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Abstract

One of the consequences of mining is the release of heavy metals into the environment, especially water bodies. Phytoreme-
diation of areas contaminated by heavy metals using Vetiver grass and Indian mustard is cost-effective and environmentally
friendly. This study aimed at enhancing remediation of heavy metal contaminated water through the simultaneous hybrid
application of clay minerals (attapulgite and bentonite) and Vetiver grass or Indian mustard. A 21-day greenhouse experiment
was carried out to investigate the effectiveness of the clay minerals to improve heavy metal phytoremediation. The highest
accumulation of aluminium (Al) by Vetiver grass was 371.8 mg/kg in the BT2.5VT treatment, while for Mn, the highest
accumulation of 34.71 mg/kg was observed in the AT1VT treatment. However, Indian mustard showed no significant uptake
of heavy metals, but suffered heavy metal toxicity despite the addition of clay minerals. From this study, it was evident that
bentonite added at 2.5% (w/v) could improve the phytoremediation capacity of Vetiver grass for Al and Mn polluted water.
The current laboratory-scale findings provided a basis for field trials earmarked for remediation in a post-mining coal envi-
ronment in South Africa. This remediation approach can also be adopted in other places.

Keywords Heavy metals - Indian mustard - Phytoremediation - Contaminated water - Vetiver grass

Introduction

Water is an important resource for sustenance, and has

Responsible Editor: Elena Maestri become a scarce resource in most parts of the world, thus
demanding sustainable management. A major problem in
Highlights water management is pollution, which hinders proper eco-
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e Bentonite (2.5% w/v) improved the phytoremediation capacity many sectors (Mahmoud et al. 2021). The rising human
of Vetiver grass for Al population drives industrialization, mining, agriculture, and

o Attapulgite (2.5% w/v) improved Vetiver grass tolerance index poor sewage management, which then become major water
for Al and Mn.
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pollutant sources (Danh et al. 2009; Mahmoud et al. 2022).
Of the various contaminants, heavy metals are constantly
released into the environment from a multitude of anthro-
pogenic sources, posing a risk to human and environmental
health (Danh et al. 2009; Isiuku and Enyoh 2019). The main
sources of heavy metal pollutants are mining, manufacturing
and processing industries, sewage, solid wastes, urban runoff
and fuel leakages (WHO 2017). Humans can readily ingest
heavy metals when they consume contaminated water and
aquatic biota (Isiuku and Enyoh 2019).

South Africa is globally known as a key player in resource
mining, which has resulted in many pollution problems
despite the economic gains gathered from mining (Antin
2013). For example, The Leeuspruit River in proximity to a
former coal mine records a concentration of 2.72 mg/L. and
5.4 mg/L for Mn and Al respectively as against the accepta-
ble limits of 0.1 mg/L and 0.5 mg/L for Al and Mn (Wessels
2013). The Leeuspruit River is a tributary of the Vaal River,
which is considered to be South Africa’s key socio-economic
surface water resource (DWAF 1996).

Although aluminum (Al) and manganese (Mn) are among
the most abundant elements in the earth’s crust and are use-
ful in various sectors (Wang et al. 2013), there is evidence
that solubilized Al in toxic amounts negatively affects plants,
animals and human beings. E.g., root growth inhibition in
plants, nervous disorders and Alzheimer's disease in humans
(Wang et al. 2013; Betancourt et al. 2015). Likewise, excess
Mn levels in human beings can result in several health issues
such as neurological disorders, low IQ in children and low
coordination and movement control (Wang et al. 2013). In
Ecuador, elevated levels of Mn (970 pg/L) were detected in
the Puyango River and children in proximity to this river had
over 2 pg/g in their hair. This was found to be responsible for
neurobehavioral disorders and low IQ among these children
(Betancourt et al. 2015).

Considering the negative impacts of Al and Mn on the
environment, it is therefore important to ensure that the
Leeuspruit River is brought to the best possible quality
regulated by the South African water quality guidelines
(DWAF 1996). One of the most accepted methods for the
remediation of metals polluted media is phytoremediation,
because it is affordable, and an easily applied green technol-
ogy whose by-products can be used for other purposes such
as bioenergy, essential oils and animal feed (Sricoth et al.
2018; Yang et al. 2019; Edgar et al. 2021). However, wider
application of phytoremediation is inhibited by various
challenges, including low biomass yield, extreme climatic
influence, slow plant growth, long time required for remedia-
tion, pollutant-specific requirements, and adverse effects of
contaminants on plant functions (Danh et al. 2009; Mioska
2012; Shahid et al. 2020; Leng et al. 2021; Sharma 2021).

Vetiver grass (Chrysopogon zizanioides L. Roberty)
is notable in water remediation, because of its excellent
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physiological and morphological properties, which enable
growth in contaminated substrates and harsh climatic condi-
tions (Truong and Hartm 2001; Danh et al. 2009; Koupai
et al. 2020). Kiiskila et al. (2019) observed that Vetiver
reduced Ni, Zn, sulphate, Mn, Cr, Al and Cu by 38%, 35%,
28%, 27%, 21%, 11% and 8% respectively from acid mine
drainage within a year. Indian mustard (Brassica juncea L.
Czern) is also recognized as a good plant for phytoremedia-
tion (Qadir et al. 2004; Raj et al. 2020; Gravand and Rahna-
vard 2021), although field studies on water remediation by
this plant are limited. Studies have confirmed the capacity
of Indian mustard to survive and take up heavy metals with
concentrations as high as 50 ppm in substrates (Meyers et al.
2008; Singh and Fulekar 2012; Napoli et al. 2019). Several
Indian mustard genotypes were tested for their ability to accu-
mulate Hg in a hydroponic experiment (Ansari et al. 2021). It
was revealed that all the tested genotypes of Indian mustard
could accumulate Hg. The observed accumulation of Hg in
the roots of Indian mustard ranged from 18.4 to 269.9 pg/g.
Singh and Fulekar (2012) observed that Indian mustard
uptake was 25.000 pg/g, 32.750 pg/g and 30.550 pg/g of Cd,
Pb and Zn from the soil, after 21 days of exposure.

Recently, clay minerals and nanoparticles have received
attention for application in the remediation of contami-
nated soil and water (Otunola and Ololade 2020; Hussain
et al. 2021). A review by Paz-Ferreiro et al. (2014) con-
firmed the use of several amendments such as biochar and
compost in combination with phytoremediation plants to
achieve better remediation results. The approach of using
immobilisers to improve phytoremediation has been tested
in the laboratory showing increased phytoextraction of Pb
and Sb, up to 533 times higher than using plants alone
without amendments (Katoh et al. 2016).

Approximately, not many studies have focused on the
combined application of adsorbents and phytoremedia-
tion for metals-polluted water. Therefore, in pursuit of
sustainable solutions to environmental pollution, this
study evaluated the hybrid application of phytoremedia-
tion (using Vetiver grass and Indian mustard) and clay
minerals (attapulgite and bentonite) for removing Al and
Mn from polluted water. In particular, the study investi-
gated the impact of attapulgite and bentonite at two dosage
levels (1% and 2.5%) on the growth and metals removal
potential of Vetiver grass and Indian mustard in water.
This study determined the impact of attapulgite and ben-
tonite on the phytoremediation capacity of Indian mustard
and Vetiver grass in Al and Mn contaminated water. This
study optimized the remediation of metals-polluted water
through a hybrid application of phytoremediation and clay
minerals. This application was undertaken to develop a
suitable solution for the remediation of heavy metals in a
post-mining environment in Sasolburg, South Africa. The
findings of this study can also be applied in other areas.
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Materials and methods
Water sampling

The study area is within a former coal mining area located in
Sasolburg, Free State Province, South Africa. Mining operations
were stopped in 2006 and the area is now at the rehabilitation
and reclamation stage. Previous monitoring of this area estab-
lished that the Leeuspruit River (26°50'16.1"S 27°48'42.3"E),
one of the major water bodies in the area is polluted by nutrients
and heavy metals including Al and Mn, emanating from mining
as well as post-mining land-use activities (Wessels 2013).

To determine the heavy metal concentrations, water sam-
ples were collected in triplicate from four sites along the
course of the river, based on land use patterns and suspected
pollution sources. Physicochemical water parameters, includ-
ing pH, temperature, electrical conductivity (EC), and total
dissolved solids (TDS) were measured on-site using a cali-
brated standard multi-parameter probe (YSI Incorporated,
Model 85D, 1.N058500, SN 09 K 100,684, Yellow Springs,
Ohio, USA). Clean 500 mL polyethylene bottles were rinsed
three times with the river water before samples were collected
and stored in cooler boxes with ice. The samples were trans-
ported to the Institute for Groundwater Studies at the Univer-
sity of the Free State for heavy metal and nutrient analyses.

Plant preparation
Vetiver grass was supplied by Hydromulch (Pty) Ltd. Johan-

nesburg, South Africa. The plants were thoroughly rinsed
to remove soil particles and other possible contaminants.

Indian mustard seeds were supplied by Seeds for Africa,
South Africa. These were propagated in seedling trays using
Hygrotech seedling starter composed of 17.2% N, 7.1% P,
2.3% K, 0.8% Ca, 0.2% Mg, 785 mg/kg Fe, 398 mg/kg Mn,
Zn and Cu, 204 mg/kg B and 6.6 mg/kg Mo. The seedlings
were kept moist in a greenhouse at the Department of Soil,
Crop and Climate Sciences, University of the Free State.
Thirty-day-old seedlings of similar sizes were thoroughly
rinsed and used for the experiment.

Properties of attapulgite and bentonite clays

Natural attapulgite and bentonite in their raw forms were
supplied by AttaClay (Pty) Ltd (Germiston, South Africa).
Brunauer—-Emmett-Teller (BET) surface area and micropore
of the clays were determined (Dogan et al. 2007). Cation
exchange capacity (CEC), pH, EC, bulk density, water
absorption and colour were also reported.

Experiment set up

A 21-day randomized complete block design hydroponic
experiment was set up in a greenhouse facility at the Uni-
versity of the Free State, South Africa. Experimental
jars were maintained under temperatures of 28 °C (day)
and 20 °C (night) and exposed to natural light. The treat-
ment codes and descriptions are presented in Table 1 and
there were three replicates of each treatment. This study
seeks to determine the best hybrid of clay minerals and
plants suitable for the remediation of Al and Mn contami-
nated water. Therefore, based on the highest concentrations

Table 1 Water treatment codes
and conditions

Treatment Code

Conditions

Control (Zero treatment)
AT1
AT2.5
BT1
BT2.5
VT

BJ
ATIVT
AT2.5VT
BTIVT
BT2.5VT
ATI1BJ
AT2.5BJ
BTI1BJ
BT2.5BJ
VTC

BIC

Nutrient water only (with no added Al or Mn)
Attapulgite Applied at 1% (w/v)

Attapulgite Applied at 2.5% (w/v)

Bentonite applied at 1% (w/v)

Bentonite Applied at 2.5% (w/v)

Vetiver only

Indian mustard only

Attapulgite applied at 1% (w/v)+ Vetiver
Attapulgite applied at 2.5% (w/v)+ Vetiver
Bentonite applied at 1% (w/v)+ Vetiver
Bentonite applied at 1% (w/v)+ Vetiver
Attapulgite applied at 1% (w/v)+Indian mustard
Attapulgite applied at 2.5% (w/v) + Indian mustard
Bentonite applied at 1% (w/v)+Indian mustard
Bentonite applied at 2.5% (w/v) +Indian mustard
Vetiver only in nutrient water

Indian mustard only in nutrient water
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Table 2 Physicochemical parameters and heavy metals (+standard deviation) measured in-situ and laboratory chemical analysis of water sam-
ples from the Leeuspruit Assessment against the In-stream Water Quality Guidelines (WQG) for the Leeuspruit Catchment

Sampling site pH Temperature EC (mS/m) TDS (mg/L) NO; (mg/L) PO43‘ (mg/L) SO42‘ (mg/L) Al (mg/L) Mn (mg/L)
()
RIVC 6.02+0.01 25.5+0.40 39.3+£0.50 240+0.70 0.06+0.01 0.24+0.35 13.7+£0.41 0.96+0.01 0.54+0.001
RIV1 6.00+£0.00 26.7+0.10 61.9+0.10 364+0.58 0.41+0.02 0.32+0.02 62.6+0.77 4.58+0.00 0.14+0.00
RIV2 7.22+0.07 29.7+0.10 59.9+0.10 965+0.00 0.56+0.02 0.51+0.02 238.7+1.44 0.64+0.00 0.26+0.00
RIV3 6.63+0.10 25.0+0.20 255.5+1.30 580+2.60 2.09+0.09 2.06+0.61 499+0.53 0.33+0.01 0.14+0.00
WQG for the 6-8.5 - <45.00 - 0.50 0.20 - 0.30 <8.00
Leeuspruit
Catchment

EC electrical conductivity (mS/m); TDS total dissolved solids

Table 3 Properties of attapulgite and bentonite used in this study

Properties Attapulgite Bentonite

Specific surface area (SSA) 129.42 m%/g 111.16 m%/g

Micropore spaces 0.014 cm®/g 0.022 cm’/g

Cation exchange capacity 73.90 meq/100 g 78.23 meq/100 g
(CEC)

pH 8.6 8.6

Electrical conductivity (EC) 52 71

Bulk density 1 ton/m3 1.1 ton/m3

Water absorption 193% 143%

Colour Light grey Brown

found in the Leeuspruit River (Table 2), nutrient water
(composed of water with a nutrient mixture of 9.9% N
25.3% P, 47.7% K and 12.9% Mg) was spiked with Al

il
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Fig.1 Tolerance index (TI) of (a) Vetiver grass and (b) Indian mus-
tard in the various treatments at the end of the experiment. Data
shown as mean+SD of triplicates (Error bars represent standard
deviation). Lower case letters on top of error bars indicate statistically
significant variance between means. Key: VT- Vetiver grass only;
AT1VT- Vetiver +attapulgite applied at 1% (w/w); AT2.5VT- Veti-
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(5 mg/1) and Mn (1 mg/1) using Al,(SO,); and MnCl,.4H,0
reagents. The concentration of Al and Mn used in this
experiment was based on the observed concentrations in
the Leeuspruit River at the time of the experiment. Plastic
jars of 1 L were used to hold 800 mL of contaminated
water. These were covered with lids that had holes and
wrapped with aluminium foil to minimize the effects of
sunlight. The plants were placed in the water (one plant per
jar) and the jars were refilled to the initial volume (800 mL)
with more of the nutrient water each time the water levels
were reduced through evaporation, and or transpiration
consumption by the plants. Indian mustard seedlings with
at least three leaves and a height of ~6 cm were selected
for this experiment, while each Vetiver grass was trimmed
to similar heights of 30 cm for shoots and 15 cm for roots
before they were transplanted to individual jars.

111
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Treatment

ver + attapulgite applied at 2.5% (w/w); BT1VT- Vetiver + bentonite
applied at 1% (w/w); BT2.5VT- Vetiver + bentonite applied at 2.5%
(w/w); BJ- Indian mustard only; AT1BJ- Indian mustard + attapulgite
applied at 1% (w/w); AT2.5BJ- Indian mustard + attapulgite applied
at 2.5% (w/w); BT1BJ- Indian mustard +bentonite applied at 1%
(w/w); BT2.5BJ- Indian mustard + bentonite applied at 2.5% (w/w)
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Plant harvesting and processing

At the end of 21 days, the plants were harvested and care-
fully rinsed with water. The length and weight of the roots
and shoots of the plants’ fresh biomass were recorded. The
plant parts (roots and shoots) were then separately oven-
dried at 75 °C for 72 h. The dry biomass of each plant was
weighed, recorded and the tolerance index (TI) was calcu-
lated according to Nabaei and Amooaghaie (2020) as

TI = Dry biomass in contaminated water
1
/Dry biomass in uncontaminated water M
The translocation factor (TF), which is the ability of a
plant to translocate metals from its roots to shoot was calcu-
lated according to Nabaei and Amooaghaie (2020):

TF = Heavy metal concentration in the shoot

@

/Heavy metal concentration in the root

Plant sample digestion and analysis

The dried root and shoot samples were milled and digested
using microwave-assisted digestion by nitric acid. The
homogenized powdered plant sample was weighed
(0.5+0.005 g), digested using nitric acid (HNO;) in a
microwave and analyzed for heavy metals using Prodigy7
inductively coupled plasma—optical emission spectrometry
(ICP-OES) (Teledyne Leeman Labs) at the Analytical Labo-
ratory, Chemistry Department, University of the Free State
ICP-OES (Sastre et al. 2002; US EPA 2007).

Statistical analysis

All data were subjected to statistical analysis and expressed
as means + standard deviation of three replicates using analy-
sis of variance (ANOVA). Means were considered significant
at p <0.05. The calculations were performed using R soft-
ware version 4.0.0 (R Development Core Team 2020). The
mean values were compared using the ANOVA test for nor-
mal data, after which a Tukey’s post hoc test was performed
to know the specific treatments with significant differences.

Results

This research aimed at investigating the potential of Veti-
ver grass and Indian mustard with attapulgite and benton-
ite for effective removal of Al and Mn from contaminated
water. This was observed in a 21-day greenhouse experi-
ment, guided by the actual heavy metals concentration in the
Leeuspruit River at the time of the experiment. The findings
of this study are presented in the following section.

Physicochemical properties and heavy metals

The physicochemical properties and heavy metal contents of
the water samples for each sampling site along the Leeus-
pruit River were compared with the In-stream Water Quality
Guidelines for the Leeuspruit Catchment (In-stream WQG
2021). The results are presented in Table 2.

Properties of attapulgite and bentonite clays

The clay minerals have a high specific surface area (SSA)
and cation exchange capacity (CEC) (Table 3). Both atta-
pulgite and bentonite have the same pH of 8.6 which is alka-
line, thus encouraging metal immobilization. Other proper-
ties of attapulgite and bentonite are shown in Table 3.

Tolerance index (TI) and visual symptoms

TI varied within the different treatments, but both plants
showed a high tolerance with TI > 60 as shown in Figs la
and b.

Heavy-metal accumulation

The accumulated Al and Mn in the roots and shoots of Veti-
ver grass in the various treatments are shown in Figs. 2 and
3. The concentration of Al and Mn left in the treated water
at the end of the experiment was determined and presented
in Table 4. The metal concentration was reduced in the veg-
etated treatments compared to the unvegetated treatments.

Translocation factor (TF)

The TF for Al and Mn in all the treatments was less than 1
as presented in Table 5. The VT treatment (Vetiver grass
alone) showed the highest TF for Al, but the same treatment
showed the lowest TF for Mn.

Principal component analysis (PCA)

The PCA biplot grouped the treatments into three as shown
in Fig. 4, indicating a negative correlation between the
groups.

Discussion

The pH values observed for the water samples indicated
a close to neutral pH for the Leeuspruit. The measured
temperature and pH were within the Leeuspruit Catchment
Water Quality Limits. There was a high variation in the
TDS values among the sample points, which ranged from
240+0.70 mg/L to 965+ 0 mg/L. The possible sources

@ Springer
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Fig.2 Concentrations of manganese (Mn) in (a) roots and (b) shoots
of Vetiver grass in the different treatments at the end of the experi-
ment. Data shown as mean+SD of triplicates (Error bars represent
standard deviation). Lower case letters on top of error bars indicate
statistically significant variance between means (p <0.05) based on
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Fig. 3 Concentrations of aluminum (Al) in (a) roots and (b) shoots of
Vetiver grass in the different treatments at the end of the experiment.
Data shown as mean+SD of triplicates (Error bars represent stand-
ard deviation). Lower case letters on top of error bars indicate statisti-
cally significant variance between means (p <0.05) based on Tukey’s

of the dissolved solids may have been the dissolution of
underlying sedimentary rocks or runoff from agricultural
land (Fondriest Environmental 2014). Based on the Leeus-
pruit Catchment Water Quality Guidelines, ideal EC values
were exceeded in all the sites except for RIVC (Table 2).
The highest PO,>~ value of 2.06 +0.61 mg/L was from
the sampling point RIV4, which exceeded this limit by
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Tukey’s Honest Significant Difference (HSD) test. Data with non-
significant variance have the same letter. Key: VT: Vetiver grass only;
AT1VT: Vetiver + attapulgite (1% w/v); AT2.5VT: Vetiver + attapulg-
ite (2.5% w/v); BT1VT: Vetiver+ bentonite (1% w/v); BT2.5VT: Vet-
iver + bentonite (2.5% w/v)
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Concentration in Shoots (mg/kg)

Honest Significant Difference (HSD) test. Data with non-significant
variance have the same letter. Key: VT: Vetiver grass only; AT1VT:
Vetiver + attapulgite (1% w/v); AT2.5VT: Vetiver + attapulgite (2.5%
w/v); BT1VT: Vetiver + bentonite (1% w/v); BT2.5VT: Vetiver + ben-
tonite (2.5% w/v)

1.66 mg/L. High phosphate levels can promote eutrophica-
tion, lowering overall water quality (Mezgebe et al. 2015).
The SO,>~ concentrations ranged from 13.7 +0.41 mg/L
to 238.7 + 1.44 mg/L (RIV3), which indicates mine water
pollution. The ICP-OES results revealed that Mn ranged
from 0.14 +0.00 to 0.54 +0.00 mg/L while Al ranged
from 0.33 +0.01 to 4.58 +0.00 mg/L. The result for other
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Table 4 Residual Al and Mn contents in treated water under various treatment conditions
Heavy metals OT BT1 BTIVT AT2.5VT BT2.5VT BT2.5 VT AT1IVT AT2.5 AT1

(mg/l) (mg/1) (mg/1) (mg/l) (mg/1) (mg/l) (mg/1) (mg/l) (mg/1) (mg/l)
Mn 245+821 13+7.85 0.1£0.11 1.6+1.02 05+026 29+0.67 168+3.82 3.8+3.30 0.7+0.08 15.1+1.44
Al 393+1593  30.9+23.530.7+0.61 3.4+6.01 29+2.44 17.5+246 1594542 145+19.22 1.2+0.08 2.1+0.42

Values are Means =+ standard deviations (n=3), p<0.05. Key: OT- zero treatment; VT- Vetiver grass only; ATIVT- Vetiver + attapulgite (1%
w/v); AT2.5VT- Vetiver + attapulgite (2.5% w/v); BT1VT- Vetiver + bentonite (1% w/v); BT2.5VT- Vetiver + bentonite (2.5% w/v); AT1- atta-
pulgite (1% w/v); AT2.5- attapulgite (2.5% w/v); BT1- bentonite (1% w/v); BT2.5- bentonite (2.5% w/v)

Table 5 Translocation factor (TF) observed for Vetiver grass in each
treatment

Heavy Metal BT2.5VT ATIVT AT25VT VT BTIVT
Mn 0.242 0.210 0.337 0.776  0.165
Al 0.124 0.092 0.137 0.052  0.104

Values are Means +standard deviations (n=3). (p<0.05), a strong
negative correlation was observed between the TF of Al and Mn.
Coefficient (r)=-0,68. Key: VT- Vetiver grass only; AT1VT- Veti-
ver+attapulgite (1% w/v); AT2.5VT- Vetiver + attapulgite (2.5%
w/v); BT1VT- Vetiver+bentonite (1% w/v); BT2.5VT- Veti-
ver + bentonite (2.5% w/v)

heavy metals such as Cd, As, Co, Cr, Mo, and Cu was
below detection limits. Al and Mn with concentrations
of ~5 mg/L and 1 mg/L respectively were of importance
in this research.

SSA and CEC determine the adsorptive properties of clay
minerals (Macht et al. 2011), while the total negative charges
available in the clays enable them to hold heavy metals unto
their surfaces. The SSA observed indicates the availability of
internal and external layers within attapulgite and bentonite
that are available as reactive surfaces (Otunola and Ololade
2020). An increase in pH increases the adsorptive ability of
the clays, therefore, the observed pH of both clays further
indicates their capability for adsorption of Al and Mn in
polluted water.

The rate of phytoremediation is affected by the plant
growth rate, which is why fast-growing and high-biomass
crops are the most appropriate (Danh et al. 2009; Isiuku
and Enyoh 2019; Itam et al. 2019). The TI of Vetiver grass
was significantly higher in the treatments assisted with
attapulgite and bentonite. Attapulgite alleviated heavy
metals stress and gave the best TT of 107.7 in the AT2.5VT
treatment, while the lowest TI of 62.9% was obtained in
the Vetiver grass + control (Fig. 1a) because it experienced
greater metal stress. This indicates that attapulgite and
bentonite alleviated heavy metal stress in Vetiver grass.
For the Indian mustard treatments, the highest TI was
116.8 with the BJ treatment (Indian mustard + control),
while the lowest TI of 76.2 was observed in the AT2.5BJ
treatment (Fig. 1b), indicating that the clay minerals
did not improve the metal tolerance of Indian mustard.

Despite the addition of more contaminated water leading
to increased concentrations of Al and Mn, Vetiver grass
showed no physical signs of heavy metal stress. The plant
remained green and luscious throughout the experiment,
while Indian mustard became pale and yellowish with
leaves drying out due to heavy metal stress. This confirms
that Vetiver can survive in highly contaminated environ-
ments (Danh et al. 2009; Suelee et al. 2017). This is simi-
lar to the observation of Gravand and Rahnavard (2021),
who noted that there were no physical signs of toxicity in
Vetiver grass in highly contaminated media. The variation
in the TI of Vetiver grass and Indian mustard may be due
to the plants’ different morphological and cellular traits
(Isiuku and Enyoh 2019). Attapulgite and bentonite did
not necessarily favour an increase in heavy metal toler-
ance and growth of Indian mustard, but they successfully
improved the tolerance of Vetiver grass in Al and Mn con-
taminated water.

At the end of the experiment, the concentration of Al and
Mn was reduced in the vegetated treatments compared to the
unvegetated treatments (Table 4). The treatments comprising
both clay minerals and plants showed higher heavy metal
removal. This was because more contaminated water was
added to the initial 800 mL mark as the water evaporated or
transpired, leading to an increasing concentration of heavy
metals available for uptake.

The desired outcome was to determine the effects of atta-
pulgite and bentonite on the tolerance and heavy metal accu-
mulation of Vetiver grass and Indian mustard. The experi-
ment revealed the quantity of Al and Mn that the plants
could take up in 21 days under different treatments. For the
clay-only treatments, there may have been a regeneration
of contaminants that were previously adsorbed (Li et al.
2019; Said et al. 2020). This explains why Al and Mn in
some treatments increased, although the heavy metals were
expected to have been adsorbed by the clay minerals in the
clay-only treatments (Table 4).

A statistically significant difference (p =0.014) was
recorded in the concentrations of Al and Mn between the
treatments, as well as in their roots and shoots (Figs. 3 and
4). There was generally higher root uptake of both heavy
metals in all the treatments. The significant variance in root
and shoot uptake corresponds to the findings of previous
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PCA - Biplot

* VT3

*VT1

Fig.4 Principal component analysis (PCA) for the accumulation of
Al and Mn in the different treatments. Key: VT: Vetiver grass only;
AT1VT: Vetiver +attapulgite (1% w/v); AT2.5VT: Vetiver + attapulg-

studies and confirms that Vetiver accumulates most heavy
metals in its roots, because of its high tolerance (Suelee et al.
2017; Hassan et al. 2020; Gravand and Rahnavard 2021).
This was confirmed in all the treatments with Vetiver, even
those that were assisted with attapulgite and bentonite.
The plant uptake of Al (Fig. 3) was generally higher
than that of Mn (Fig. 2) in both roots and shoots, prob-
ably because the initial concentration of Al in the water
was five times greater than that of Mn, and in most cases,
heavy metal accumulation in plants increases with increas-
ing concentration in the substrates (He et al. 2021; Hus-
sain et al. 2021; Leng et al. 2021). In addition, Al could
have reduced the availability of Mn because it exhibits
an antagonistic behavior towards Mn uptake (Yang et al.
2009). Al has more affinity to FeOH than Mn, therefore
the iron plaques might also play an important role in this
process. In previous studies, Vetiver showed a prefer-
ence for Mn over other heavy metals, without a signifi-
cant change in biomass yield even at high concentra-
tions (Hassan et al. 2020; Thakur et al. 2021). For Mn,
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ite (2.5% w/v); BT1VT: Vetiver+ bentonite (1% w/v); BT2.5VT: Vet-
iver + bentonite (2.5% w/v)

AT1VT showed the highest root uptake (28.68 +1.95 mg/
kg) while the VT (Vetiver only treatment) showed the
least root uptake (7.9 +1.38 mg/kg). The highest shoot
uptake of 6.1 +1.49 mg/kg was, however, observed in the
VT treatment. According to Thakur et al. (2021), when
heavy metals are taken up into plant cells, they can be
excluded, immobilized, chelated, or compartmentalized.
Therefore, cell growth determines biomass yield, which
in turn promotes metal uptake (Ali et al. 2013). For Al,
treatment BT2.5VT showed the highest root and shoot
uptake of 330.7+0.47 mg/kg and 41.1 +0.22 mg/kg,
respectively, while the lowest root and shoot uptake was
observed in treatment VT. There was a strong positive
correlation between root and shoot Al uptake by Vetiver
grass (r=0.90, p < 0.05), while a weak positive coefficient
was observed between Mn root and shoot uptake (r=0.01,
p<0.05).

According to the PCA biplot (Fig. 4), three groups
are observed consisting of samples without clay amend-
ment (VT samples), Samples with 1% of clay materials
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(AT1IVT and BT1VT samples), and those with 2.5% clay
(AT2.5VT and BT2.5VT), indicating the negative correla-
tion between the groups. Also, it is observed that Al accu-
mulated in the roots and shoots is associated mainly with
the BT1VT, AT2.5VT, and BT2.5VT experiments, while
the Mn accumulated in the roots and shoots is associated
mainly with ATIVT. In addition, the PCA confirms the
antagonistic behaviour towards Mn and Al uptake (Yang
et al. 2009). However, it can be seen that the Al uptake is
similar in both the roots and the shoots, while a statisti-
cally significant difference is observed between the uptake
of Mn in shoots and roots.

Generally, there was no significant uptake of Al and Mn
by Indian mustard in all treatments, as none of the heavy
metals were detected by ICP-OES. This was attributed
to the increasing concentrations of contaminated water
in the experimental jars. Even in the untreated water, the
final concentration for Mn and Al was 25.4 +8.21 and
39.3+15.93 mg/L respectively (Table 4). These final con-
centrations resulted from the continual addition of contam-
inated water each time the initial volume was reduced by
evaporation (in the unvegetated jars) and or transpiration
and plant uptake (in the vegetated jars). Phytoremediation
studies indicate that this method is suitable for minimally
contaminated sites (Isiuku and Enyoh 2019). Although
none of the plants died during the experiment, the result-
ing toxicity from increasing heavy metal concentration
was likely to be responsible for the insignificant uptake of
Al and Mn in Indian mustard.

Previous studies indicated that Indian mustard can
uptake high concentrations of metals (50-30,000 ppm)
in water (Meyers et al. 2008; Singh and Fulekar 2012;
Napoli et al. 2019). However, studies have also indicated
that Indian mustard performs better as a phytoremedia-
tion plant when only one metal type is present compared
to when two or more contaminant or heavy metal types
are present. For example, Yang et al. (2021) reported that
Indian mustard performed better as a hyperaccumula-
tor when only As or Pb was present compared to when
both heavy metals were present. The authors noted up
to a 90% decrease in As uptake when Pb was present as
a co-contaminant in solution, whereas, in As only solu-
tion, uptake by Indian mustard was 1,786 ppm. Kim et al.
(2010) observed a reduced uptake of Cd, Cu, Pb, and Zn
due to the presence of multiple metals and the competitive
uptake of these metals.

The insignificant metal uptake by Indian mustard could
also result from Mn-induced toxicity, which has been
reported previously (Parashar et al. 2014; Fariduddin et al.
2015). From these studies, it was evident that excess Mn
triggers reactive oxidative stress such as H,0O, and O, radi-
cals in Indian mustard, threatening proper plant growth after
damage to membrane lipids, stomatal functions, proteins,

and enzymes (Parashar et al. 2014). According to Gayatri
et al. (2019), higher contents of trace elements including Zn,
Ni, Mn, Cu and Fe can inhibit plant growth and lead to toxic-
ity in plants. This is likely to be the case with Indian mustard
in this study as the increasing concentrations of Al and Mn
may have lowered the ability of Indian mustard cells to func-
tion properly, thereby limiting its metabolic, morphological
and absorptive properties (Srivastava et al. 2015; Phusanti-
sampan et al. 2016). Mn and Al induced oxidative stress in
Indian mustard, restrict plant growth, cell elongation and
photosynthesis, leading to stunting (Fariduddin et al. 2015;
Ahmad et al. 2018). In this study, attapulgite and bentonite
could not increase heavy metal uptake by Indian mustard,
and neither could these clay minerals alleviate heavy metal
stress in the plant. Vetiver grass under the same experimen-
tal condition as Indian mustard exhibited more resistance to
Al and Mn compared to Indian mustard.

Translocation factor values < 1 indicate a plant is suitable
for phytostabilisation or root storage of heavy metals, and
TF values > 1 indicate suitability for phytoextraction (Isiuku
and Enyoh 2019). Mn showed a higher translocation to the
shoots of Vetiver compared to Al in all the treatments with
Vetiver grass (Table 5). The highest TF of 0.78 was observed
in the VT treatment for Mn, indicating that attapulgite and
bentonite might have prevented the translocation of Mn by
promoting stronger adsorption of Mn within the root zone.
According to Ramos-Arcos et al. (2019), the removal of Mn
was the fastest among heavy metals including Al, B, Ba,
Be, Co, Cr, Cu, Fe, Mg, Ni, Pb, S, Se, Tl, V and Zn, but
TF was < 1. This is similar to the present study as TF val-
ues below 1 (ranging between 0.22 to 0.77) were observed
for Mn in Vetiver grass. Another study showed that within
30 days, 0.15 ppm of Mn can be removed from landfill lea-
chate by Vetiver grass (Thakur et al. 2021), with TF> 1.
The high TF observed in the study may have been due to
the low initial concentration of Mn, which encouraged faster
translocation (Thakur et al. 2021). For Al, the highest TF
of ~0.14 was observed in the AT2.5VT treatment (Table 5),
but reasonable amounts of Al were stored within the roots
of Vetiver. Generally, the results indicated that the roots of
Vetiver grass could both tolerate and accumulate high con-
centrations of Mn and Al.

The low TF observed in this study was similar to the find-
ings of Suelee et al. (2017) and Thakur et al. (2021). The cell
membrane is negatively charged; therefore, Mn and Al ions
enter plant cells easily. However, Mn is more easily translo-
cated to the shoots because it is an essential element for plant
growth (Ramos-Arcos et al. 2019; Shahid et al. 2020; Thakur
et al. 2021). Although the TF indicates a plant’s ability to
translocate heavy metals to its shoots, it should not be solely
considered when determining the suitability of plants as
hyperaccumulators, because although TF < 1, the shoots may
still have high uptake levels of heavy metals. For instance,
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in a study on the uptake of Cd by Himalayan balsam, TF
was < 1, but the plant’s shoots contained about 70% of the
total Cd root uptake (Coakley et al. 2019). The TF was < 1
for Al and Mn in this study, a situation that can be consid-
ered an advantage, because it prevents metals from reaching
the plant shoots and damaging the photosynthetic machinery
as well as limiting post-remediation use of Vetiver grass
(Isiuku and Enyoh 2019). This also reduces the amount of
heavy metals introduced into the food chain because animals
prefer to graze on other grass types than Vetiver grass due to
the sharp edges on its leaf lamina (Truong and Hartm 2001).

Conclusion

The findings of this study indicate that Vetiver grass is prefer-
able for phytoremediation of Al and Mn, based on the fact that
within 21 days, Vetiver grass could bioaccumulate significant
amounts of Al and Mn, while Indian mustard could not uptake
significant amounts of Al and Mn that could be detected by
ICP-OES analysis. This study encourages the application of
clay minerals such as attapulgite and bentonite to increase the
heavy metal phytoremediation potential of Vetiver grass. These
results suggest that Vetiver grass can be a suitable candidate for
the removal of Al and Mn in contaminated water under con-
trolled greenhouse conditions. Therefore, it is recommended
that the efficacy of this combination of Vetiver grass and clay
minerals be tested under field (natural) conditions to ascertain
full-scale application for heavy metal-contaminated waters.
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