Skip to main content
Log in

Evaluation of Fe3O4-MnO2@RGO magnetic nanocomposite as an effective persulfate activator and metal adsorbent in aqueous solution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A reduced graphene oxide (RGO) supported Fe3O4-MnO2 nanocomposite (Fe3O4-MnO2@RGO) was successfully prepared for catalytic degradation of oxytetracycline (20 mg/L) by potassium persulfate (PS) and adsorption removal of mixture of Pb2+, Cu2+, and Cd2+ ions (each 0.2 mM) in the synchronous scenario. The removal efficiencies of oxytetracycline, Pb2+, Cu2+, and Cd2+ ions were observed as high as 100%, 99.9%, 99.8%, and 99.8%, respectively, under the conditions of [PS]0 = 4 mM, pH0 = 7.0, Fe3O4-MnO2@RGO dosage = 0.8 g/L, reaction time = 90 min. The ternary composite exhibited higher oxytetracycline degradation/mineralization efficiency, greater metal adsorption capacity (Cd2+ 104.1 mg/g, Pb2+ 206.8 mg/g, Cu2+ 70.2 mg/g), and better PS utilization (62.6%) than its unary and binary counterparts including RGO, Fe3O4, Fe3O4@RGO, and Fe3O4-MnO2. More importantly, the ternary composite had good magnetic recoverability and excellent reusability. Notably, Fe, Mn, and RGO could play a synergistic role in the improvement of pollutant removal. Quenching results indicate that surface bounded SO4•– was the major contributor to oxytetracycline decomposition, and the -OH groups on the composite surface shouldered a significant role in PS activation. The results indicate that the magnetic Fe3O4-MnO2@RGO nanocomposite has a good potential for removing organic-metal co-contaminants in waterbody.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

SR-AOPs:

Sulfate radical (SO4•–)-based advanced oxidation processes

GO:

Graphene oxide

RGO:

Reduced graphene oxide

OTC:

Oxytetracycline

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

EDS:

Energy-dispersive spectroscopy

FT-IR:

Fourier transform infrared spectroscopy

BET:

Brunauer–Emmett–Teller

DTA:

Differential thermal analysis

TG:

Thermogravimetry

PS:

Potassium persulfate

TBA:

Tert-butyl alcohol

ICP-OES:

Inductively coupled plasma optical emission spectrometer

TOC:

Total organic carbon

References

  • Agarwal V, Zetterlund PB (2021) Strategies for reduction of graphene oxide–a comprehensive review. Chem Eng J 405:127018

    Article  CAS  Google Scholar 

  • Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6:1–18

    Article  CAS  Google Scholar 

  • Awual MR (2015) A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem Eng J 266:368–375

    Article  CAS  Google Scholar 

  • Awual MR (2019) A facile composite material for enhanced cadmium(II) ion capturing from wastewater. J Environ Chem Eng 7:103378

    Article  CAS  Google Scholar 

  • Awual MR, Khraisheh M, Alharthi NH, Luqman M, Islam A, Karim MR, Rahman MM, Khaleque MA (2018) Efficient detection and adsorption of cadmium (II) ions using innovative nano-composite materials. Chem Eng J 343:118–127

    Article  CAS  Google Scholar 

  • Awual MR, Islam A, Hasan MM, Rahman MM, Asiri AM, Khaleque MA, Sheikh MC (2019) Introducing an alternate conjugated material for enhanced lead(II) capturing from wastewater. J Clean Product 224:920–929

    Article  CAS  Google Scholar 

  • Dang VC, Tran DT, Phan AT, Pham NK (2021) Synergistic effect for the degradation of tetracycline by rGO-Co3O4 assisted persulfate activation. J Physics Chem Solid 153:110005

    Article  CAS  Google Scholar 

  • Das K, Barman MK, Maji B (2021) Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chem Commun 57:8534–8549

    Article  CAS  Google Scholar 

  • Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem 117:2842–2845

    Article  Google Scholar 

  • Dong Z, Zhang Q, Chen BY, Hong J (2019) Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: mechanism and efficiency. Chem Eng J 357:337–347

    Article  CAS  Google Scholar 

  • Dubal DP, Kim WB, Lokhande CD (2012) Galvanostatically deposited Fe:MnO2 electrodes for supercapacitor application. J Phys Chem Solids 73:18–24

    Article  CAS  Google Scholar 

  • Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chem Eng J 310:41–62

    Article  CAS  Google Scholar 

  • Giannakis S, Lin KYA, Ghanbari F (2021) A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based Advanced Oxidation Processes (SR-AOPs). Chem Eng J 406:127083

    Article  CAS  Google Scholar 

  • Guo PC, Qiu HB, Yang CW, Zhang X, Shao XY, Lai YL, Sheng GP (2021) Highly efficient removal and detoxification of phenolic compounds using persulfate activated by MnOx@OMC: Synergistic mechanism and kinetic analysis. J Hazard Mater 402:123846

    Article  CAS  Google Scholar 

  • Hao H, Zhang Q, Qiu Y, Meng L, Wei X, Sang W, Tao J (2020) Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: synergism between Fe and Mn. J Water Process Eng 37:101470

    Article  Google Scholar 

  • Hasan MN, Salman MS, Islam A, Znad H, Hasan MM (2021) Sustainable composite sensor material for optical cadmium(II) monitoring and capturing from wastewater. Microchem J 161:105800

    Article  CAS  Google Scholar 

  • Hasan MM, Kubra KT, Hasan MN, Awual ME, Salman MS, Sheikh MC, Rehan AI, Rasee AI, Waliullah RM, Islam MS, Khandaker S, Islam A, Hossain MS, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater. J Mol Liquid 371:121125

    Article  CAS  Google Scholar 

  • Hossain MT, Khandaker S, Bashar MM, Islam A, Ahmed M, Akter R, Alsukaibi AKD, Hasan MM, Alshammari HM, Kuba T, Awual MR (2022) Simultaneous toxic Cd(II) and Pb(II) encapsulation from contaminated water using Mg/Al-LDH composite materials. J Mol Liquid 368:120810

    Article  CAS  Google Scholar 

  • Hu L, Wang P, Liu G, Zheng Q, Zhang G (2020) Catalytic degradation of p-nitrophenol by magnetically recoverable Fe3O4 as a persulfate activator under microwave irradiation. Chemosphere 240:124977

    Article  CAS  Google Scholar 

  • Huang GX, Wang CY, Yang CW, Guo PC, Yu HQ (2017) Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe. Environ Sci Technol 51:12611–12618

    Article  CAS  Google Scholar 

  • Huang D, Zhang Q, Zhang C, Wang R, Deng R, Luo H, Li T, Li J, Chen S, Liu C (2020) Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline. Chem Eng J 391:123532

  • Karim AV, Jiao Y, Zhou M, Nidheesh PV (2021) Iron-based persulfate activation process for environmental decontamination in water and soil. Chemosphere 265:129057

    Article  CAS  Google Scholar 

  • Khan A, Wang H, Liu Y, Jawad A, Ifthikar J, Liao Z, Wang T, Chen Z (2018) Highly efficient α-Mn2O3@α-MnO2-500 nanocomposite for peroxymonosulfate activation: comprehensive investigation of manganese oxides. J Mater Chem A 6:1590–1600

    Article  CAS  Google Scholar 

  • Kubra KT, Salman MS, Hasan MN, Islam A, Hasan MM, Awual MR (2021) Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater. J Mol Liquid 336:116325

    Article  CAS  Google Scholar 

  • Lei Y, Chen CS, Tu YJ, Huang YH, Zhang H (2015) Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environ Sci Technol 49:6838–6845

    Article  CAS  Google Scholar 

  • Liu X, Ma R, Wang X, Ma Y, Yang Y, Zhuang L, Zhang S, Jehan R, Chen J, Wang X (2019) Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ Pollut 252:62–73

    Article  CAS  Google Scholar 

  • Liu D, Li M, Li X, Ren F, Sun P, Zhou L (2020) Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. Chem Eng J 387:124008

    Article  CAS  Google Scholar 

  • Liu Z, Gao Z, Wu Q (2021) Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline. Chem Eng J 423:130283

    Article  CAS  Google Scholar 

  • Lü W, Wu Y, Chen J, Yang Y (2014) Facile preparation of graphene–Fe3O4 nanocomposites for extraction of dye from aqueous solution. Cryst Eng Comm 16:609–615

    Article  Google Scholar 

  • Lung I, Soran ML, Stegarescu A, Opris O, Gutoiu S, Leostean C, Lazar MD, Kacso I, Silipas TD, Porav AS (2021) Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. J Hazard Mater 403:123528

    Article  CAS  Google Scholar 

  • Ma Y, Chen F, Yang Q, Zhong Y, Shu X, Yao F, Xie T, Li X, Wang D, Zeng G (2018) Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate. J Environ Manage 227:406–414

    Article  CAS  Google Scholar 

  • Ma Q, Zhang H, Zhang X, Li B, Guo R, Cheng Q, Cheng X (2019) Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate. Chem Eng J 360:848–860

    Article  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  • Ouma L, Pholosi A, Onani M (2022) Optimizing Cr(VI) adsorption parameters on magnetite (Fe3O4) and manganese doped magnetite (MnxFe (3-x) O4) nanoparticles. Physic Sci Rev. https://doi.org/10.1515/psr-2021-0149

  • Qiao M, Lei X, Ma Y, Tian L, Su K, Zhang Q (2016) Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. Chem Eng J 304:552–562

    Article  CAS  Google Scholar 

  • Roy D, Neogi S, De S (2022) Visible light assisted activation of peroxymonosulfate by bimetallic MOF based heterojunction MIL-53 (Fe/Co)/CeO2 for atrazine degradation: Pivotal roles of dual redox cycle for reactive species generation. Chem Eng J 430:133069

    Article  CAS  Google Scholar 

  • Sahoo P, Shubhadarshinee L, Jali BR, Mohapatra P, Barick AK (2022) Synthesis and characterization of graphene oxide and graphene from coal. Mater Today: Proceedings 56:2421–2427

    CAS  Google Scholar 

  • Salman MS, Znad H, Hasan MN, Hasan MM (2021) Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples. Microchem J 160:105765

    Article  CAS  Google Scholar 

  • Saputra E, Muhammad S, Sun H, Ang HM, Tadé MO, Wang S (2013) Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl Catal B 142:729–735

    Article  Google Scholar 

  • Shahat A, Kubra KT, Salman MS, Hasan MN, Hasan MM (2021) Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater. Microchem J 164:105967

    Article  CAS  Google Scholar 

  • Tran DT, Nguyen VN (2020) rGO/persulfate metal-free catalytic system for the degradation of tetracycline: effect of reaction parameters. Mater Res Express 7:075501

    Article  CAS  Google Scholar 

  • Wang S, Yao C, Cai Y, Yang Y, Ma H, Jiang B, Ma J (2022) Construct α-Fe2O3/rGO/PS composite structure for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-persulfate activation coupling system. J Alloy Compd 898:162829

    Article  CAS  Google Scholar 

  • Xiong T, Yuan X, Cao X, Wang H, Jiang L, Wu Z, Liu Y (2020) Mechanistic insights into heavy metals affinity in magnetic MnO2@Fe3O4/poly(m-phenylenediamine) core−shell adsorbent. Ecotoxi Environ Safe 192:110326

    Article  CAS  Google Scholar 

  • Yan J, Chen Y, Qian L, Gao W, Ouyang D, Chen M (2017) Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene. J Hazard Mater 338:372–380

    Article  CAS  Google Scholar 

  • Yang F, Zhang S, Cho D-W, Du Q, Song J, Tsang DCW (2019) Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high efficiency lead removal. Bioresour Technol 272:415–420

    Article  CAS  Google Scholar 

  • Yang Y, Zhang P, Hu K, Duan X, Ren Y, Sun H, Wang S (2021) Sustainable redox processes induced by peroxymonosulfate and metal doping on amorphous manganese dioxide for nonradical degradation of water contaminants. Appl Catalysis B 286:119903

    Article  CAS  Google Scholar 

  • Yin Y, Guo X, Peng D (2018) Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions. Chemosphere 205:156–165

    Article  CAS  Google Scholar 

  • Yin F, Wang C, Lin KYA, Tong S (2019) Persulfate activation for efficient degradation of norfloxacin by a rGO-Fe3O4 composite. J Taiwan Inst Chem Eng 102:163–169

    Article  CAS  Google Scholar 

  • Zhang M, Lai C, Li B, Liu S, Huang D, Xu F, Liu X, Qin L, Fu Y, Li L, Yi H, Chen L (2021) MXenes as superexcellent support for confining single atom: properties, synthesis, and electrocatalytic applications. Small 17:2007113

    Article  CAS  Google Scholar 

  • Zhang Y, Li J, Hu Z, Li J, Lu H (2022) Oxytetracycline stress stimulates antibiotic resistance gene proliferation and quorum sensing response of marine anammox bacteria in seawater-based wastewater treatment. Chem Eng J 447:137539

  • Zhao J, Liu J, Li N, Wang W, Nan J, Zhao Z, Cui F (2016) Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study. Chem Eng J 304:737–746

    Article  CAS  Google Scholar 

  • Zhao G, Zou J, Chen X, Liu L, Wang Y, Zhou S, Long X, Yu J, Jiao F (2021) Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Chem Eng J 421:127845

    Article  CAS  Google Scholar 

  • Zuba I, Pawlukojć A, Waliszewski J, Ivanshina O (2022) Fe3O4@MnO2 inorganic magnetic sorbent: Preparation, characterization and application for Ru (III) ions sorption. Sep Sci Technol 57:1043–1051

    Article  CAS  Google Scholar 

  • Zubar V, Lebedev Y, Azofra LM, Cavallo L, El-Sepelgy O, Rueping M (2018) Hydrogenation of CO2-derived carbonates and polycarbonates to methanol and diols by metal–ligand cooperative manganese catalysis. Angew Chem Int Ed 57:13439–13443

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Science & Technology Plan Projects of Education Department of Jiangxi Province (no. GJJ212619).

Author information

Authors and Affiliations

Authors

Contributions

Mang Lu: corresponding author, paper writing, experimental design. Xue-jiao Wu: data analysis. Chu-xing Wan: Fe3O4-MnO2@RGO preparation and experimental experiments. Qiu-ping Gong: Fe3O4-MnO2 preparation and experimental experiments. Jia-xin Li: Fe3O4-MnO2@RGO preparation and experimental experiments. Shuang-shuang Liao: Fe3O4-MnO2 preparation and experimental experiments. Yu-an Wang: Fe3O4@RGO preparation and experiments. Shu-hao Yuan: Fe3O4@RGO preparation and experiments.

Corresponding author

Correspondence to Mang Lu.

Ethics declarations

Ethics approval

My study does not involve human subjects.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Guilherme L. Dotto

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The synthesized Fe3O4-MnO2@RGO nanocomposite is a novel catalyst/adsorbent.

• High removal of oxytetracycline and metal ions was obtained.

• The nanocomposite has excellent catalysis and adsorption ability.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Wu, Xj., Wan, Cx. et al. Evaluation of Fe3O4-MnO2@RGO magnetic nanocomposite as an effective persulfate activator and metal adsorbent in aqueous solution. Environ Sci Pollut Res 30, 51125–51142 (2023). https://doi.org/10.1007/s11356-023-25911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25911-y

Keywords

Navigation