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Abstract

Though globalization, industrialization, and urbanization have escalated the economic growth of nations, these activities
have played foul on the environment. Better understanding of ill effects of these activities on environment and human health
and taking appropriate control measures in advance are the need of the hour. Time series analysis can be a great tool in this
direction. ARIMA model is the most popular accepted time series model. It has numerous applications in various domains
due its high mathematical precision, flexible nature, and greater reliable results. ARIMA and environment are highly cor-
related. Though there are many research papers on application of ARIMA in various fields including environment, there is
no substantial work that reviews the building stages of ARIMA. In this regard, the present work attempts to present three
different stages through which ARIMA was evolved. More than 100 papers are reviewed in this study to discuss the applica-
tion part based on pure ARIMA and its hybrid modeling with special focus in the field of environment/health/air quality.
Forecasting in this field can be a great contributor to governments and public at large in taking all the required precautionary
steps in advance. After such a massive review of ARIMA and hybrid modeling involving ARIMA in the fields including or
excluding environment/health/atmosphere, it can be concluded that the combined models are more robust and have higher
ability to capture all the patterns of the series uniformly. Thus, combining several models or using hybrid model has emerged
as a routinized custom.
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Introduction

Though globalization, industrialization, and urbaniza-
tion have escalated the economic growth of nations, these
activities have played foul on the environment. Better under-
standing of ill effects of these activities on environment and
human health and taking appropriate control measures in
advance are the need of the hour. For this the relevant data
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could be analyzed through time series. Time series forecast-
ing is an extensive quantitative technique involving collec-
tion and analyzation of historical observations for the devel-
opment of an appropriate model. Theoretically, analysis of
time series basically contains three steps: characterization,
modeling, and forecasting. While forecasting calculates
short-term progression of the system, the modeling compo-
nent establishes long-term behavioral features of the system.
The first step determines the fundamental properties such as
measure of randomness or degrees of freedom. This analysis
can be employed to build predictive models with minimum
errors for forewarning. It is important to underline that the
modeling choice in any temporal, or more generally, in any
spatio-temporal prediction, is relevant and must be suitably
faced (De Iaco and Posa 2018; Cappello et al. 2018; De Iaco
et al. 2013 2015).

Autoregressive integrated moving average (ARIMA)
model is the most popular accepted time series models
(Shahwan and Odening 2007; Singh et al. 2020b). The
Box-Jenkins methodology (Box and Jenkins 1970), high
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mathematical precision, and reliability are what makes
ARIMA models very popular (Singh et al. 2021b). ARIMA
models have large number of applications. The model is
applied to forecast various things like commodity prices
(Weiss 2000); for load forecasting in the power system
(Nicolaisen et al. 2000; Hippert et al. 2001); future of energy
resources, such as oil (Morana 2001) or natural gas (Bucha-
nanan et al. 2001); daily environmental factors such as ozone
levels ( Robeson and Steyn 1990; Prybutok et al. 2000); fore-
casting various air pollutant (Kulkarni et al. 2018; Chaud-
huri and Dutta 2014), noise pollution data (Garg et al. 2015),
water quality time series data (Faruk 2010), for water quality
management (Parmar and Bhardwaj 2014); etc. Thus, we
find large applications of ARIMA almost in every field.

ARIMA and environment are highly correlated. Fore-
casting is needed in all the fields of environment such as
air pollution, noise pollution, fossil fuels, rainfall data, and
underground waters, as all these factors have direct relation-
ship with health. Forecasting in these fields can result in
forewarning which can be highly beneficial. Though there
are many research papers on application of ARIMA in vari-
ous fields including environment, there is no substantial
work that reviews the building stages of ARIMA. In this
regard, the present work attempts to present three differ-
ent stages through which ARIMA was evolved. It needs to
be highlighted that detailed information about the process
of evolution is equally significant as knowledge about its
application. In this review paper, we have tried to review
more than 100 papers based on pure ARIMA and its hybrid
modeling. The first part of this paper deals with general
introduction to ARIMA, followed by its historical overview,
and the last part deals with its application review. The last
section is divided into two categories, where major emphasis
is laid on application of ARIMA in the field of atmosphere/
environment/health or factors influencing air quality such as
air pollutants, noise pollution, and rainfall, and the last sec-
tion deals with application of ARIMA in other fields such as
financial data and load forecasting data. The last categories
are again divided into two further subsections: one involving
purely ARIMA models and the other development of hybrid
models with ARIMA.

ARIMA model analysis

The classes of autoregressive moving average (ARMA)
models are frequently used while modeling linear and
stationary time series due to their outstanding results and
effectiveness (Al-Saba and El-Amin 1999). In 1921, Yule
presented pure moving average process, whereas he intro-
duced pure autoregressive process in 1927. Box and Jenkins
(1970), Hannan (1970), and Anderson (1971) have been pio-
neers in building various techniques using autoregressive
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moving average models. Hipel et al. (1977) have given the
theoretical and practical approaches for the model building
stages of ARIMA.

ARIMA processes are a kind of stochastic techniques
which are used to investigate behavioral pattern of time
series. ARIMA models are quite flexible in nature as they
can represent pure autoregressive (AR), pure moving aver-
age (MA), and mixed AR and MA (ARMA) series. Unfor-
tunately, ARIMA models are unable to capture nonlinear
pattern of the series and thus are not suitable for approxi-
mating complex real-world problems. Time series which has
either a trend or seasonal patterns do not exhibit stationary
behaviors. ARIMA (p, d, q) model only captures trends and
not seasonal behavior of time series. To model a seasonal
pattern, we have ARIMA (p,d,q)(P,D,Q) model.

Mathematical formulation
Moving average (MA) process

A process {z,} is said to be a moving average process of
order g if.

z=a,—6,_,— —0,a,_,wheref;i=123...,q are con-
stants and {a,} is a purely random process with mean zero
and variance c%(Box et al. 1994).

Autoregressive (AR) process

A process { z,} is regarded as an autoregressive process of
order p if.

=015+ Pzt o+ Pz, +a,  where ¢,
(j=1,...,p) are constants and {g,} is a purely random pro-
cess with mean zero and variance o2 (Box et al. 1994). This
model works like multiple regression model.

Autoregressive moving average (ARMA) process

Both the autoregressive (AR) and the moving average (MA)
are combined to build the autoregressive moving average
(ARMA) model. The (ARMA)(p, g) model for a time series
which contains p (AR) terms and g (MA) terms can be
expressed as.

R o q G
X,o= 2 biX — ijl 0a,_;+a, st=1,..,T

Here, a, is known as normal white noise process. It has
zero mean and variance . T is the amount of data in the
time series (Box et al. 1994). AR parameters should satisfy
the condition for stationarity and MA parameters should sat-
isfy the conditions for invertibility.
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Seasonal ARIMA

ARIMA as such does not support seasonal data, i.e., time
series with repeating cycles. However, such time series are

expressly modeled by ARIMA extension known as sea-
sonal ARIMA, i.e., SARIMA. Seasonal ARIMA models are
defined by 7 parameters p, d, g, P, Q, D, ands and mathemati-
cally defined as

(1 -¢,B- ¢2Bz —eeee —d)po) (1 - BB’ - ﬁszs —eee— BPBPS)(I _B)d(l - BS)DYz =c
+(1 =W B-W,B* —eeee—W B/)(1—-6,B"—0,B" —eee—0,B%)¢,

e p and P are non-seasonal and seasonal autoregressive
polynomial orders, respectively.

e g and Q are non-seasonal and seasonal moving average
polynomial orders, respectively.

e dand D are order of normal and seasonal differencing,
respectively.

e s is the period of the seasonal pattern appearing.

The ARMA models work only on stationary data, but in
reality, data of the various fields is non-stationary, making
ARMA unfit for these problems. With the help of differenc-
ing, the data can be made stationary, and this step leads to
the development of ARMA. ARMA is in fact generalization
of ARMA processes.

Historical overview

Based on the principle of parsimony, statisticians Box and
Jenkins (1970) gave a practical approach to build ARMA
model. The method uses a three-step iterative approach of
model identification, parameter estimation, and diagnostic
checking to build the best parsimonious model from a gen-
eral class of ARMA models (Fig. 1). The process is repeated
until a satisfactory model is obtained which can be then used
for prediction (Singh et al. 2020a, b, 2021a, b). In this sec-
tion, historical evolution of various steps involved in ARMA
modeling is discussed in detail.

Model identification

Model identification is a herculean task in any ARMA mod-
eling. In this regard, autocorrelation function (ACF) and
partial autocorrelation function (PACF) are vital statistics
in determining the order of the model. While ACF explains
correlation, PACF describes partial correlation between the
series and lags of itself. Box and Jenkins (1970) introduced
the concept of degree of differencing “d” also. Generally, d
is 0, 1, or 2. After d is selected, p and q are calculated from
the overall trend of ACF and PACEF of the appropriately dif-
ferenced series. Cleveland (1972) presented inverse autocor-
relation function (IACF) for this step. But the method was not
suitable for mixed models.

Sometimes by using visualization tools such as ACF and
PACEF, it is not possible to identify the parameters p, d, q
and P, D, Q. In that case, the model with the lowest BIC
(Bayesian information criterion) or AIC (Akaike informa-
tion criterion) is selected. Based on different information
theoretic techniques such as AIC or minimum description
length (MDL), various methods have been proposed by
researchers Hurvich and Tsai (1989), Ljung (1987), and
Shibata (1976) for order selection.

Astrom and Eykhoff (1971), Van Boom and Enden (1974),
and Unbehauen and Gohring (1974) acquainted on time series
model identification in the engineering field. Since the begin-
ning of the 1970s, various estimation-type identification meth-
ods have come into limelight. Akaike (1969) introduced final

Postulate a general class
of ARTMA model

A 4
Model identification
Estimation of model
No parameters

l

Diagnostic checking
Is the estimated model
adequate?

l Yes

Use the estimated model
for prediction

Fig.1 Methodology of ARIMA model
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prediction error (FPE) to determine the order p of the AR
models which is defined as

2p
FPEqp) = (1+ =)o, M

where n is the number of observations and 62, is an esti-
mate of white noise variance.
For the mixed model, the criteria are expressed as

+ P+ qgn)
n

5(p.q) = log(5?) 2
Here, 62 represents the maximum likelihood estimate for
the residual variance . The values p and § minimizing &
(p, q) are the best approximations for p and q. Taking differ-
ent values of g(n) leads to different criteria (Table 1).
Another procedure known as criterion of autoregressive
transfer function (CAT) was introduced by Parzen (1974)
where the actual model is presumed to have an AR ()
representation. The order selected p is interpreted as best
finite order AR approximation to the true AR () process.
Extending the work of Woodward and Gray (1981), Glasbey
(1982) introduced generalization of partial autocorrelations
(GPAC) as crucial techniques in ARMA model identifica-
tion. To estimate d, Janacek (1982) proposed a method
using log of the power spectrum. For order estimation
of a finite moving average process, Bhansali (1983) gave
autoregressive and window estimates of the inverse correla-
tion function. Monahan (1983) used Bayesian approach for
determining the order (p, g) of the ARMA model. Pattern
identification techniques using extended Yule-Walker equa-
tions for ARMA order identification was employed during
early 1980s. Tucker (1982) replaced R and S arrays with
RS array for the ARMA model identification. By integrating
order identification approach for mixed stationary and non-
stationary ARMA models, Tsay and Tiao (1984) eliminated
the need of differencing required for producing stationar-
ity in the time series. Augmenting their study, Tsay and
Tiao (1985) introduced the smallest canonical correlation
(SCAN) method. Broersen (1985) presented weak param-
eter criterion (WPC) for model order selection. Poskitt
(1987) modified Hannan and Rissanen (1982) criterion
of order selection. The order of ARMA model was deter-
mined using white noise test by Pukkila and Krishnaiah

(1988). Koehler and Murphree (1988) preferred Schwarz
information criterion (SIC) over Akaike information cri-
terion (AIC) for order selection. Hurvich and Tsai (1989)
developed a bias-corrected method AlCc for better model
order choices. Koreisha and Pukkila (1993) introduced
iterative procedures for determining the degree of differ-
encing required to make time series data stationary. Zhang
and Zhang (1993) developed an algorithm involving only
autocorrelations for determining order of MA processes.
Liang et al. (1993) gave a new approach based on the Eigen
values of covariance matrix for ARMA model order determi-
nation. Sreenivasan and Sumathi (1997) formulated a new
generalized parameters technique for both seasonal and
non-seasonal ARMA model identification.

Model estimation

The estimation of AR parameters is very crucial in time
series analysis for the adequate information about the model.
Maximum likelihood methods, ordinary least squares (OLS),
and method of moments are some of the extensively used
techniques for parameter estimation in time series analysis.
Pure autoregressive models are either estimated by OLS
method or by using Levinson (1947)-Durbin (1960) algo-
rithm. Durbin (1960) showed that method of OLS leads to
optimum estimates of the model provided errors are nor-
mally distributed. Burg (1975) came with an algorithm
similar to forward backward prediction especially for short
records and Huzii (1981) proposed a method based on higher
order moment for estimating AR coefficients. Proposing an
alternative to the Burg’s estimates Pukkila and Krishnaiah
(1988) calculated true correlation matrix of the lagged vari-
ables. Basu and Das (1992) consider optimality of the maxi-
mum likelihood estimator under a general set-up of roots of
the characteristic equation of the p th order of autoregressive
process.

In comparison to the parameter estimation methods avail-
able for AR model, the number of techniques to approxi-
mate MA parameters is fewer. Durbin (1959) is pioneer in
the estimation of MA parameters with a simple estimation
procedure. A quadratically convergent algorithm was for-
mulated by Wilson (1969) to estimate the parameters of
a MA process. Whereas Gauss—Newton method was used

Table 1 Model identification criterions depending upon values of g(n) along with their mathematical expressions

Value of g(n) Criterion Mathematical expression

g(n)=2 Akaike information criterion (AIC) given by Akaike (1974) AIC(p, q) = log(oz) + 20+9)
g(n) = logn Bayesian information criterion (BIC) given by Schwarz (1978) BIC(p, q) = log( 62) + (pralogn
g(n) = clogn Hannan and Quinn’s criterion (HQ) given by Hannan and Quinn 1979 HO(p,q) = 10g(62) 4+ (rgloglogn

where ¢ is a constant to be
specified
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to estimate the parameters of a non-linear function, Fuller
(1976) utilized it for the MA process. Godolphin (1977,
1978) proposed an alluring computational procedure aug-
menting the previous studies.

For ARMA cases, myriad studies are available. Wilson
(1969) and Marquardt (1963) have developed an algorithm
to estimate the ARMA parameters which was employed by
Box and Jenkins (1970) to lay the foundation of all the
ARMA, AR and MA processes. The research done by the
latter is regarded to be a milestone in the field of mod-
eling. McLeod (1977) gave an easier implementing modi-
fied version of Box and Jenkins (1970) which approxi-
mated exact ML estimators very precisely. Tuan (1984)
derived many recursive relations which worked as a tool
in identifying the order and parameters of ARMA at its
preliminary stages. Using autocovariance function, Choi
(1986) presented an algorithm for the parameter estima-
tion of stationary ARMA process. The iterative algorithm
proposed by Choi in 1986 was not convergent; therefore,
he developed a convergent Newton—Raphson solution for
MA parameters in the subsequent year. Saikkonen (1986)
derived two-step estimators which were asymptotically
efficient.

Recently, different studies have focused on maximum
likelihood (ML) procedures as a tool to estimate ARMA
models. Basu and Das (1991) analyzed the asymptotic
properties of least-squares estimation procedures of the
parameters of an ARMA (p, q) process in the stable case.
The SCA System can be used to estimate the parameters
of the model. For best results, a conditional likelihood
function is selected along with the detection and adjust-
ment of outliers. Mikosch et al. (1995) derived the asymp-
totic properties of the estimators. The major drawback of
ML estimates is that it often lies outside the invertibility
region. However, the generalized least-squares method for
the estimation of pure MA and ARMA model presented
by Pukkila et al. (1990) has succeeded in overcoming it.

Model diagnostic checking

Before the remarkable advent of Box and Jenkins (1970)
procedure, hypothesis testing methods were largely used
for ARMA model identification. McLeod (1974) examined
the need to check whiteness and homoscedasticity of the
residuals in the diagnostic checking step. Godfrey (1979)
proposed a new approach based upon Silvey’s (1959)
Lagrange multiplier method to check the adequacy of the
ARMA model. Hokstad (1983) has proposed a diagnostic
test with the estimated cross correlation function (CCF)
between the observed values and the residuals. The CCF
can also be used as an indicator for the required improve-
ment in the model.

Model forecasting

Among the wide applications of time series, the most popu-
lar is forecasting. Forecasting is easily attainable with state
space framework of which ARIMA models are special case.
With the state space framework, observational vectors are
brought into a system with one element at a time (Durbin
and Koopman 2012). State space models have great contri-
bution in the science of environment (Harvey et al. 2004)
and also play a pivotal in the analytical handling of time
series models (Harvey 1989).

For the practical computation of forecasting, the simplest
and most elegant method is of difference equation from
which minimum mean square error forecasts can be directly
generated (Box and Jenkins 1970). Also, the probability
limits for the forecasts can be obtained by solving recur-
sively. Makridakis and Wheelwright (1977) concluded that
the adaptive filtering technique can be applied to time series
forecasting dealing with real data. Cartwright (1985) has
assessed the forecasting performance of Priestley’s model
and concluded that forecasting errors can be significantly
reduced with the use of broader classes of time series. Ray
(1988) concluded that forecasting performance of Bilinear
model is more than Box-Jenkins model and threshold autore-
gression model. Tiao and Tsay (1994) studied developments
of time series in both the linear and non-linear domain. They
were of the opinion that when the parameters involved are
estimated adaptively, linear models provide more accurate
forecasts. Thus, we can see the model building process is
quite laborious and needs great human expertise.

Wrapping up all the above steps, the general statistical
methodology scheme of ARIMA is as presented by Fig. 1.

Modeling and forecasting work flow
of ARIMA

As observed ARIMA finds large applications in various
fields due its high mathematical precision and great reli-
ability. The next section of the paper deals with review of
papers employing ARIMA exclusively and hybrid ARIMA
models published in world’s best-class journals. The ris-
ing disastrous threats to the atmosphere or air quality are
turning to be great concerns of the twenty-first century. Its
hazardous effects are felt by human beings as well as by
the entire wildlife. Thus, forecasting in this field can be a
great contributor to governments and public at large in tak-
ing all the required precautionary steps in advance. There
are various environmental factors affecting the air quality
such as air pollutants, water pollutants, noise pollution due
to traffic congestions, rainfalls, and surface erosions. Also,
the environment exhibits close connections with energy
resources. Thus, our coming section deals with all these
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environmental factors first forecasted with ARIMA alone
followed by hybrid models involving ARIMA. The data set
undertaken, methodology adopted, and results obtained, all
are discussed elaborately for the complete understanding of
the readers.

Survey of air quality/environment/health data
involving application of ARIMA models

Kulkarni et al. (2018) studied the variation of SO,, RSPM,
NOx, and SPM parameters present in the atmosphere of
Nanded City (Maharashtra, India). The randomness, trend,
and seasonality present in the data were also analyzed. The
forecasted result revealed that RSPM and SPM are exceed-
ing the permitted limits. Jaiswal et al. (2018) observed the
statistical trend of CO, NO,, SO,, PM, 5, and PM,, concen-
trations for the time span January 2013 to December 2016
for the city Varanasi (India) using Mann—Kendall and Sen’s
slope estimator approach. Different ARIMA models, namely,
ARIMA (1,0,0), (1,0,1), and (1,1,1), were fitted on the three
data sets of summer, monsoon, and winter season and their
results compared. ARIMA (1,1,1) was chosen as the best fit
model for forecasting all the pollutants. Pohoata and Lungu
(2017) tried to analyze the air quality of the city Ploiesti in
Romania for the pollutants O;, CO, NO,, NOx, and PM,,.
While ARIMA (3,1,3) provided good results for NOx, NO,
and Oy, it failed to give satisfactory results for CO and PM,,
Kumar et al. (2004) forecasted one-day advance O; con-
centration in Brunei Darussalam using ARIMA modeling
approach. ARIMA (1,0,1) was the best fitted method. Liu
et al. (2018) used ARIMA with numerical forecasts (ARI-
MAX) with the vision to improve forecast of O3, PM, 5, and
NO, for Xingtai (China). Significant reduction in RMSE,
viz., 47.8-49.7%,14.3-21.0%, and 41.2-46.3%, respectively,
for O3, PM, 5, and NO,, was seen by employing CMAQ-
ARIMA for the daily 1-h and 8-h forecasting values at all the
stations. Dynamic hourly forecast shows that ARIMAX can
also be successfully applied to forecast of 7- to 72-h PM, s,
4- to 72-h NO,, and 4- to 6-h O;. Zhang et al. (2018) fore-
casted PM, 5 concentrations using AQI and meteorological
parametric data for Fuzhou (China) with the help of ARIMA.
It was observed that PM, 5 concentrations were positively
correlated with PM,,, NO,, and SO, concentrations and neg-
atively correlated with meteorological parameters. Average
PM, 5 concentrations were 52% higher in cold periods in
comparison to warm periods. ARIMA (6,1,1) was found to
be best model for the data.

This is the first applicability of ARIMA model on the data-
set of VC. Prior to model simulation of VC over the region
of Delhi, trends and variations in the data set were analyzed.
12 ARIMA models ARIMA (0,0,1), (1,0,2), (0,0,5), (1,0,0),
(0,0,1), (1,0,0), (0,0,1), (0,0,1), (1,0,0), (0,0,2), (0,0,1),
and (0,0,3), respectively, for each month from January to
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December were developed separately. The result revealed
that past continued to impact future values of VC.

Kumar and Goyal (2011) thrived to build a forecasting
AQI model. Three models are assessed, i.e., ARIMA (1,1,1),
PCR, and ARIMA combined with PCR with respect to 4
seasons of the year in Delhi. The hybrid model performed
better in predicting AQI one-day advance. The hourly and
monthly concentrations of CO spread over 7 years of data of
Hong Kong were analyzed by Lau et al. (2009) using ARIMA
modeling. Association of hourly concentration of CO with
different days of the week was examined. The hourly data of
CO was like traffic data. This strong association was proven
by SARIMA (0, 1, 1) (0, 1, 1),, model. It was also shown
that data possessed long-term memory features. Kumar and
De Ridder (2010) took the daily maximum O; concentra-
tion data of four sites of London and Brussels for study.
They studied GARCH modeling technique in association
with FFT-ARIMA to make forecasts of ozone episodes at
these sites. In the study of Slini et al. (2002), ARIMA (1,1,1)
and ARIMA (1,1,0) were used over the data of maximum
daily O concentration data of Athens (Greece) from 1990
to 1998. The forecasting performance of these two mod-
els were observed under the three categories of alarm limit
greater than 180,170 and 160 pg/m>. Robeson and Steyn
(1990) tried to develop three predictive models, i.e., D/S
model, ARIMA (1,1,0), and TEMPER model for the tempo-
ral variability of ozone in the lower Fraser Valley of British
Columbia by taking 8 years data for the period 1978—1985
from two monitoring stations T9 and T11. On comparison
of forecasting ability for ozone concentrations, TEMPER
model outperformed the other two models. Siew et al. (2008)
compared the performance of ARMA (3, 1, 3) and integrated
ARFIMA (0,—0.5, 2) models for the data of O;, PM,,, NO,,
S0O,, and CO concentration from March 1998 to Decem-
ber 2003 of Selangor Malaysia. Though both models could
not forecast all the values completely, ARFIMA performed
slightly better than ARIMA.

Ahn (2000) applied second order differencing ARIMA
models to daily groundwater head time series (1985—-1990)
from 7 monitoring wells located in Collier County, Florida.
Variance and autocovariance equations were derived for
the second-order time series models using ARIMA (0,2,1),
(0,2,2), (1,2,0), (2,2,0), and (1,2,1) as function of parameters
of the model under study. Mirzavand et al. (2014) worked
on AR, MA, ARMA, ARIMA, and SARIMA models in
analogous to forecast groundwater levels up to 60 mo in
plain expanses of Kashan aquifer in Iran. The seasonality
and stationarity of the data were checked. Taheri Tizro et al.
(2014) analyzed several water parameters of Hor Rood River
at Kakareza station with the help of ARIMA modeling. Based
on R?, AIC, RMSE, and MAPE, ARIMA (2,1,3), (2,1,3),
(1,1,3), (1,1,3), (2,1,1), (2,1,1), (1,1,1), and (2,1,2) were
found to be best suitable for parameters TDS, EC, HCO;-,
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S0,?~, Ca™, Na™, ph, and SAR generation, respectively. The
increasing trend of majority of parameters showed a picture
of deteriorating water quality conditions in the region.

Garg et al. (2015) in their paper simulated daily mean
LDay (0622 h) and LNight (22-06 h) in A- and C-weight-
ings in conjunction with single-noise metrics, day-night
average sound level (DNL) for a period of 6 months for the
station East Arjun Nagar in Delhi using ARIMA methodol-
ogy. ARIMA (0,0,14), (0,1,1), (7,0,0), (1,0,0), and (0,1,14)
are chosen to be fit models for LDay dBA, LNight dBA,
LDay DB(C), LNight dBC, and DNL dBA, respectively.
Augmenting their work, the authors in 2016 compared
ARIMA and ANN on the same problem and found ANN
model gave better results than ARIMA model. Guarnaccia
et al. (2017) presented two methods for the acoustic data set
of Nice (France) international airport for the year 2000. The
two methods utilized were DD-TSA (deterministic decompo-
sition model) and SARIMA (0,1,1) (0,1,1),,. While the for-
mer method captured long-term behavior of the data set, the
latter captures short-term behavior. To quantify the forecast-
ing errors, residual analysis was carried out. The DD-TSA
gave slightly better results in terms of low standard devia-
tion. Williams and Hoel (2003) applied SARIMA (1,0,1)
(0,1,1)675,(1,0,2)(0,1,1)47,, (2,0,1)(0,1,1)7, for M25 station
and (1,0, 1)(0, 1, 1)g75,(3,0,0)(0, 1, 1)g75, (1,0,2)(0, 1, 1)g7,
for I-75 stations on the vehicular traffic data. The authors
concluded that one-step seasonal ARIMA predictions con-
stantly outperformed ARIMA and random walk forecast
results.

Ab Razak et al. (2018) using Mann—Kendall trend analy-
sis found ARIMA (0, 1, 2) is the best suitable model for the
daily and monthly rainfall and stream flow data of stations
of Malaysia for the period 2000-2010. Zakaria et al. (2012)
developed four ARIMA models (3,0,2)(2,1,1);, (1,0,1)
(1,1,3)50, (1,1,2)(3,0,1)5, and (1,1,1)(0,0,1), for the weekly
rainfall data for the stations Sinjar, Mosul, Rabeaa, and Tala-
far in north west Iraq for the period 1990-2011 stations.

Benvenuto et al. (2020) found ARIMA (1, 0, 4) and
ARIMA (1, 0, 3) to be the best model for determining the
prevalence and incidence of COVID-19, respectively, from
January 20, 2020, to February 10, 2020. Logarithmic trans-
formation was done out to check the seasonality influence
on the prediction.

Suresh and Priya (2011) took 57 years data from
(1950-195 1) to (2007-2008) of sugarcane area, produc-
tion, and productivity for Tamil Nadu for analyzing. Vari-
ous ARIMA models with p and g varying from 0O, 1, and
2 were fitted. While ARIMA (1, 1, 1) model was found
suitable for sugarcane area and productivity, ARIMA (2,1,
2) was appropriate for sugarcane production.

Li and Li (2017) applied GM (1,1), ARIMA (1,2,0),
metabolism GM (1,1), and GM-ARIMA to forecast future
energy needs of Shandong province using energy data

for the span 1995-2015. Employing histogram judg-
ment method, it was shown that data contains non-linear
sequencing. This led to the development of GM (1,1)
model on the data. Unfortunately, this method was also
precluded because of 21 data points in the data set. The
optimal requirement of data points for application of gray
model is 5-10. In the next step, gray metabolic forecast
model was tried. After the successful application of gray
metabolic model on the basis of relative error, a series of
residuals was obtained. Residual corrections are done with
the help of ARIMA model. This process enhanced the pre-
diction accuracy significantly, and this was the major inno-
vation of this study. Aamir and Shabri (2016) employed
ARIMA, GARCH, and ARIMA-Kalman to predict crude oil
rates in Pakistan by undertaking average monthly prices of
crude oil for the time February 1986 to March 2015. The
ARIMA Kalman filter technique proved to be best approach
as MAE and RMSE were minimum in this case as com-
pared to ARIMA and GARCH.

It is very much evident from the above discussion that
ARIMA is highly significant in the field of environment and
health. ARIMA being simple and reliable has tremendous
potential to forecast in these areas. Thus, it was important
to review contribution of ARIMA in these domains.

Hybrid modeling

The real-world problems are usually complex rather than
being simple. Thus, linear predictive methods do not per-
form as desired when used to process data from a non-
linear system (Patil 1990). To find out whether the series
is linear or non-linear requires enormous efforts of the
forecasters. The researchers try different combination
of models based on different theoretical and practical
approaches and various other factors such as sampling
variation, model structure and uncertainty to develop a
model which yields more accurate results and enhanced
forecasting (Jenkins 1982; Makridakis 1989). Bates and
Granger (1969) are considered to be pioneer in introduc-
ing combining forecasts as an alternative to use one single
forecast. The literature indicates that performance of time
series forecasting increases through combining forecasts
(Makridakis et al. 1982).

The next part of our study deals with review of
papers based on ARIMA hybrid modeling in the field of
environment/atmosphere/health.

Analyzing ARIMA hybrid-based studies
Mani and Volety (2021) forecasted three air pollutants, namely,

CO, NH;, and O; of Vijayawada station by employing both
ARIMA and the LSTM models. Kalman filters are also used

@ Springer
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to enhance the performance and forecasting abilities. The lat-
ter model proved to have higher accuracy using RMSE and
MAE as performance indices. Wang et al. (2017) came up with
hybrid-GARCH model to overcome conditional heteroscedas-
ticity almost present in every hybrid model. The authors used
ARIMA and SVM models to explain the linear and non-linear
components, respectively, of the AQI data comprising PM, s,
S0O,, NO,, CO, and O; concentrations for six stations from the
Shenzhen air quality monitoring network (China) for the time
period 01 Sep 2013 to 10 Sep 2013. For estimating the coef-
ficients of individual models, GARCH model is introduced.
The accuracy level of hybrid-GARCH model in terms of met-
rices MAE and RMSE were higher than the individual models.
Samia et al. (2012) attempted to foresee one day in advance the
max 24-h ma PM concentrations in the region of Sfax South-
ern Suburbs using MLP, ARIMAX, and the hybrid model. The
study revealed that hybrid ARIMAX-ANN outperformed the
individual models since it can explore both linear and non-
linear patterns. Zhu et al. (2017) stated that the most chal-
lenging problem while forecasting AQI is of data being highly
complex and non-stationary. Thus, they presented two hybrid
models EMD-SVR-Hybrid and EMD-IMFs-Hybrid for AQI
data of Xingtai, China, collected from June 2014 to August
2015. To obtain smooth IMF, EMD technique is employed.
Then, SVR is used to predict total sum of IMF’s and finally
S-ARIMA is applied for analyzing residual sequences obtained
from the two proposed models. In this paper where ARIMA is
used for modeling AQI data, S-ARIMA is kept for forecasting
IMF5 as well as for analysis of the residues. The predicted
outcomes of AQI are sum of EMD-IMFs and S-ARIMA. The
IMF4, IMF5, IMF6 and IMF7 chosen from IMFs are fore-
casted by Holt-Winters (0.9,0.2,0.3), S-ARIMA (1,1,1) (0,1,1),
Holt Winters (0.1,0.2,0.5), and GM (1,1) respectively. Chelani
and Devotta (2006) examined the effectivity of their proposed
hybrid model based on chaos theory with ARIMA and non-
linear models for the time series data of NO, concentration
present in the air from 1999 to 2003 at a site in Delhi. The
prediction performance based on MAPE, RMSE, and RE con-
firmed that the hybrid modeling is more effective than indi-
vidual models in forecasting the air pollutant concentrations.
Diaz-Robles et al. (2008) studied hourly and daily time series
of PM,, and meteorological data during 2000-2006 at the Las
Encinas monitoring station in Temuco. Hybrid model outper-
formed ARIMAX and ANN in terms of RMSE, MAE, and
BIC. Prybutok et al. (2000) studied a neural network model
for forecasting daily maximum ozone levels and showed that
the neural network model is superior to the two conventional
statistical models, regression and Box-Jenkins ARIMA models.
The maximum ozone data for the year 1994 from Houston was
the research object.

Jietal. (2019) forecasted the future carbon prices using the
hybrid ARIMA-CNN-LSTM model. The linear features of the
data set were modeled by ARIMA. CNN model extracted the

@ Springer

spatial features of the residual of ARIMA model. And finally
long-term dependencies of these features were captured by
LSTM. It was evident from the experimental analysis that the
hybrid ARIMA-CNN-LSTM outperformed the individual mod-
els. The dataset of carbon future prices from 7 April 2008 to
6 May 2019 was taken. Koutroumanidis et al. (2009) showed
that the hybrid ARIMA-ANN model has a better adaptability
and can make better predictions of future selling prices of the
fuelwood produced by Greek state forest farm as compared to
both the ARIMA model and the simple ANN model.

Faruk (2010) observed that the best fit models for water
temperature (0%), boron (mgl_l), and DO (mgl_l) are
SARIMA (1,1,1) (0,0,1),, (1,1,1) (0,0,1),, and (1,1,1)
(0,0,1),,, respectively. They further found hybrid modeling
approach of combining SARIMA with NNBP can give more
reliable predictions for these parameters of a river than the
Neural Network and traditional baseline ARIMA modeling
approach individually.

Chattopadhyay and Chattopadhyay (2010) and Somvanshi
et al. (2006) examined the rainfall data of India and found
that hybrid models outperformed individual models in terms
of forecasting efficiencies. Wei et al. (2016) found that the
most appropriate model for the morbidity data for hepatitis
from the Heng County CDC from January 2005 to Decem-
ber 2012 is ARIMA (0,1,2) (1,1,1),. (Table 2).

From Table 3, it can be clearly seen that errors are
reduced when hybrid models are implemented on the various
data sets. Thus, both theoretical and empirical findings are in
strong favor of combining different methods to achieve effec-
tive and efficient forecasts (Newbold and Granger 1974).
Consequently, hybridizing different models has become the
latest research objectives in the field of modeling and fore-
casting. Table 2 provides concise results of sections “Survey
of air quality/environment/health data involving application
of ARIMA models,” “Analyzing ARIMA hybrid-based stud-
ies,” “Reviewing application of ARIMA alone,” and “Inves-
tigating ARIMA with hybrid methodology” and some of the
other papers involving ARIMA in tabular form which would
be easier to comprehend.

Examining role of ARIMA in studies other
than air quality/environment/health
concerns

ARIMA and its hybrid models have got such wide utilization
that they cannot be restricted to merely one or two arenas
of study. Therefore, in this section, few research studies in
the field of financial data or load forecasting or some other
fields are briefly reviewed to provide a glimpse of its varied
applications. Following the previous chronology, we review
papers with ARIMA alone and then followed by review of
papers involving ARIMA and its hybrid methodology.
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Table 3 Application of performance evaluation measures on various ARIMA and its hybrid models

Authors Research object area/selection crite- ~ Model used Performance measures
ria/research Data

Mani and Volety (2021) Air pollutant ARIMA RMSE=0.13
CcO MAE=0.12

LSTM RMSE=0.13
MAE=0.09

NH; ARIMA RMSE=0.44
MAE=0.39

LSTM RMSE=0.14
MAE=0.13

0O, ARIMA RMSE=13.6
MAE=13.13

LSTM RMSE=2.06
MAE=1.70

Wang et al. (2017) Station 1.ARIMA RMSE=38.1242
1. Fuyong MAE=6.0771

2.SVM RMSE=8.2779
MAE=5.8432

3.Hybrid GARCH RMSE=7.8458
MAE=5.5375

2. Longhua 1.ARIMA RMSE =5.2084
MAE=4.4061

2.SVM RMSE=4.7392
MAE=3.8072

3.Hybrid GARCH RMSE=4.6373
MAE=3.7256

3. Henggang 1. ARIMA RMSE=7.1915
MAE=6.1382

2.SVM RMSE=7.1910
MAE=5.8290

3. Hybrid GARCH RMSE=6.4584
MAE=5.2359

4. Pingshan 1. ARIMA RMSE=7.1943
MAE=5.5786

2.SVM RMSE=7.2744
MAE=5.4968

3.Hybrid GARCH RMSE=7.0182
MAE=5.15%4

Samia et al. (2012) PM10 ARIMAX RMSE=51.094
R?*=0.675
MSE=2610
MAE=25.677

ANN RMSE=29.939
R?>=0.888
MSE=2896.2
MAE=20.573

ARIMAX-ANN RMSE=11.656
R?*=0.983
MSE=135.828
MAE=8.268
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Table 3 (continued)

Authors Research object area/selection crite- ~ Model used Performance measures

ria/research Data

Zhu et al. (2017)

Kumar and Goyal (2011)

AQI

Summer

Monsoon

Post-monsoon

Winter

ARIMA

SVR

Wavelet-SVR

GRNN

Wavelet-GRNN

EMD-GRNN

EMD-IMFs-Hybrid

EMD-SVR-Hybrid

ARIMA

PCR

MODELS3 (ARIMA +PCR)
ARIMA

PCR

MODEL3 (ARIMA +PCR)
ARIMA

PCR

MODEL3 (ARIMA +PCR)
ARIMA

PCR

MODEL3 (ARIMA +PCR)

MAPE =186.400
RMSE =208.6240
MAE=198.545

MAPE =30.200
RMSE =42.7060
MAE=35.812

MAPE =30.890
RMSE=42.7388
MAE=36.2368

MAPE=2591
RMSE =36.0930
MAE=26.7732

MAPE=24.24
RMSE=33.0731
MAE=25.9814

MAPE=21.86
RMSE =27.6400
MAE=22.3637

MAPE =15.600
RMSE=25.767
MAE=17.240

MAPE =15.600
RMSE =24.462
MAE=18.101

RMSE=35.30
NMSE=0.0106
RMSE=35.70
NMSE=0.0113
RMSE=31.99
NMSE=0.0086
RMSE=62.55
NMSE=0.0537
RMSE=68.93
NMSE = 0.0694
RMSE=61.94
NMSE=0.0531
RMSE=57.70
NMSE=0.0354
RMSE=62.93
NMSE=0.0416
RMSE =56.55
NMSE=0.0341
RMSE=26.74
NMSE =0.0054
RMSE =58.39
NMSE=0.0301
RMSE=65.76
NMSE=0.0390
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Table 3 (continued)

Authors Research object area/selection crite-
ria/research Data

Model used

Performance measures

Jietal. (2019) Carbon prices

Chelani and Devotta (2006) NO, data

CNN

LSTM

ARIMA

ARIMA-CNN-LSTM

ARIMA

Nonlinear prediction

Hybrid model

MAPE =0.0623
RMSE=0.8616

MAPE =0.0456
RMSE=0.7251

MAPE =0.0423
RMSE=0.7015

MAPE =0.0421
RMSE =0.6940

MAPE=17.3
RMSE=58.78
RE=0.24

MAPE=11.6
RMSE =55.37
RE=0.23
MAPE=5.37
RMSE=13.93
RE=0.19
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Table 3 (continued)

Authors Research object area/selection crite- ~ Model used Performance measures
ria/research Data
Kim (2010) AR at location AR RMSE=15.32
1. Crestline R>=0.74
2. Fontana AR RMSE=19.45
R?=0.66
3. Redlands AR RMSE=17.51
R?=0.70
4.SB-4th St AR RMSE=17.22
R?=0.68
5. Upland AR RMSE=18.05
R?=0.64
ARX at location 1. Crestline ARX RMSE=13.37
R?=0.80
2. Fontana ARX RMSE=14.89
R?=0.80
3. Redlands ARX RMSE=13.96
R?=0.81
4. SB-4th St ARX RMSE=13.96
R?=0.81
5. Upland ARX RMSE=13.11
R’>=0.81
P-TARX at location P-TARX RMSE=12.92
1. Crestline R?=0.82
2. Fontana P-TARX RMSE=13.91
R?=0.83
3. Redlands P-TARX RMSE=13.41
R?=0.83
4. SB-4th St P-TARX RMSE=12.28
R?=0.84
5. Upland P-TARX RMSE=12.37
R?=0.83
T-TARX at location T-TARX RMSE=12.56
1. Crestline R?=0.83
2. Fontana T-TARX RMSE=12.25
R?=0.85
3. Redlands T-TARX RMSE=13.10
R?=0.84
4. SB-4th St T-TARX RMSE=11.60
R?=0.86
5. Upland T-TARX RMSE=11.89
R?*=0.85
Somvanshi et al. (2006) Rainfall data ANN RMSE=5.5186
4,2,1) R?=0.9841
MAE=0.9841
ARIMA RMSE =35.882
(4,0,0) R?*=0.953
MAE =24.388
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Table 3 (continued)

Authors Research object area/selection crite- ~ Model used Performance measures
ria/research Data
Wei et al. (2016) Hepatitis data ARIMA MAPE=0.1115
RMSE=1.5561
MSE=2.4215
GRNN MAPE=0.0.0150
RMSE=0.4726
MSE=0.2233
ARIMA-GRNN MAPE =0.0878
RMSE=0.9391
MSE=0.8820
Zhu and Wei (2013) 1.Carbon prices Dec 10 ARIMA RMSE =0.2474
LSSVM RMSE=0.2473
ANN RMSE=0.2568
ARIMALSSVM?2 RMSE=0.0311
ARIMASVM RMSE=0.0636
ARIMAANN RMSE=0.0967
2.Carbon prices Dec12 ARIMA RMSE=0.2678
LSSVM RMSE=0.2676
ANN RMSE=0.2712
ARIMASSVM RMSE=0.0628
ARIMAANN RMSE=0.0963
ARIMALSSVM2 RMSE=0.0309
Koutroumanidis et al. (2009) 1. Coniferous species ARIMA MAPE=16.9133
RMSE=0.051308
ANN MAPE = 14.583646

Ho et al (2002)

Diaz-Robles et al. (2008)

2. Broadleaved species data

1. Short term

2. 1. Long term

PM,, data

ARIMA-ANN hybrid model
ARIMA
ANN

RNN(ot=0.3)
RNN(at=0.6)
RNN(0t=0.8)
MFNN
ARIMA
RNN(a=0.3)
RNN(a=0.6)
RNN(a=0.8)
MFNN
ARIMA
ARIMAX

ANN

Hybrid

RMSE=0.05233171

MAPE =14.0036172
RMSE=0.050151798

MAPE=16.6856
RMSE=0.147595

MAPE=13.016263
RMSE =0.0966550

MAE=58.7
MAE=58.5
MAE=161.2
MAE=297.6
MAE=54.1
MAE=289.5
MAE=288.7
MAE=177.6
MAE=187.2
MAE=286.7
RMSE =28.46
MAE=19.87
RMSE=28.57
MAE=20.65
RMSE=38.80
MAE=6.74
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Table 3 (continued)

Authors Research object area/selection crite- ~ Model used Performance measures
ria/research Data
Faruk (2010) Water temperature (°C) ARIMA MAPE=42.076
RMSE=0.102
ANN MAPE=21.114
RMSE=0.048
Hybrid MAPE =18.282
RMSE=0.039
DO (mg i) ARIMA MAPE=47.10
RMSE=0.113
ANN MAPE=29.612
RMSE=0.061
Hybrid MAPE =26.985
RMSE=0.051
Boron (mg I7!) ARIMA MAPE =57.512
RMSE=0.165
ANN MAPE=36.813
RMSE=0.074
Hybrid MAPE=33.611
RMSE=0.063
Singh et al. (2020a, b) Italy ARIMA MSE =2.565 x10°

Spain

France

USA

UK

MAE=1.243 x10°

MSE =0.398 x10°
MAE=0.464 x10°

MSE=0.782 x10°
MSE=0.782 x10°

MSE=0.028 x10°
MAE=0.136 x10°

MSE=11.006 x10°
MAE=24.640 x10°

MSE=5.245 x10°
MAE=1.627 x10°

MSE = 16.540 x10°
MAE=2.822 x10°

MSE =3.900 x10°
MAE=1.341 x10°

MSE =29.742 x10°
MAE=1.316 x10°

MSE=0.064 x10°
MAE=0.193 x10°

Wavelet-ARIMA hybrid model

ARIMA

Wavelet-ARIMA hybrid model

ARIMA

Wavelet-ARIMA hybrid model

ARIMA

Wavelet-ARIMA hybrid model

ARIMA

Wavelet-ARIMA hybrid model

Reviewing application of ARIMA alone

CONTRERAS et al. (2003) proposed two ARIMA models to
predict hourly prices in the electricity markets of Spain and
California. The Spanish data showed volatility. Jadevicius
and Huston (2015) generated around twenty ARIMA models
ranging from ARIMA (1, 0, 0) to ARIMA (4, 0, 4). ARIMA
(3, 0, 3) model outperformed all the models to model Lithua-
nian house price index. Garcia et al. (2005) applied ARIMA
and GARCH model to forecast one-day ahead electricity

@ Springer

for mainland Spain and California with the conclusion that
GARCH model is more accurate than ARIMA. Yaziz et al.
(2016) surveyed the modeling and forecasting performances
of gold prices using ARIMA-TGARCH with Gaussian, Stu-
dent’s ¢ skewed, Student’s ¢, GED, and skewed GED innova-
tions. Hybrid ARIMA (0,1,0)-TGARCH (1,1) with t-inno-
vation was chosen as the best model.

Ariyo et al. (2014) and Wadi et al. (2018) applied vari-
ous ARIMA models on the stock exchange data sets to find
ARIMA (2,1,0), ARIMA (1,0,1), and ARIMA (2,1,1) best
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fits Nokia stock index, Zenith bank stock index, and Amman
Stock Exchange, respectively. Siregar et al. (2017) based
on ACF and PACF concluded ARIMA (3.0, 2) is the most
appropriate model for predicting the sales of the factory in
the city of Bandung. Wabomba et al. (2016) found ARIMA
(2,2,2) as the best model for Kenyan GDP data. ARIMA
(1,1,1) was found the best suitable method on the monthly
gold price data by Guha and Bandyopadhyay (2016). In
his research work, Lin (2018) gave an extensive review on
GARCH models as well as detailed analysis of stock markets
in general and particularly in China.

Investigating ARIMA with hybrid methodology

To capture the volatility present in the data, Babu and Reddy
(2014) decomposed the series into two sets using MA filter.
The proposed hybrid model resulted in improved one-step
and multi-step ahead prediction accuracy. Nie et al. (2012)
compared hybrid of ARIMA model and SVMs for short-
term load forecasting with individual models via simulation
for the electric load data of power company in Heilongjiang
of China from March 1 to May 31, 1999. Hybrid ARIMA-
SVM model performed better than the two separate models
alone. Chen and Wang (2007) observed that the values of
NMSE, R (correlation coefficient), and MAPE were lowest
for hybrid model (SARIMASVM?2) for the production data
of the Taiwanese machinery industry from January 1991 to
December 1996. Zhang (2003) compared ARIMA and ANN
for the Wolf’s sunspot data from 1700 to 1987, the Canadian
lynx data, and the British pound spanning from 1821 to 1934
and the US dollar exchange rate data extending from 1980 to
1993 and concluded combined model has greater forecast-
ing accuracy. Khashei and Bijari analyzed the same data as
used by Zhang (2003) in the year 2011. A new hybrid model
better than Zhang’s model, ARIMA and ANN alone, was
developed. Tseng et al. (2002) concluded that SARIMABP
model outperformed SARIMA models for the total production
revenues of Taiwan machinery industry. Wang (2011) com-
pared ARIMA and fuzzy time series by heuristic models with
Taiwan exports data from January 1990 and 30 March 2002.
For longer analyzing time period, the MSE of the time series
ARIMA model are lower, while for shorter analyzing period,
the MSE are more. The heuristic fuzzy time series model is
an appropriate tool when information is lacking and an urgent
decision is needed. Wang and Leu (1996) used a hybrid model
to conclude that ANN provides better results with differenced
data than raw data in case of Taiwan stock exchange.

Wang et al. (2012) observed data for monthly closing index
of SZII and opening index of DJIAI from China and the USA,
respectively, from January 1993 to December 2010. It was seen
that hybrid model could more effectively capture various rela-
tionships in the data. Ho et al. (2002) applied ARIMA, RNN,

and MFNN to the failure time data for a repairable compres-
sor system at a Norwegian process plant. RNN at the optimal
weighting factor gives satisfactory performances compared to
the ARIMA model. The simple and wide use of ARIMA mod-
els led Mondal et al. (2014) to study 56 Indian stock markets
spread over different sectors. The high lightening feature of this
research was analysis of sector-based ARIMA models, thus
covering larger portion of Indian stocks. Different ARIMA
models were generated and their AIC compared.

All the above narration can be summarized that in recent
past hybrid modeling techniques have substituted single mod-
eling processes. Also, these emerging nonlinear soft computing
techniques are robust, parsimonious in their data requirements
and provide good long-term forecasting. Though with the
advent of new soft computing methods many difficulties while
implementing ARIMA have been overcome, still ARIMA
remains the benchmark in the field of modeling and forecast-
ing due its high level of simplicity and great level of reliability.

Comprehension of ARIMA models along with its
hybrid requires knowledge of performance evaluation cri-
teria also. Thus, our coming section deals with various
performance evaluation metrices.

Performance evaluation of hybrid models

Different statistical metrices such as MAD (mean absolute
deviation), SSE (sum squared error), RMSE (root mean
squared error), MSE (mean squared error), MAPE (mean
absolute percentage error) are employed while evaluating
the performance of the proposed model. MAD, RMSE and
MAPE are defined by

MAD =1 37 (1) - 5(0)|

" —
RMSE = /L 27 y( - 500)|
MAPE = 1 3 [20=30] 5 100

=1

y(0)

where 3(¢) denotes the predicted value of y(f) and n is the
number of points of the training and testing data sets. It is
very much evident from Table 3 that errors are reduced when
hybrid models are implemented on the various data sets.

Table 3 represents the various models employed and the
criteria chosen for performance evaluation of these various
models by various authors.

Conclusion
Though ARIMA finds its application extensively in the field
of forecasting, it too has shortcomings. ARMA models are

linear models, but the time series involving environmental/
atmosphere/air quality/financial data, etc. are rarely pure
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linear combinations. A great competence, expertise, and
experience of a researcher is required while implement-
ing results of the Box-Jenkins procedure. Moreover, results
are strongly affected by the path chosen and hence are path
dependent (Weigend and Gershenfeld 1994). But almost all
the models though different from each other have similar
estimated correlation patterns, resulting in the arbitrary
choice of the model (Box et al. 1994). Another drawback of
Box-Jenkins procedure is that it is sometimes highly time
consuming in the model identification step. ARMA models
are highly unsuitable for running policy simulations.

After such a massive review of ARIMA and hybrid mod-
eling involving ARIMA in the fields including or excluding
environment/health/atmosphere, it can be concluded that the
combined models are more robust and have higher ability to
capture all the patterns of the series uniformly. Thus, com-
bining several models or using hybrid model has emerged
as a routinized custom, though ARIMA still remains the
benchmark of many baseline models.
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