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Abstract
Although pesticides are often discharged into surface waters in pulses as opposed to a sustained release, the effect of episodic 
pollution events on freshwater crayfish is largely unknown. We monitored change in heart rate and distance moved to assess 
the response of signal crayfish Pacifastacus leniusculus to short-term exposure to environmentally relevant concentrations of 
metazachlor (MTZ), terbuthylazine (TER), and thiacloprid (TCL). Crayfish exposed to 20 µg/L of MTZ exhibited a significant 
increase in mean heart rate and distance moved. Increased heart rate was detected at 118 ± 74 s post-exposure to MTZ. There 
were no significant differences in mean heart rate and distance moved in crayfish exposed to 6 µg/L of TCL and 4 µg/L of 
TER. A significant correlation between heart rate and distance moved was found in all exposed groups. These results suggest 
that pulse exposure to MTZ impact crayfish physiology and behavior during short-term period. With pulse exposure to TCL 
and TER, crayfish not exhibiting a locomotor response may continue to be exposed to lower, but potentially harmful, levels 
of pollutants. Evidence of the impacts of pesticide pulse at environmentally relevant concentrations on crayfish is scarce. 
Further study is required to determine the ecological effects of such events on freshwater crayfish.
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Introduction

Runoff of contaminants from agricultural land into aquatic 
ecosystems has long been a concern (Gao et al. 2008; Matin 
et al. 1998; Palma et al. 2014; Wan et al. 2021), and the 
impact has accelerated with the expansion of cultivated 
areas and accompanying increase in the application of agro-
chemicals (Benbrook 2016; Dobrovolski et al. 2001; Oerke 
2006). Numerous studies provide evidence of pesticide 
residues in surface waters worldwide (De Geronimo et al. 
2014; Herrero-Hernandez et al. 2020; Jergentz et al. 2005; 
Papadakis et al. 2018) with concentrations often exceed-
ing the safety levels (Jergentz et al. 2005; Papadakis et al. 

2018). Agricultural activities have been shown to induce 
significant adverse effects on non-target species, including 
crayfish (Bunzel et al. 2015; Rosi-Marshall et al. 2007; Sohn 
et al. 2018; Stara et al. 2019). Exposure to pesticides can 
result in behavioral, biochemical, and histological alterations 
in freshwater crayfish (Sohn et al. 2018; Stara et al. 2019).

Metazachlor [2-chloro-N-(2,6-dimethylphenyl)-N-(1H-
pyrazol-1-ylmethyl)-acetamide] is a chloroacetamide herbi-
cide (FAO 1999), with endocrine disruption as mode of action 
(Kralova et al. 2015). Thiacloprid {3-[(6-chloropyridin-3-yl)
methyl]-1,3-thiazolidin-2-ylidene} cyanamide is a neuro-
toxic neonicotinoid insecticide (EPA 2003). Terbuthylazine 
 [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine] 
is a triazine herbicide (EFSA 2011) that can cause endo-
crine disruption (Ghisari et  al. 2015). These pesticides 
are widely used in Central Europe (Hvezdova et al. 2018; 
Spitzer et al. 2020) and they have been reported in Euro-
pean surface waters (Table 1). Moreover, these pesticides 
have been found to negatively impact aquatic vertebrates 
and invertebrates at environmentally relevant concentrations 
(Guo et al. 2021; Gutierrez et al. 2019; Velisek and Stara 
2018). Studies show that metazachlor induced changes in 
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crayfish borrowing behavior and locomotor activity (Guo 
et al. 2021; Velisek et al. 2020). Zebrafish embryos exposed 
to thiacloprid exhibited altered avoidance and edge prefer-
ence behaviors (Xie et al. 2022).

Among freshwater invertebrates, crayfish are considered 
keystone species because of their ecological and functional 
importance (Momot 1995). They can play a valuable role 
in monitoring environmental pollution through behavioral 
and physiological alterations and contaminant accumulation 
(Faria et al. 2010; Gago-Tinoco et al. 2014; Reisinger et al. 
2021; Sohn et al. 2018). Non-native crayfishes are mostly 
used in toxicological studies due to the protected status of 
indigenous species (Buric et al. 2013; Velisek et al. 2020). 
Styrishave et al. (2007) found no differences in oxygen con-
sumption and heart rate between native noble crayfish Asta-
cus astacus and non-native signal crayfish Pacifastacus leni-
usculus. Such similarities can help to understand potential 
impacts on native crayfish populations, using the data from 
investigations with non-native species. Like many aquatic 
organisms, crayfish absorb chemicals from water through 
gills and the body surface in addition to ingesting pollut-
ants along with prey (Katagi 2010). Crayfish are exposed 
to accumulated contaminants through contact with bottom 
sediments (Alcorlo et al. 2006) and are affected by pollut-
ants, including pesticides, present in surface waters (Gago-
Tinoco et al. 2014; Marcal et al. 2020; Sohn et al. 2018).

Pesticide concentrations in aquatic ecosystems increase 
with surface runoff (Liess et al. 1999) which is often epi-
sodic (Thurman et al. 1991), with concentrations varying 
depending on the time of application and precipitation 
events (Albanis et al. 1998). The majority of research into 
pesticide effects on crayfish focus on chronic exposure and 
show changes in crayfish antioxidant levels, histology, and 
behavior (Guo et al. 2021; Stara et al. 2020; Velisek et al. 
2020). The response of crayfish to acute exposure to pesti-
cides remains unclear. Since pulse exposure to pesticides has 
been reported to affect macroinvertebrates (Heckmann and 
Friberg 2005), it is important to know whether short-term 
pulses of agrochemicals adversely affect prime players in the 
freshwater environment, such as crayfish.

The objective of the present study was to quantify the 
acute response of the signal crayfish P. leniusculus to a brief 
pulse of metazachlor, terbuthylazine, or thiacloprid at envi-
ronmentally relevant concentrations, as assessed by cardiac 
and locomotor activity. Crayfish have been known to exhibit 
alterations in cardiac and locomotor activity as responses to 
a wide variety of environmental stressors (Bini et al. 2015; 
Kuklina et al. 2014; Lozek et al. 2019; Velisek et al. 2020). 
In this study, changes in heart rate and distance moved were 
monitored to gain information of crayfish response to acute 
pesticide exposure.

Materials and methods

Chemicals

Metazachlor (MTZ), chemical purity 99.7%; terbuthyla-
zine (TER), chemical purity 99.4%; and thiacloprid (TCL), 
chemical purity 99.9%, were purchased from Sigma-Aldrich 
Corporation (USA). Chemicals were dissolved in dechlo-
rinated tap water to obtain 20 μg/L, 4 μg/L, and 6 μg/L for 
MTZ, TER, and TCL, respectively. Actual concentrations 
of chemicals in water during the experiments were within 
96% of the nominal concentrations (Table 2). The analyses 
of pesticides in water were performed by the State Research 
Institute in Prague using methods described by Anastassia-
des et al. (2003) and Anastassiades et al. (2007).

Test organisms

Thirty-six adult signal crayfish Pacifastacus leniusculus 
(1:1 male:female) were collected from Kresanovsky Brook 
(49°03′35.2″N, 13°45′33.8″E) near Sumava National Park, 
Czech Republic. Kresanovsky Brook is located in sub-
mountain area and the majority of the watershed is forested 
with limited urban or agricultural land use. We used non-
native crayfish species as indigenous species are endangered 
and manipulations with them are prohibited. Crayfish were 
transported to the laboratory and held in individual tanks 

Table 1  Concentration of pesticides detected in European surface waters and concentrations used in this study

Pesticide class Active substance Range (mean) of 
reported concentrations 
(µg/L)

Concentration used 
in this study (µg/L)

Data sources

Neonicotinoids Thiacloprid 0.02–12.0 (5.96) 6.0 Barmentlo et al. (2018), Sanchez-Bayo and Hyne (2014), 
and Suß et al. (2006)

Triazines Terbuthylazine 0.02–13.0 (4.37) 4.0 Hermosin et al. (2013), Herrero-Hernandez et al. (2013), 
Herrero-Hernandez et al. (2017), and Lacorte et al. 
(1998)

Chloroacetanilide Metazachlor 0.1–100.0 (25.8) 20.0 Kreuger (1998), Mohr et al. (2008), Ulrich et al. (2018), 
and Weber et al. (2018)
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in a recirculating aquarium system for pre-acclimatization. 
Both sexes of crayfish were used based on previous studies 
that found no significant differences between their reactions 
to stimuli or spatial behavior (Kuklina et al. 2018; Tierney 
and Andrews 2013). There were no risks associated with the 
escape of crayfish.

Experimental protocol

The exposure concentrations were within the range reported 
in European surface waters (Table 1) although, because of 
the short exposure period, the experimental concentrations 
were higher than those used in long-term exposure studies 
(Englert et al. 2012; Guo et al. 2021).

The experiment was carried out in three phases, during 
which the crayfish were exposed to one of three pesticides 
(TCL, TER, or MTZ) or to dechlorinated tap water as con-
trol. The pesticides were each represented in a separate run. 
Each phase included 12 experimental crayfish: six exposed 
and six control specimens (3:3 male:female). Each of the 
three pesticide groups thus had its own control group. Heart 
rate was recorded using a non-invasive crayfish cardiac 
activity monitoring system (Pautsina et al. 2014). Briefly, 
this system consists of infrared (IR) sensors, a multichannel 
analog-to-digital converter (ADC) with USB interface, and a 
personal computer for data processing. The IR sensors were 
attached to the dorsal side of crayfish carapace above the 
heart with non-toxic epoxy glue. Wires that connect sensors 
and the ADC are flexible and allow crayfish to move freely. 
Heart rate was measured every second and then recorded as 
number of beats per minute (bpm).

To record movement, a Microsoft Kinect Sensor (Micro-
soft Corporation, Redmond, WA, USA) was placed under 
the tanks. Distance moved (cm) was measured every second 
and evaluated using a multiple-arena module in EthoVision 
XT 13.0 software (Noldus Information Technology, Wage-
ningen, Netherlands).

Each crayfish with attached IR sensor was placed 
into separate non-recirculating 6-L tank (water tem-
perature 20.3–21.5  °C, pH 7.6–7.8, dissolved oxygen 
8.49–8.76 mg/L, 12:12-h light:dark cycle) for 10 days of 

acclimation and experimentation. The length of the tank 
wall was 30 cm and the width was 19 cm. The water depth 
in the tank was 11 cm. Twice weekly, chironomid larvae 
were provided and water was changed. Tanks were aerated 
to avoid disturbance to crayfish during pesticide application 
and to ensure rapid diffusion of the pesticide throughout the 
water. Plastic mesh was used as a substrate to provide cray-
fish with traction when moving. Three trials were conducted 
as follows: pesticide was administered to tanks simultane-
ously using individual peristaltic pumps. The compound is 
uniformly mixed in the tank during 30 s as authors tested 
prior to the experiment with colored liquid. Crayfish from 
the control group received dechlorinated tap water the same 
temperature as in experimental tanks. Crayfish heart rate 
and locomotor activity were recorded for 10 min before and 
10 min after adding the pesticide. Therefore, crayfish were 
exposed to the pesticides for 10 min. Following the experi-
ment, all crayfish were euthanized humanely by freezing 
at − 20 °C.

Statistical analysis

All data were analyzed using Statistica v. 13 (StatSoft, Inc.). 
Prior to statistical analysis, the normality of the residuals 
was checked with Shapiro–Wilk’s test as the assumption for 
the analysis of variance (ANOVA), followed by Tukey’s test 
to compare differences between groups. The analysis was 
performed separately for each tested compound and followed 
parameters, comparing exposure group along with its dedi-
cated control. The depended variables in each analysis were 
differences (after − before) in the heart rate and the distance 
moved. Categorical factors represented the treatment: con-
trol and exposure, respectively. Therefore, such an approach 
aimed to compare the changes of heart rate and locomotor 
activity in a response to the chemical exposure. To exam-
ine correlation of heart rate with locomotion after chemical 
exposure, simple linear regression was calculated to analyze 
increase of mean heart rate (after exposure relative to before) 
of each crayfish relative to the distance moved. All values 
are presented as mean ± standard deviation. Statistical sig-
nificance was set at p < 0.05.

Table 2  Concentrations 
of metazachlor (MTZ), 
terbuthylazine (TER), and 
thiacloprid (TCL) in exposure 
and control groups of 
signal crayfish Pacifastacus 
leniusculus 

t, t-score. p < 0.05. The limit of detection for the concentrations was 0.010 µg/L

Group Tank (n) Nominal concentra-
tion (µg/L)

Concentration (µg/L)
Mean ± SD

t p-value

MTZ 6 20 19.3±1.5 -1.2 0.28
Control 6 ˗  < 0.010 ˗ ˗
TER 6 4 3.9 ± 0.1  − 1.93 0.11
Control 6 ˗  < 0.010 ˗ ˗
TCL 6 6 5.7 ± 0.3  − 2.18 0.08
Control 6 ˗  < 0.010 ˗ ˗
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Results

No significant differences were found in the biometrical 
parameters of the exposed and control groups of crayfish 
(Table S1). Changes in crayfish cardiac and locomotor activ-
ity after pesticide administration were observed in specimens 
of the group exposed to 20 μg/L of MTZ (Fig. 1). Significant 
changes in mean heart rate (F1,10 = 8.35, p = 0.016) and dis-
tance moved (F1,10 = 5.306, p = 0.044) after exposure com-
pared to before were detected in treated crayfish. An increase 
in mean heart rate was detected at 118 ± 74 s post-exposure 
to MTZ. In the groups exposed to the concentrations of 
TER (4 μg/L) and TCL (6 μg/L) crayfish did not show a sig-
nificant increase in mean heart rate (F1,10 = 1.973, p = 0.19; 

F1,10 = 2.019, p = 0.186) or distance moved (F1,10 = 1.726, 
p = 0.218; F1,10 = 1.051, p = 0.329) (Figs. 2 and 3). In these 
two groups, only 33% of specimens exhibited cardiac and 
locomotor response. There was no significant difference in 
mean heart rate or distance moved in all three control groups 
(p > 0.05) (Figs. 1, 2, and 3).

A linear regression model revealed a significant corre-
lation between cardiac activity and distance moved in all 
exposure groups (Fig. 4), with the strongest response found 
in MTZ (b = 1.73), followed by TER (b = 0.68) and TCL 
(b = 0.39). Crayfish exposed to MTZ demonstrated four- and 
three-fold the movement response of those exposed to TCL 
and TER, respectively (Fig. 4). Changes in distance moved 
and heart rate showed correlation in all reacting crayfish.

Fig. 1  Changes in mean heart 
rate (HR) and distance moved 
of Pacifastacus leniusculus 
and controls before and after 
metazachlor (MTZ) exposure/
water change; bpm, beats per 
minute. Significant differences 
(p < 0.05) are marked with 
asterisks (*)

Fig. 2  Changes in mean heart 
rate (HR) and distance moved 
of Pacifastacus leniusculus 
and controls before and after 
terbuthylazine (TER) exposure/
water change; bpm, beats per 
minute

Fig. 3  Changes in mean heart 
rate (HR) and distance moved 
of Pacifastacus leniusculus and 
controls before and after thia-
cloprid (TCL) exposure/water 
change; bpm, beats per minute

51743Environmental Science and Pollution Research  (2023) 30:51740–51748

1 3



Discussion

As episodic spikes in chemical concentration are more typi-
cal of agricultural areas than a sustained release (Liess et al. 
1999; Liess and Von der Ohe 2009), we quantified crayfish 
acute cardiac and locomotor responses to environmentally 
relevant pesticide concentrations. To our knowledge, this is 
the first study to report crayfish reaction to pulse exposure 
of pesticides in water.

A single exposure to chemicals at relatively high, but 
environmentally relevant, concentrations usually provokes 
detectable physiological or behavior changes (Beketov and 
Liess 2005, 2008a). With repeated exposure, macroinverte-
brates exhibit a stronger response, possibly related to incom-
plete recovery from previous exposure (Berghahn et al. 
2012; Mohr et al. 2012). Animals are often impacted by 
multiple simultaneous stressors, the effect of which depends 
on ambient physical and chemical parameters. The amphi-
pod crustacean Gammarus pulex from contaminated streams 
was shown to be more sensitive to pesticide exposure than 
animals from an uncontaminated environment (Russo et al. 
2018). Crayfish for the current experiment were obtained 
from a non-polluted ecosystem and acclimated to labora-
tory conditions for a prolonged time, so may have been less 
sensitive to the exposure.

With exposure to metazachlor, we detected significant 
changes in crayfish distance moved. An increase in loco-
motor activity can be the result of stimulatory effect of 

metazachlor. Previous studies have reported that pesticides 
can exhibit stimulatory effects in non-target organisms (Cutler 
et al. 2022; Guedes et al. 2009; Morse 1998) resulting in behav-
ioral alterations in pesticide-exposed vertebrates and inverte-
brates (Deng et al. 2009; DuRant et al. 2007). Chemical 
irritation is often associated with stimulation of locomotor 
responses in aquatic organisms (Chen et al. 2014; Sharma 
2019). The increased distance moved after exposure may 
also have represented active avoidance of the contaminated 
area. Velisek et al. (2019) documented an increase in dis-
tance moved in juvenile crayfish Procambarus virginalis 
exposed to the pesticide S-metolachlor. Buric et al. (2013) 
described attempts of crayfish Faxonius limosus and Paci-
fastacus leniusculus to escape exposure to the pesticide 
diazinon. Moreover, it has been reported that brief pesti-
cide exposure can induce drift (Beketov and Liess 2008a) 
or increase drift density of a macroinvertebrate community 
(Heckmann and Friberg 2005). Sensitivity of ecosystem 
function and invertebrate population dynamics to environ-
mental contaminants have been shown in several studies 
(Berenzen et al. 2005; Martin et al. 2011; Richmond et al. 
2016, 2019). Drift of macroinvertebrates, driven by irritable 
or avoidance behavior, may lead to risks associated with pre-
dation, community structure alterations, decrease in abun-
dance, and, consequently, affect the food chain.

Disorientation of crayfish in the presence of pesticides 
could be the result of temporary impairment of olfac-
tory receptors (Cook and Moore 2008). Disruption of 

Fig. 4  The relationship between mean heart rate (HR) and mean 
distance moved of Pacifastacus leniusculus exposed to metazachlor 
(MTZ), terbuthylazine (TER), and thiacloprid (TCL) and respective 

control groups. Pearson’s r = strength of the correlation between HR 
and distance moved
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chemoreception can affect agonistic, feeding, and homing 
behavior, with juvenile crayfish potentially more sensitive 
to the impact of pesticides (Buric et al. 2013). The latter 
might partially explain the lack of reaction of some indi-
viduals in our study, since we examined adult crayfish. 
Metazachlor is an endocrine-disrupting agent that, among 
other effects, adversely impacts behavior and metabolism 
(Crisp et al. 1998). Increased cardiac and locomotor activity 
provides evidence of behavioral and metabolic disturbances 
in response to pesticide presence.

We did not observe significant changes in locomotor 
activity of crayfish exposed to terbuthylazine and thiacloprid 
at 4 and 6 μg/L, respectively, suggesting that, with such pes-
ticide pulse, the majority of crayfish might not be stimulated 
to escape a contaminated area. This can lead to continuing 
exposure, as pesticide concentrations decrease over time 
(Ulrich et al. 2018). Concentrations as low as 0.5–1 μg/L of 
thiacloprid during a 96-h exposure were shown to adversely 
influence the predation activity of the aquatic invertebrate 
Gammarus fossarum (Englert et al. 2012). It is noteworthy 
that crayfish species may vary in level of sensitivity to a 
given substance. Buric et al. (2013) reported P. leniusculus 
to be less sensitive to diazinon treatment than was F. limo-
sus. Species other than signal crayfish may exhibit greater 
physiological and behavior responses to terbuthylazine and 
thiacloprid at the tested concentrations. The low number of 
specimens reacting to thiacloprid might be connected with 
its mode of action. Like other neonicotinoids, thiacloprid 
stimulates nicotinic acetylcholine receptors in the central 
nervous system. While low activation of these receptors can 
manifest as nervous excitation, higher levels of thiacloprid 
can cause overexcitation and block the receptors, resulting in 
temporary paralysis (Yamamoto 1999), which may become 
more apparent with a longer exposure period.

In our experiment, changes in heart rate coincided with 
an increase in distance moved. This is in agreement with 
Kuklina et al. (2018), who demonstrated initiation of Pon-
tastacus leptodactylus crayfish locomotion to coincide with 
heart rate increase as a reaction to chemical stimuli. With 
natural stimuli such as predator or conspecific crayfish odor, 
locomotion was delayed or was not manifested. Change in 
cardiac activity, in particular increased heart rate, is a typical 
stress response of crayfish to substances in water. This was 
demonstrated in studies of chemicals such as disinfectants, 
metals, and pharmaceuticals (Kuklina et al. 2014; Bini et al. 
2015; Lozek et al. 2019). The cardiac response of P. lenius-
culus to tested pesticides confirms its potential to be used as 
a bioindicator of aquatic contamination by pesticides.

While we investigated the response of crayfish to an 
acute pulse of pesticide, some adverse effects might 
remain following the exposure. Evidence of impacts on 
survival and reproduction of G. pulex was detected for 
at least 2 weeks following a short pulse of the pyrethroid 

insecticide esfenvalerate at an environmentally relevant 
concentration (Cold and Forbes 2004). A single contami-
nation event by thiacloprid can show effects on abundance 
and community structure of aquatic invertebrates after 
7 days (Beketov et al. 2008) and, in community param-
eters, after 3 months (Liess and Beketov 2011). Delayed 
lethal and sublethal effects occurred in several freshwater 
crustacean species following a single thiacloprid exposure 
at a concentration of 5.47 µg/L (Beketov and Liess 2008b).

Conclusions

The present work demonstrates that a short-term pulse of 
pesticide exposure can affect non-target organisms. Acute 
exposure to metazachlor at an environmentally relevant 
concentration can induce changes in crayfish heart rate 
and locomotor activity. With pulse exposure to terbuth-
ylazine, and thiacloprid, the majority of animals might not 
respond to contaminants during short-term period. Owing 
to the prime role of crayfish in freshwater environment, 
the knowledge of how pesticides at environmentally rel-
evant concentrations impact these crustaceans is of key 
importance. Spikes in pesticide concentrations are typical 
of aquatic environments, and further studies of the effect 
of a single short-term pesticide exposure on crayfish can 
reveal crucial information of the ecological consequences 
of such events.
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