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Abstract
Determination and dissipation kinetics of pymetrozine and spirotetramat in green bean were studied using a QuEChERS 
method coupled to high-performance liquid chromatography-tandem mass spectrometry. Pymetrozine recoveries ranged 
between 88.4–93.7%, with relative standard deviation (RSD) of 5.5–14.4%. For spirotetramat the recoveries ranged between 
91.7–103.4%, and the RSD were in the range of 3.2 to 12.4%. The limits of quantification (LOQs) were 0.01 mg/kg and 
0.005 mg/kg for pymetrozine and spirotetramat, respectively.
The developed analytical method was used to study the degradation rates of pymetrozine and spirotetramat in green bean 
grown in open field. Results showed that pymetrozine and spirotetramat followed the first-order kinetics model with half-
lives of 3.3 days and 4.2 days, respectively. Furthermore, risk assessment was carried out which showed that, the chronic risk 
quotient (RQc) values for pymetrozine and spirotetramat were much lower than 100%. The present results indicated that the 
health risks posed for consumers by the pymetrozine and spirotetramat residues were negligible at the recommended dosages.
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Introduction

Green bean (Phaseolus vulgaris L.) is a common food world-
wide which is eaten either raw or cooked. It is one of the 
major leguminous crops grown in Egypt, the green pods and 
dry seeds are marketed for local consumption and also for 
exportation. (Badawy et al. 2020). Egypt's annual produc-
tion amounts to about 265 thousand tons (FAOSTAT 2020). 
With such high productivity rate, Egypt ranks tenth among 
the green bean exporting countries in the world. In addition 
to the economic value of green beans, it improves the soil 
quality as the parts of roots remaining in soil after harvesting 
is considered valuable fertilizers enriching the soil (Fahad 
et al. 2015a).

The green bean plant is susceptible to a score of insect 
pests, including aphids, thrips, leaf worms and others that 
affect both the quality and quantity of the yield, which 
requires regular insecticides applications. In Egypt, the 
Agricultural Pesticides Committee (APC) recommends the 
use of different classes of pesticides on this crop to control 
various pests and diseases (Agricultural Pesticides Com-
mittee 2020). Spirotetramat and pymetrozine pesticides are 
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widely used to control sucking pests in green beans. Even 
though, these pesticides are beneficial in protecting green 
beans from pests, they may accumulate in the edible parts 
causing potential health risk to consumers (Ahmed et al. 
2014; Xu et al. 2021).

Spirotetramat, cis-3-(2,5-dimethlyphenyl)-8-methoxy-2-
oxo-1-azaspiro (Fig. 1a), belongs to the chemical class of 
tetramic acid derivative. It is one of the recommended and 
effective insecticides used to control widespread insects such 
as aphids and thrips in vegetables and fruits by inhibiting the 
action of acetyl-CoA carboxylase (Brück et al. 2009; Kay 
and Herron 2010; Kumar et al. 2009; Kumar and Kuttalam 
2009; Smiley et al. 2011).

Pymetrozine, 4,5-dihydro-6-methyl-4-[(3- pyridyl 
methylene)-amino]-1,2,4-triazin-3(2H)-one (Fig.  1b) is 
another effective pesticides against sucking insects. It is a 
pyridine azomethine-based insecticides, that inhibits nerve-
muscle interaction of the sucking insects (Lashkari et al. 2007; 
Li et al. 2011; Shen et al. 2009). The Environmental Pro-
tection Agency (EPA) has deemed pymetrozine a "possible" 
human carcinogen (Zhang et al. 2007). Therefore, it is neces-
sary to monitor the residues of pymetrozine in green beans.

The irrational use of pesticides raised concerns due to 
their risk to human health. In this context, governments and 
international organizations are committed to regulate and 
control the use of pesticides to protect consumers’ health. 
Setting a maximum acceptable residue limit (MRL) is an 
integral element of Good Agricultural Practices (Handford 
et al. 2015). Moreover, a pre-harvest interval period (PHI) 
has been also introduced as another precautionary measure 
to protect consumers (MacLachlan and Hamilton 2010).

Several studies were conducted to monitor residue of 
spirotetramat or pymetrozine in many crops including cot-
ton (Pandiselvi et al. 2010), grapes (Mohapatra et al. 2015; 
Vemuri et al. 2014), chilli (Chahil et al. 2015), mangoes 
(Mohapatra et al. 2012b), spinach (Chen et al. 2016), toma-
toes (Abd-Alrahman and Kotb 2020; Abd Al-Rahman et al. 
2012), strawberry (Xu et al. 2021) and many other fruit and 
vegetable crops (Han et al. 2013; Jia et al. 2019; Li et al. 2011; 

Singh et al. 2013). However, to the best of our knowledge no 
data has been reported about dissipation of spirotetramat and 
pymetrozine in green beans under field conditions.

To monitor spirotetramat and pymetrozine residues in 
food commodities different analytical methods were used 
such as, high performance liquid chromatography (HPLC) 
(Abd-Alrahman and Kotb 2020; Abd Al-Rahman et al. 2012; 
Cabizza et al. 2007; Chahil et al. 2015; Hong et al. 2011; 
Mohapatra et al. 2012a; Pandiselvi et al. 2010; Shen et al. 
2009; Singh et al. 2013; Vemuri et al. 2014), ultra-perfor-
mance liquid chromatography coupled with tandem mass 
spectrometry (UPLC-MS/MS), liquid chromatography with 
tandem mass spectrometry (LC–MS/MS) (Chen et al. 2016; 
Dias et al. 2013; Fernandes et al. 2014; Jia et al. 2019; Li 
et al. 2011, 2016; Xu et al. 2021; Zhang et al. 2015; Zhu 
et al. 2013) and gas chromatography mass spectrometry 
(GC/MS) (Jang et al. 2014; Mohapatra et al. 2015). Consid-
ering the extensive use of spirotetramat and pymetrozine in 
green beans there is an urgent need to develop a quick, pre-
cise and accurate method to simultaneously determine them.

This study aimed to develop a simple, accurate, and rapid 
method for simultaneous quantitation of spirotetramat and 
pymetrozine residues in green beans using UPLC–MS/MS. 
A continuous application approach using single and dou-
ble recommended doses was carried out to investigate the 
dissipation patterns, residue levels, and risk assessment of 
spirotetramat and pymetrozine in green beans cultivated in 
open field conditions at different time intervals. The results 
could provide guidance for the safe use of spirotetramat and 
pymetrozine in green beans under open field conditions.

Materials and methods

Chemicals and reagents

Certified standard samples of pymetrozine (purity, 99.4%) 
and spirotetramat (purity, 99.4%) were purchased from 
ChemService (West Chester, PA, USA). HPLC grade 

Fig. 1   Chemical structure of 
pymetrozine (a) and spirotetra-
mat (b)
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acetonitrile (ACN) and methanol (MeOH), LC–MS grade 
formic acid, were obtained from Fisher Scientific (Lough-
borough, UK). Sodium chloride and magnesium sulfate 
anhydrous were supplied from Chem-Lab NV (Zedelgem, 
Belgium). Primary secondary amine (PSA, 40–60 μm) was 
obtained from Agilent Technologies (DE, USA). The for-
mulations of pymetrozine (50%, wettable granule, WG), 
and spirotetramat (10 %, suspension concentrate, SC) were 
provided from the local markets.

Preparation of standard solutions

Standard stock solutions of pymetrozine and spirotetramat 
(each at 100 mg/L) were prepared by dissolving 10.06 mg 
of each standard in 100 mL ACN. The intermediate mixture 
standard solution of 10 mg/L was prepared in ACN by fur-
ther dilution. Mixed standard working solutions with equal 
concentrations were serially diluted using ACN to construct 
calibration curves. All the solutions were stored at 4 °C.

Field trail

The field trials were carried out, during the growing season 
2020, in Giza governorate, located south of Cairo. Green beans 
were cultivated in February 2020. Two independent experi-
ments were carried out, one for each insecticide, with different 
plots (50 m2) for each insecticide. A buffer zone (15 m2) was 
made to separate adjacent plots to avoid cross-contamination.

Samples were collected 0, 2 h, 1, 3, 7, 10, 14 days post 
treatment to monitor each insecticide residues in green 
beans. Samples were immediately transferred to the labo-
ratory, cut into small pieces about 3 cm and then frozen at 
-20 °C overnight, homogenized the next day using a Hobart 
food cutter (Hobart Corp., Troy, OH, USA).

Terminal residues

Pymetrozine and spirotetramat were applied 2 or 3 times each, 
at two dosage level 100 g a.i/ha (low level) and 200 g a.i/ha 
(high level) after the edible part of the fruits was formed. Repre-
sentative samples were collected according to Codex guidelines 
(FAO and WHO 2019) at several pre-harvest Intervals (PHI). 
For the assessment of terminal residues, samples were taken at 
3, 7 and 14 days after the last treatment.

Sample extraction

Quick, easy, cheap, effective, rugged, and safe (QuEChERS) 
is the most common technique used due to their simplic-
ity, good purification efficiency, and low organic solvent 

consumption (AOAC 1990; Duan et al. 2018; Hong et al. 
2011; Lehotay et al. 2005; Lehotay 2007; Singh et al. 2013; 
Yang et al. 2015). The QuEChERS method includes an 
extraction step with acetonitrile (ACN) and partitioning 
using MgSO4. The extraction is cleaned up by primary sec-
ondary amine (PSA), octadecyl modified silica (C18), and 
graphite carbon black (GCB) dispersive solid phase extrac-
tion (Anastassiades et al. 2003b, 2003a).

The frozen homogenized green bean (10 g) was weighed 
into a 50 mL polypropylene centrifuge tube, and 10 mL 
ACN was added to it. Samples were extracted by vortex 
for 2 min after adding a piece of ceramic homogenizer in 
the tube. 1 g of sodium chloride and 4 g of anhydrous mag-
nesium sulfate were added. The sample was hand-shaken 
again for 30 s. After centrifugation at 5000 rpm for 5 min, 
0.2 mL of the top layer ACN was 5x diluted using ACN, then 
vortexed for 30 s. Finally, the tubes were filtered through a 
0.22 µm nylon syringe filter for LC–MS/MS analysis.

LC–MS/MS

A Dionex Ultimate™ 3000 RS UHPLC+ focused system 
separation module Liquid Chromatograph (LC) system 
(Thermo Fisher Scientific, Austin, TX, USA) in combina-
tion with TSQ Altis triple quadrupole mass spectrometer 
(MS/MS) was used to perform the LC–MS/MS analysis. 
The chromatographic separation was performed on the 
Accucore RP-MS C18 column (100 × 2.1 mm, 2.5 µm film 
thickness; Thermo Scientific, Lithuania) at 40 °C, with 
an injection volume of 1 µL. The mobile phase consisted 
of water/acetonitrile (30/70. v/v) with 0.1% formic acid 
at a total run time of 7 min. The pesticide detection was 
performed using the multiple reaction monitoring (MRM) 
mode. The optimal MRM transitions, collision energies 
(CE), and radio frequencies (RF) of S-lens were opti-
mized using a standard solution of 0.5 mg/L in 50/50 
MeOH/H2O with 0.1% formic acid at a constant flow rate 
of 0.3 mL/min and injection volume of 5 µL in an infu-
sion mode. The electrospray ionization was operated in 
a positive mode (ESI+). The capillary ion spray voltage 
was 3800 V, the ion source temperature was 325 °C. The 
sheath and Aux gas pressure were 40 and 10 Arb, respec-
tively. Trace Finder software (version 4.1) packages were 
applied to acquire and process the data obtained. Under 
these conditions, the retention times of pymetrozine and 
spirotetramat were 0.71 and 1.89 min, respectively. The 
specific MS/MS parameters are given in Table  1 and 
Fig. 2.

Method validation

Method performance was validated in terms of lin-
earity, specificity, matrix effect (ME), accuracy and 
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precision, and limit of quantification (LOQ), according to 
SANTE/12682/2019 guidelines (SANTE 2021). Linearity 
was assessed through the coefficient of determination (R2), 
residuals, and factors (RF) derived from the constructed 
external calibration curves. The constructed calibration 
curves that prepared in the blank sample, and that prepared 
in acetonitrile, were used to determine the percentage of 
matrix effect (%ME) as follows:

where ME is the matrix effect, and SMMC and SSC are 
the slopes of the calibration curves in the matrix and pure 
solvent, respectively. A ME% of a positive value indicated 
that the matrix enhanced the analytical response, and a 
negative value showed that the matrix suppressed the ana-
lytical response. Blank green bean samples were analyzed 
to check the specificity of the method by observing if peaks 
occurred at or around the same retention time of the target 
analyte. The accuracy and precisions were estimated in 
recovery (%) and relative standard deviation (RSD, %), 
respectively. Blank green bean samples were spiked at 
four concentration levels of 0.005, 0.01, 0.1, and 1 mg/kg 
to confirm the method validity in the same day (intra-day 
repeatability) and three different days (inter-days repeat-
ability). The LOQ was defined as the lowest spiked level 
achieving an acceptable recovery of 70–120% and preci-
sion of < 20%.

Calculations

Dissipation and terminal residue

The degradation rates of pymetrozine and spirotetramat was 
calculated using a first-order kinetic model illustrated by 
Eq. (2)

where Ct (mg/kg) is the residual levels of pymetrozine or 
spirotetramat at time t (days), C0 (mg/ kg) is the initial 
deposits. K is the first-order rate constant (day−1) obtained 
from the C0/Ct and t curve by regression analysis. The half-
life (T1/2) is the time taken for a certain amount of pesticide 
to be reduced by 50%. The T1/2 was calculated by Hoskins’ 

(1)ME(%) = (SMMC − SSC∕SSC) ∗ 100

(2)C
t
= C

0
e−kt

formula (Eq. 3) (Hoskins 1961; Liang et al. 2011). The safe 
pre-harvest interval (PHI) was computed using Eq. 4.

Dietary intake risk assessment

The risks that may occur as a result of long-term dietary 
intake of the contaminated green beans with pymetrozine 
or spirotetramat was assessed using Eq. 5 and Eq. 6 (Malhat 
and Abdallah 2019).

The NEDI (mg/kg.bw/day) is the national estimated daily 
intake of the tested pesticide based on the Egyptian dietary 
intake. STMRi (mg/kg) is the supervised trials median resi-
due value obtained from the field trials. Where Fi represents 
the consumption of green beans by the general population, 
and bw (kg) is the average body weight of adults (60 kg).

The risk quotient (RQ) was determined by Eq. 6

The ADI is the acceptable daily intake of pymetro-
zine (0.03 mg/kg.bw/day) (EFSA 2012) and spirotetramat 
(0.05 mg/kg.bw/day) (EFSA 2017).

Results and discussion

Method performance

To validate the specificity of the developed method, a 
representative blank sample of green beans was ana-
lyzed in triplicates to confirm that no matrix interfer-
ing peaks appears at the retention time of the target 
pesticides. Figures 3 and 4 showed that no interfering 
peaks appeared at or around the retention time of pym-
etrozine and spirotetramat, indicating that the method 
is specific. The selectivity of the method was con-
firmed by the identical retention time of pymetrozine 

(3)T
1∕2 = ln2∕k

(4)PHI = Ln
(

MRL∕C
0

)

K

(5)NEDI =
∑

(STMRi × Fi)∕bw

(6)RQc = NEDI∕ADI × 100

Table 1   MS/MS parameters 
and retention times for 
determination of pymetrozine 
and spirotetramat

Analyte Precursor ion 
[M + H]+

Product ions (m/z) Collision 
energy (V)

RF lens (V) Rt (min.)

Pymetrozine 218 78.08 39.3 55 0.71
218 105.08 19.8 55

Spirotetramat 374.2 302.2 16.7 59 1.89
374.2 330.2 15.1 59
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and spirotetramat in the solvent and the matrix samples. 
The chromatograms of pymetrozine and spirotetramat 
resolved well in the solvent, blank, and fortified sam-
ples (Figs. 3 and 4).

Matrix-matched calibration curves of pymetrozine 
and spirotetramat were plotted for eight concentra-
tions (0.001, 0.002, 0.005, 0.01, 0.025, 0.05, 0.1, and 
0.2 μg/g). The calibration curves were linear with a cor-
relation coefficient of r > 0.998, and response factors of 

˂ 20%. The regression equations of SMMC were used for 
analytes quantification. The matrix effects of green beans 
were obtained using Eq. 1. Results showed that matrix of 
the green bean samples caused the suppression of pym-
etrozine responses with an ME equals to16.2%, while 
enhancement of spirotetramat responses were observed 
with an ME of 6.75%. To account for this effect this 
study used matrix-matched standard solutions to obtain 
more precise data (Table 2). The ME in UPLC-MS/MS 

Fig. 2   Optimizing Rf Lens (A), breakdown curve at 1.5 mTorr ( +) (B) and product scan (C) of pymetrozine (m/z 218) and spirotetramat 
(374.2 m/z)
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is a consequence of the competition between the analyte 
and the complex matrix of the sample during ionization 
process in the electrospray ion source (Taylor 2005).

The LOQs of pymetrozine and spirotetramat were 
0.01 and 0.005 mg/kg, respectively (Table 2). The LOQ 
of pymetrozine and spirotetramat was 70 and 400 times 

Fig. 3   LC/MS/MS representative chromatograms of pure solvent (a), blank sample extract (b), pymetrozine standard in pure solvent (10 µg/l) 
(c), fortified sample extract (50 µg/kg) (d), spiked sample at 50 µg/kg (e)
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lower than the MRL set by the European Union Commis-
sion (EFSA 2017, 2012).

Table 3 shows method precision and trueness expressed 
as repeatability (RSD%) and recovery (accuracy) (SANTE 
2021). The efficiency of the extraction method was validated 
based on the recovery results (Table 3). The recovery study 

was developed at four concentration levels of 0.005, 0.01, 
0.1, and 2 mg/kg, using six consecutive extractions for each 
spiked level. The mean recoveries ranged between 88.4% 
and 93.7% with RSDr less than 11.6% for pymetrozine, and 
ranged between 95.1% and 103.4% with RSDr less than 7.7% 
for spirotetramat. The inter-days recovery and RSDR (n = 18) 

Fig. 4   LC/MS/MS representative chromatograms of pure solvent (a), blank sample extract (b), spirotetramat standard in pure solvent (10 µg/l) 
(c), fortified sample extract (50 µg/kg) (d), spiked sample at 50 µg/kg (e)
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for the tested concentration levels ranged from 88.9 to 92.4% 
with RSDR less than 14.4% for pymetrozine, and 91.7 to 
97.1% with RSDR less than 12.4% for spirotetramat. Recov-
eries at the different concentration levels of the tested pes-
ticides in green beans samples were satisfactory and within 
the SANTE recovery limits (70% ≤ Recovery ≤ 120%) and 
repeatability (≤ 20%) for the samples (SANTE 2021). This 
specified the accuracy and reproducibility of the developed 
method.

Dissipation

Figure 5 shows the dissipation rate of pymetrozine and spiro-
tetramat in green bean after one application. The first-order 
kinetic equation described the degradation rates of pymetro-
zine and spirotetramat with correlation coefficients of 0.953 
and 0.970, respectively (Fig. 5). The initial concentrations 
of pymetrozine and spirotetramat of 0.108 mg kg−1 and 
0.513 mg kg−1, respectively, decreased gradually as time 
lapsed (Fig. 5). After 14 days 95% of pymetrozine and 90% 
of spirotetramat were degraded. The growth dilution could 

be one of the reasons behind dissipation, while precipitation 
is not likely to be an important factor due to the low water 
solubility of spirotetramat (30 mg/L, 20 °C) and pymetrozine 
(270 mg/L, 20 °C).

In this study, the half-live of pymetrozine was 3.3 days, 
which is lower than those reported by Zhang et  al. 
(2015) of 2.3—2.6 days in rice straw, Xu et al. (2021) of 
6.79–11.36 days in strawberry and Abd-Alrahman and Kotb 
(2020) of 1.31 days in tomato. Meanwhile, the half-live of 
spirotetramat in the present study was 4.2 days which is less 
than values reported in other studies on other crops where it 
ranged between 4.4–8.1 days in citrus (Zhang et al. 2015), 
12.4 days in pear (Xun et al. 2019).

The lower half-lives reported in this study compared to 
the studies of Zhang et al. (2015), Xun et al. (2019), Abd-
Alrahman and Kotb (2020) and Xu et al. (2021), could be 
due to difference in some environmental factors during the 
experiment such as temperature, humidity, salinity and light 
intensity. These abiotic factors have major effects on plants 
metabolic and catalytic activities which may affect the dis-
sipation of pesticides (Fahad et al. 2017, 2015b, 2015a). 
Furthermore, the differences in growth rate and chemical 
constituents between the different crops could have an effect 
on the half-lives of pesticides (Saber et al. 2020).

Terminal residues

The terminal residues of pymetrozine and spirotetramat 
in green bean 3, 7 and 14 days after the last application 
are shown in Table 4. The residues of the two pesticides 
decreased by time whether were applied two or three times 
at the two tested concentrations (Table 4).

The concentrations of pymetrozine 3 and 7  days 
after application were higher when applied at double 
the recommended dose compared to applying the rec-
ommended dose. However, after 14  days the residues 
of pymetrozine decreased, reaching 0.081 ± 0.003 and 
0.018 ± 0.007 mg kg−1 at double the recommended dose 
and the recommended dose, respectively. When spirotetra-
mat was applied two and three times at recommended dose 
and twice the recommended dose based on PHI (14 days), 
residues of spirotetramat were 0.042–0.047 mg kg−1 and 
0.043–0.047 mg kg−1, respectively. The European MRL 

Table 2   Linearity range, Slope, Intercept, correlation coefficient(R2), residuals (%), response factor (RF) (%), matrix effect (%), and LOQ (mg/
kg) of pymetrozine and spirotetramat in acetonitrile and green beans matrix

Analyte Matrix Range (µg/L) Slope Intercept R2 Residuals (%) RF (%) ME (%) LOQ (µg/kg)

Pymetrozine Acetonitrile 2–100 7.945e5 3.586e4 0.9992 -4.71 to 5.6 -3.8 to -11.8 - -
Green beans 2–100 6.653e5 1.311e4 0.9997 -4.14 to 2.03 -2.8 to -7.2 -16.2 10

Spirotetramat Acetonitrile 1–200 1.407e5 2.8e4 0.9988 -0.01 to 5.5 -1.5 to -18.7 - -
Green beans 1–200 1.502e5 2.697e4 0.9993 0.08 to -9.3 -1.3 to -19.1 6.75 5

Table 3   Mean recoveries and RSD for pymetrozine and spirotetramat 
in green beans matrix

a intra-day repeatability (n = 6 for each spiking level, on the same day)
b inter-days repeatability (n = 18 for each spiking level, on three differ-
ent days, 7 days intervals)

Analyte Spiked 
level (mg/
kg)

Intra-day Inter-days

% Recov-
ery

RSDr a % Recov-
ery

RSDR b

Pymetro-
zine

0.005 - - - -

0.01 93.7 8.3 90.4 10.2
0.1 88.4 5.5 92.4 12.8
2 90.2 11.6 88.9 14.4

Spirotetra-
mat

0.005 95.1 4.8 93.4 6.1

0.01 103.4 6.9 97.1 12.4
0.1 98.7 3.2 95.5 7.5
2 96.1 7.7 91.7 9.2
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for both pesticides, spirotetramat and pymetrozine in fresh 
beans with pods is 2 mg kg−1 (EFSA 2021, 2012). In the 
present study, the terminal residues at all studied time inter-
vals and concentrations were far below the European MRL, 

which indicated good agricultural practice complying with 
consumer safety and product international trading (Saber 
et al. 2020).

Risk assessment

The potential risk to humans associated to the consumption 
of green beans with residues of pymetrozine and spirotetra-
mat at the levels reported in this study was assessed using 
the RQ (Table 5). Results showed that the RQ values of 
pymetrozine and spirotetramat in green bean were all below 
100% at the recommended dosage and also at twice recom-
mended dosage applied two and three times. This indicated 
that the residue levels of pymetrozine and spirotetramat in 
green bean do not pose hazardous effects to consumers at 
the studied concentrations.

Conclusions

The present study has validated a QuEChERS extraction 
method for the residual analysis of pymetrozine and spiro-
tetramat in green bean using LC–MS/MS. Field experiments 

Fig. 5   Dissipation curves for 
spirotetramat (A) and pymetro-
zine (B) after a single applica-
tion to green bean grown in an 
open-field trials

Table 4   Terminal residues of spirotetramat and pymetrozine in green 
beans

Dosage 
(g a.i/ha)

Number of 
times sprayed

Days after 
spraying

Terminal residues (mg/
kg) ± SD

Spirotetramat Pymetrozine

100 2 3 0.238 ± 0.048 0.175 ± 0.013
7 0.153 ± 0.022 0.073 ± 0.021
14 0.046 ± 0.014 0.015 ± 0.001

3 3 0.496 ± 0.071 0.292 ± 0.019
7 0.176 ± 0.038 0.155 ± 0.039
14 0.042 ± 0.006 0.071 ± 0.007

200 2 3 0.427 ± 0.059 0.384 ± 0.044
7 0.16 ± 0.066 0.144 ± 0.001
14 0.047 ± 0.029 0.081 ± 0.003

3 3 0.725 ± 0.095 0.537 ± 0.023
7 0.148 ± 0.018 0.244 ± 0.051
14 0.043 ± 0.02 0.018 ± 0.007
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were conducted to study the dissipation dynamics and ter-
minal residues of pymetrozine and spirotetramat in green 
bean. In addition, a risk assessment study was conducted 
on the dietary intake of pymetrozine and spirotetramat in 
green bean based on their residues after field trials. In this 
study, the average recovery of pymetrozine and spirotetra-
mat in green bean was ˃88.4%, with precision of ˂ 14.4% 
at fortification levels of 0.005, 0.01, 0.1 and 2 mg/kg. The 
LOQs of pymetrozine and spirotetramat were 0.005 mg/kg 
and 0.01 mg/kg, respectively. Field experiments showed 
that the degradation of pymetrozine and spirotetramat in 
green bean followed a first order reaction kinetic equation. 
Half-lives of pymetrozine and spirotetramat were 4.2 and 
3.3 days respectively. The RQ values were far below 100%, 
indicating that pymetrozine and spirotetramat at the residue 
levels reported in the field experiments, do not pose risk to 
consumers. The present study has provided a scientific basis 
for the safe application of pymetrozine and spirotetramat in 
green bean under Egyptian field conditions.
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