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Abstract
The overuse of disinfection during the COVID-19 pandemic leads to an emerging “health versus environment” dilemma that 
humans have to face. Irresponsible and unnecessary disinfection should be avoided, while comprehensive evaluation of the 
health and environmental impacts of different disinfectants is urgently needed. From this discussion, we reach a tentative 
conclusion that hydrogen peroxide is a green disinfectant. Its on-demand production enables a circular economy model to 
solve the storage issues. Water, oxygen, and electrons are the only feedstock to generate H2O2. Upon completion of disinfec-
tion, H2O2 is rapidly converted back into water and oxygen. This model adopts several principles of green chemistry to ensure 
overall sustainability along the three stages of its whole life cycle, i.e., production, disinfection, and decomposition. Physical 
methods, particularly UV irradiation, also provide sustainable disinfection with minimal health and environmental impacts.
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The “health versus environment” dilemma

Health, safety, and environment (HSE) is deemed as a unity 
that is critical to sustainable and high-quality development 
of human society. However, the on-going COVID-19 pan-
demic provokes an unusual conflict between health and 
environment, i.e., the excessive use of disinfectants during 
the pandemic harms the environment and the ecosystem. As 
far as safety and health are concerned, effective disinfection 
is essential in hospitals, airports, train stations, and other 
densely populated public indoor spaces during the pandemic. 
Meanwhile, the surging use of disinfectants and antiseptics 
poses risks of air (Lou et al., 2021) and water (Chu et al., 
2021) pollution, ecological risks (Cui et al., 2021), antibiotic 

resistance, and biodiversity loss (Lu and Guo, 2021). The 
polluted water and air in return causes human health con-
cerns (Ghafoor et al., 2021). These complex conflicts among 
biosafety, human health, and the environment are becoming 
an unfamiliar dilemma and grand challenge that the humans 
have to face today and in the future.

There is no point to use antibiotics during the pandemic 
(Chen et al., 2021) since they only inactivate bacteria but 
not virus. Large-scale spraying or fumigation of chemical 
disinfectants in outdoor spaces such as streets should also 
be cautious and is not recommended by the WHO (2022), 
because of the following three reasons: (1) the outdoor areas 
not considered potential routes of infection, (2) the disinfect-
ants are easily inactivated in presence of dirt, (3) the residue 
and by-product of disinfectants are health and environmental 
hazards. Early study by van Doremalen et al. (2020) reveals 
that the virus remains infectious for several hours in aerosol 
and up to days on surface. However, Zhang et al. (2022) 
show that the exposure by aerosol inhalation is 1000 times 
higher than by contact of contaminated surface. Therefore, 
prudent evaluation of the exposure risks is required in order 
to avoid unnecessary or pointless disinfection, particularly 
large-scale deployment such as spraying squads, vehicles, 
robots, or drones. The irresponsible mass use of disin-
fectants is believed to be associated with misinformation, 
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unnecessary panic and anti-rationalism among the public 
(Prasad, 2022), as well as bureaucracy and wrong decision-
making of governing agencies. Sensible and responsible use 
of disinfectants under recommended guidelines (Cui et al., 
2021) alleviates the environmental burdens to some extent. 
On the other hand, switching into more environmentally 
friendly disinfectants may offer an inherently effective solu-
tion to this complex dilemma.

Comprehensive evaluation of the health 
and environmental impacts of disinfectants

Different disinfectants vary in their biocidal mechanisms 
and disinfection by-products. The residual disinfectants 
and by-products can cause different health, environmental, 
and ecological hazards (Table 1). Quaternary ammonium 
compounds (QAC) enter the environment as both water and 
soil pollutants. Upon adsorption on fine particles, QACs 
also form air pollutants that can enter the human body by 
both inhalation and ingestion (Dewey et al., 2022). Sodium 
hypochlorite (bleach) is a potent oxidative disinfectant, 
whose residue and by-products mainly form water and air 
pollution. The airborne pollutants cause various respiratory 
damages/diseases. When dissolved in water, it leads to the 
formation of N-nitrosodimethylamine (NDMA) in presence 
of organic nitrogen (Mitch and Sedlak, 2002). NDMA is a 
persistent and highly hepatotoxic carcinogen with allowable 
levels as low as 10 ng/L. Both QACs and hypochlorite have 
been identified as phytotoxins (Cui et al., 2021) and incur 
anti-microbial resistance (Jia et al., 2022), but their other 
ecological effects remain unclear. In fact, there still lacks 
a method for quantitative and comprehensive evaluation 
of the life-cycle health and environmental impacts of these 
disinfectants. Alcohols such as ethanol and isopropanol are 
one of the most commonly used disinfectants. They are gen-
erally considered safe as handwash or rub, but large-scale 
use for air and surface disinfection is still not completely 
safe, particularly to the vulnerable population such as chil-
dren and pregnant women. To effectively inactivate virus, 
a high concentration (≥75%) is often required, which leads 
to the release of volatile organic compounds, i.e., VOC pol-
lution. Nonetheless, alcohols pose much lower health and 

environmental concerns compared to QACs and chlorine-
based disinfectants.

What makes a sustainable disinfectant?

Hydrogen peroxide (H2O2) is also a widely used disinfect-
ant with low potential health and environmental risks, as 
compared to the QACs or chlorine-based disinfectants. 
Vaporized H2O2 (VHP) at ppm level is proven effective 
for disinfection of PPEs (Cheng et al., 2020), hard sur-
faces, and indoor air (Poppendieck et al., 2021) during 
the pandemic. Its biocidal effect originates from radi-
cal-induced oxidation of DNA, proteins, and membrane 
lipids (Linley et al., 2012), which is unlikely to develop 
antibiotic resistance in pathogens (Khan et al., 2019). 
With a short half-life of 24 h in atmosphere and several 
hours in water (Subpiramaniyam, 2021), H2O2 eventually 
decomposes into water and oxygen, causing no secondary 
pollution or bioaccumulation. Despite its potent biocidal 
effects, VHP at concentrations up to 0.5% induces no skin 
irritation or inhalation toxicity in animal tests (Mohanan 
et al., 2021). The health risk by inhalation is also low if 
the VHP spraying time is precisely calculated according 
to the room size (Hesam et al., 2022). Upon completion of 
VHP disinfection, the residual H2O2 concentration drops 
to 0.6 ppm in 2 h on fabrics (Cheng et al., 2020), lower 
than the 1 ppm ACGIH threshold limit value. Although 
long-term inhalation of H2O2 at 10 ppm and above does 
induce adverse effects in the respiratory track (Hartwig 
2019), its fast decomposition and low usage can offset 
its potential long-term health risks. Due to its inherent 
safety to humans, the environment, and ecosystem, H2O2 
has been proposed as a sustainable alternative for tap 
water disinfection instead of the conventional chlorina-
tion (Richards et al., 2021).

With the similar oxidation-based biocidal mechanism 
and safe by-product (oxygen), ozone has been manifested 
as a powerful disinfectant for airborne virus, but much less 
effective for contaminated surfaces (Mazur-Panasiuk et al., 
2021). However, ozone is classified as an air pollutant with 
multiple health risks, and hence is not as safe as H2O2. H2O2 
is also greener and safer than alcohols because: (1) its usage 

Table 1   An incomplete list of health, environmental, and ecological risks of three commonly used disinfectants, i.e., quaternary ammonium 
compounds, sodium hypochlorite, and alcohols (source: Dewey et al., 2022; Cui et al., 2021; Parveen et al., 2022; Ria et al., 2020)

Health risks Environmental and ecological risks

Quaternary ammonium com-
pounds

Asthma, chronic obstructive pulmo-
nary disease, reproductive toxic

Water, soil, and air pollution, eco-toxicity, phytotoxicity, food chain accu-
mulation, anti-microbial resistance

Sodium hypochlorite Damage to airway and respiratory 
systems, carcinogenic

Water and air pollution, phytotoxicity, corrosive, anti-microbial resistance

Alcohols Irritant to eyes and airways Air pollution, anti-microbial resistance
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is low since the required concentration of alcohol is out-
standingly higher, (2) alcohols can be oxidized to acetalde-
hyde and yields ozone which produces peroxyacetyl nitrate 
(PAN) in presence of NOx (Willey et al., 2019). To sum 
up, H2O2 is a highly effective yet environmentally-benign 
disinfectant because of its low usage, short half-life, low 
likelihood of antibiotic resistance, and human and ecological 
safety. Likewise, a comprehensive assessment of all these 
aspects (Fig. 1) is highly recommended for future evaluation 
and comparison of the environmental impact of different 
disinfectants.

A circular economy model for sustainable 
disinfection enabled by on‑demand 
production of green disinfectants

In spite of these multiple HSE benefits, high quantity use of 
H2O2 can be troublesome because of the inventory, logis-
tic, and storage issues, particularly considering its fast self-
decomposition. At the outbreak of a pandemic, H2O2 also 
suffers from supply shortages. In situ on-demand production 
by electrochemical reduction of oxygen (ORR) from air is 
a promising technology to produce H2O2 for disinfection. 
The key performance parameters of this technology include 
the ORR selectivity, energy consumption, H2O2 concentra-
tion, cost, scalability, and stability of electrodes. Current 
electrode materials are unable to simultaneously meet all 
requirements, i.e., carbon-based electrodes are generally 
low in selectivity and energy efficiency, while emerging 
nanomaterials and precious metals (Richards et al., 2021) 
are costly and difficult to scale up. A recent work (Wang 
et al., 2021) reports that H2O2 at a concentration of 240 
ppm can be obtained on carbon cloth modified with conduct-
ing polymer PEDOT. This process shows high selectivity 
toward H2O2 (current efficiencies up to 88.7%), with a low 
electric energy consumption of 4.7 kWh/kg H2O2. Moreo-
ver, the electrode is made of low-cost commercial materials 
that can be easily scaled up to meet commercial demands. 

This inherently green technology uses only air and electric-
ity to produce H2O2 that can be used directly for disinfection 
or converted to more oxidizing hydroxyl radicals. A more 
recent report (Li et al. 2022) achieved a record-high H2O2 
concentration of 20 g/L using gas diffusion electrode in a 
divided electrolyser.

Combining the efficient on-demand production and the 
aforementioned HSE benefits, we propose a H2O2-based cir-
cular economy model for sustainable disinfection (Scheme 1). 
In the production stage of this model, the input materials are 
water, oxygen, and electrons. The in situ produced H2O2 serves 
as a green disinfectant and may turn into even shorter-lived 
hydroxyl radicals or other reactive oxygen species (ROS). Upon 
completion of disinfection, H2O2 and ROS decompose into their 
original feedstock, water and oxygen, completing the circular 
economy model as shown in Scheme 1. Therefore, the on-
demand production overcomes the storage issue of H2O2, fully 

Fig. 1   List of criteria for assess-
ing the environmental and eco-
logical impacts of disinfectants

Scheme 1   A circular economy model for H2O2-based sustainable dis-
infection
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unlocking its potential as an effective and intrinsically green dis-
infectant. The concept of circular economy has been proposed 
as a more sustainable solution than the end-of-pipe technology 
toward pollution control and resource efficiency. In this perspec-
tive, it also offers a feasible solution to tackle the “health versus 
environment” dilemma caused by the COVID-19 pandemic. 
The life cycle sustainability of this model is because it adopts 
several principles of green chemistry, i.e., catalysis, prevention, 
safer chemicals, renewable feedstock, design for degradation, 
and inherently safer chemistry. Solving global chemical safety 
issues not only requires planning and management, but also 
relies on intrinsically greener chemistry and processes.

Physical methods as alternative disinfection

Disinfection free from chemicals is also feasible in many 
cases. For hand hygiene, washing with soap and water 
is an effective yet safe and green method (Mahmood 
et al., 2020). Heat treatment at 75 °C for 30 min has been 
proven effective in disinfecting contaminated N95 masks 
without lowering their filtration efficiency (Campos 
et al., 2020). Ultraviolet (UV) irradiation shows efficacy 
and several advantages as a ubiquitous physical disinfec-
tion method. The UVC spectra between 200 and 280 nm 
are generally effective toward the coronavirus (Raeisza-
deh and Adeli, 2020), though Ma et al. (2021) further 
point out that the far UVC region (<230 nm) shows the 
highest effectiveness. UV is able to achieve efficient 
and rapid virus reduction at relatively low energy input 
between 2 and 40 mJ/cm2 (Raeiszadeh and Adeli, 2020), 
while being safe and environmentally friendly. The appli-
cation of UV spans from wastewater treatment to air and 
hard surface disinfection. One major safety considera-
tion is that UV exposure can cause eye and skin damage. 
Therefore, it is imperative for people to evacuate prior to 
operation of the UV lamp, while the operators and other 
on-site personnel should wear personal protective equip-
ment. Another potential hazard of UV disinfection is that 
ozone is inevitably generated from atmospheric oxygen. 
This problem can be mitigated by ventilation or filtration 
(Tang et al., 2022) after the disinfection, to reduce the 
ozone concentration below the TVL value of 0.1 ppm. 
UV irradiation can be coupled with photocatalysts, such 
as titanium dioxide (TiO2), to generate highly oxidizing 
radicals and achieve more potent virus eradication. This 
strategy is particularly effective at treating virus laden 
aerosols. Another physical method for aerosol disinfec-
tion is the use of non-thermal plasma (Mohana et al., 
2021), though it is not as energy efficient as the combina-
tion of UV with photocatalyst.

Summary and recommendations

The increased use of disinfectants during the COVID-19 pan-
demic poses health risks to humans and adverse impacts to the 
environment and ecosystem. There is still a lack of method for 
quantitative and comprehensive evaluation of the life cycle 
health and environmental impacts of different disinfectants. 
From our discussion above, to achieve both effective disinfec-
tion and minimal HSE impact, we give tentative suggestions 
as follows. For hand hygiene, soap and water handwash and 
alcohol sanitizer are both sufficient for removing pathogens. 
For disinfecting N95 respirators, other PPEs, or apparatus, heat, 
UV irradiation, and H2O2 vapor treatment are recommended. 
For wastewater treatment, advanced oxidation processes based 
on radical chemistry or UV irradiation are optimal choices. For 
decontaminating surfaces, effective scrubbing or cleaning, fol-
lowed by H2O2 vapor and UV irradiation are prioritized meth-
ods. For air disinfection, H2O2 vapor, UV irradiation, or pho-
tocatalyst-based air filter coupled with UV are recommended.
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