
solar capacity, which doubles carbon emissions. After phas-
ing out nuclear energy, Germany needs to minimize the use 
of fossil energy and continuously explore renewable energy 
sources (Yang 2022).

France’s carbon emissions fluctuate more moderately, 
with per capita emissions below the world average over the 
past 2 years. France’s energy structure is one of the most 
decarbonized countries in the world. The low carbon emis-
sions are mainly due to nuclear energy, which is the main 
source of electricity generation in France (Lebrouhi et al. 
2022). Besides, in 2019, France codified into law its goal 
of achieving net zero emissions by 2050, and the following 
year updated its energy transition framework. Proactive gov-
ernment action has enabled the carbon neutrality process to 
move forward effectively. However, the energy consumption 
of the whole French economy is still dominated by fossil 
fuels, and the goal of carbon neutrality should be achieved 
through the development of wind energy resources and other 
clean sources, such as solar energy.

Italy’s carbon emissions fluctuate similarly to France’s, 
with smaller extreme differences and higher per capita emis-
sions. The distribution of energy-intensive industries in Italy 
is higher than the EU average, and the share of fossil energy 

represented by coal, oil, and natural gas in the energy struc-
ture is over 70%. Although natural gas, which has a lower 
carbon footprint, has become the primary choice for energy 
consumption, it is mainly dependent on imports and is seri-
ously affected by international policy situations. In recent 
years, the Italy government has been vigorously developing 
their hydrogen energy industry. Hydrogen energy has vari-
ous advantages, such as large storage capacity, low pollution, 
and high efficiency. It is an ideal new energy source for Italy 
to achieve carbon neutrality (Pastore et al. 2022).

Conclusions

The EU plans to be carbon neutral by 2050. Reliable short-
term carbon emission prediction can depict the imminent 
change in carbon emissions and provide timely and accu-
rate data for policymakers to use as reference. In this paper, 
we propose a hybrid model based on secondary decompo-
sition and stacking ensemble learning method to improve 
the prediction accuracy of carbon emissions. The model is 
mainly divided into three parts: data decomposition, model 
prediction and selection, and stacking ensemble. The gen-
eralization ability and robustness of the hybrid model are 
demonstrated by ablation experiments in Italy, France, and 
Germany. According to the prediction results, the following 
conclusions can be drawn:

(1) The hybrid model proposed in this paper is suitable for 
multi-step prediction of carbon emissions. In the exper-
iments of 1 step, 15 steps, and 30 steps in advance, 
the prediction effect is basically better than that of the 
control model and achieves higher prediction accuracy.

(2) The secondary decomposition method is superior to 
single decomposition and non-decomposition method, 
and the EWT-VMD decomposition used in this paper 
can effectively reduce the complexity of carbon emis-
sion data.

(3) The sub-model selection method can select the single 
model more suitable for combination from candidate 
models. In this paper, the sub-model selection method 
based on NMI can enhance the prediction accuracy of 
the hybrid model successfully.

(4) Combined prediction can contain more comprehen-
sive predictive information and has higher stability. In 
this paper, the stacking ensemble learning method is 
used to combine the advantages of single models, so 
that the overall prediction performance is significantly 
improved.

Based on the forecast results of three representative EU 
countries, some suggestions are put forward for policymak-
ers in EU countries. First, there is a need to shift the energy 
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structure away from fossil fuels towards renewable energy 
sources, such as solar, wind, tidal, nuclear, and hydrogen. 
There is also a need to increase investment in renewable 
energy and ensure the development of clean industries. 
Second, these countries should improve their carbon fixa-
tion capacities and effectively promote the development of 
carbon capture, utilization, and sequestration technology to 
improve the resourceful use of carbon dioxide emitted from 
fossil fuels. At the same time, vegetation coverage should 
be increased, and plant photosynthesis made full use of to 
enhance carbon fixation capacity. Finally, the carbon neutral-
ity targets should be written into law, and strict legal meas-
ures will be taken to ensure the timely completion of carbon 
neutrality targets. The formulation of laws and regulations 
cannot be divorced from the national economic situation, 
which is because most countries have not yet decoupled 
economic development from carbon emissions, and cannot 
propose emission reduction strategies at the expense of eco-
nomic development.

However, there are still some limitations in this study. For 
example, the change of hyperparameter and sample range 
can lead to changes in machine learning model prediction 
accuracy, while the change of candidate models could poten-
tially affect the stability and accuracy of NMI sub-model 
selection. In addition, the limited base models selected for 
the combined prediction in this paper and the application of 
many models in the field of carbon emissions remain to be 
explored. These aspects will continue to be investigated in 
future work.
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