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Abstract
Soils interact in many ways with metal ions thereby modifying their mobility, phase distribution, plant availability, specia-
tion, and so on. The most prominent of such interactions is sorption. In this study, we investigated the sorption of Pb, Cd, 
and Cu in five natural soils of Nigerian origin. A relatively sparsely used method of modelling soil-metal ion adsorption, i.e. 
adaptive neuro-fuzzy inference system (ANFIS), was applied comparatively with multiple linear regression (MLR) models. 
The isotherms were well described by Freundlich and Langmuir equations (R2 ≥ 0.95) and the kinetics by nonlinear two-stage 
kinetic model, TSKM (R2 ≥ 0.81). Based on the values delivered by the Langmuir equation, the maximum adsorption capaci-
ties (Qm*) were found to be in the ranges 10,000–20,000, 12,500–50,000, and 4929–35,037 µmol  kg−1 for Cd, Cu, and Pb, 
respectively. The study revealed significant correlations between Qm* and routinely determined soil parameters such as soil 
organic carbon (Corg), cation exchange capacity (CEC), amorphous Fe and Mn oxides, and percentage clay content. These 
soil parameters, combined with operational variables (i.e. solution/soil pH, initial metal concentration (Co), and temperature), 
were used as input vectors in ANFIS and MLR models to predict the adsorption capacities (Qe) of the soil-metal ion systems. 
A total of 255 different ANFIS and 255 different MLR architectures/models were developed and compared based on three 
performance metrics: MAE (mean absolute error), RMSE (root mean square errors), and R2 (coefficient of determination). 
The best ANFIS returned MAEtest 0.134, RMSEtest 0.164, and R2

test 0.76, while the best MLR returned MAEtest 0.158, RMSEtest 
0.199, and R2

test 0.66, indicating the predictive advantage of ANFIS over MLR. Thus, ANFIS can fairly accurately predict 
the adsorption capacity and/or distribution coefficient of a soil-metal ion system a priori. Nevertheless, more investigation 
is required to further confirm the robustness/generalisation of the proposed ANFIS.

Keywords Tropical soils · Heavy metals · Adsorption isotherm · Soil parameters · Modelling · ANFIS

Introduction

Naturally, metals are present in soils as trace elements from 
parent materials, and most of them are essentials for ani-
mal and plant metabolism (Silveira et al. 2003). However, 

anthropogenic activities such as discharge of industrial 
effluents and mine tailings; open dumping of untreated solid 
waste in lands designated as dumpsites and/or in unlined 
landfills, a common practice in developing economies; and 
sewage sludge application on agricultural and forested land 
(especially in the developed economies) have been linked to 
serious spikes in the natural concentrations. This has posed 
a great stress on groundwater and freshwater as well as food 
resources, with concomitant consequences on health of 
human beings and other ecological receptors. A recent case 
of heavy metal poisoning was witnessed in Zamfara state, 
Northwestern Nigeria, where over four hundred children 
reportedly died within the first few months of lead pollution 
derived from illegal artisanal gold mining (Biya et al. 2010; 
Blacksmith Institute 2010; Greig et al. 2014).
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Due to their non-degradability, metal ions cannot be 
transmuted/mineralised to totally innocuous forms. Previ-
ously, environmental quality assessment for heavy metals in 
soils was based on total concentrations, but a strong argu-
ment now exists for basing it on metals in solution, i.e. the 
labile fraction instead. This is due to the observation that 
transportation of metals from soils into the freshwater eco-
system is dependent on their presence in the solution phase 
(Rieuwerts et al. 1998). However, nature, in particular soils, 
interacts in many different ways with this labile fraction, 
thereby modifying metal mobility, phase distribution, bio-
availability, speciation, toxicity, and so on. The most promi-
nent of such interactions are sorption-cation exchange, com-
plexation, and specific adsorption (Strawn 2021). Sorption 
has long presented great interests to both environmental and 
soil scientists (Dube et al. 2001; Strawn 2021).

Investigating the sorption behaviour of heavy metals in 
soils not only gives vital information about their environ-
mental risk, but also provides useful knowledge for reme-
diation of heavy metal–contaminated soils/sites. The con-
ventional method of carrying out sorption tests is by field 
or laboratory experiments. However, not only are these 
experiments laborious and expensive, they could also be 
fraught with many errors. Furthermore, mostly, the adsorp-
tion capacity of soils for heavy metal cations is controlled 
by soil texture; soil composition, especially the composi-
tion and amount of the mineral fractions (i.e. metal hydr-
(oxides) and clay); the amount and property of soil organic 
matter; soil pH; cation exchange capacity; and other reaction 
variables, all of which can interact (Guanshu and Baoshan 
2001; Katseanes et al. 2016; Agbaogun and Fischer 2020). 
Thus, variations in environmental fate parameters such as 
partition coefficients are commonly attributed to differences 
in soil physicochemical properties (Katseanes et al. 2016). 
Therefore, with the high level of spatial variations in soils 
and soil attributes alone, it is scientifically inconceivable to 
investigate all soil-metal adsorption systems. This makes 
sorption of metal ions by soils, just like that of any other 
chemical contaminants, a complex process that may be very 
difficult to formalise by means of conventional statistical/
mathematical methods, hence the need for simple and effec-
tive estimation/prediction methods.

Recently, soft computing methods such as artificial neu-
ral network (ANN), fuzzy logic (FL)–based techniques (i.e. 
fuzzy inference systems, FIS), genetic algorithms (GA), and 
several connectionist systems such as adapted neuro-fuzzy 
inference system (ANFIS) are increasingly being recognised 
as accurate learning schemes for modelling complex phe-
nomena in different aspects of engineering, physical, and 
natural sciences (Agbaogun et al. 2021). These techniques 
have the capability to take care of uncertainties that often 
accumulate in traditional mathematical and statistical tech-
niques (Kebria et al. 2018). ANFIS is a hybrid of ANN and 

FIS. ANN is an advanced mathematical tool that is inspired 
by the biological neural structure of the brain (Souza et al, 
2018). In analogy with human brain, ANN consists of single 
units (neurons) that are interconnected by the so-called syn-
apses (Dolatabadi et al, 2018). ANN has the ability to learn 
from an input and output pair of data and adapt to it in an 
interactive way (Tiwari et al. 2018). FIS, on the other hand, 
is inspired by fuzzy logic (FL) which is a heuristic system 
description that uses “if–then” rules to establish quantitative 
relationships among the input and output vectors (Vernieuwe 
et al. 2005). FL is based on fuzzy set rules. Broadly defined 
by Zadeh (1965), a fuzzy set is a class of objects with con-
tinuum of grades of “membership”; that is, every object 
is assigned a condition of membership ranging between 
zero and one. Fuzzy sets rely on FL operations and parallel 
if–then rules to execute a nonlinear mapping of an input 
space to the output space through membership functions 
(Fig. 1) to form the fuzzy inference system. In other words, 
ANFIS is a kind of ANN that is based on Takagi–Sugeno 
Kang (TSK) fuzzy inference system (Jang 1993). This infer-
ence system has learning capability to approximate nonlin-
ear functions (Aqil et al. 2007) and particularly gaining 
popularity in dealing with ill-defined and uncertain domains; 
hence, it is considered a “universal estimator”. Further, it 
is well-known for its ability to produce systems with good 
interpretability-accuracy trade-off by combining the advan-
tages of ANN and FIS in a single framework and equally 
reduces the drawbacks of the two (Rahimzadeh et al. 2016; 
Agbaogun et al. 2021).

Apart from numerous near-field applications, a copious 
number of articles where ANFIS was used in predicting the 
adsorption of heavy metal ions and/or organic chemical con-
taminants onto several adsorbents have surfaced in the lit-
erature, especially in the last one decade. These include, but 
not limited to, Qasaimeh et al. (2012), Amiri et al. (2013), 
Ghaedi et al. (2013, 2014), Tanhaei et al. (2017), Baziar 
et al. (2017), Dolatabadi et al. (2018), Lashkenari et al. 
(2018), Javadian et al. (2018), and Sigmund et al. (2020). 
Most recently too, Agbaogun et al. (2021) successfully used 
ANFIS to model the adsorption of phenylurea herbicides by 
soils. So far, our literature search has revealed that ANFIS 
has never been used in modelling the adsorption of heavy 
metal ions onto natural soils.

Therefore, apart from contributing to the body of knowl-
edge on the sorption behaviour of Pb, Cu, and Cd in Nige-
rian (tropical) soils, this paper will be more concerned with 
the search for the subset(s) of variables that can best predict 
soil adsorption capacities (Qe) for these metal ions. Thus, 
just like in our previous similar studies on modelling of soil 
organic contaminant phase distribution, the major ques-
tions this paper will be answering are (i) since literature 
is replete with reports of significant correlations between 
some routinely measured soil attributes and metal ion phase 
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distribution, is a combination of such soil attributes suffi-
cient as a pedotransfer function for in silico estimation of 
soil-metal ion adsorption coefficients, (2) what are the major 
drivers for soil-metal ion adsorption, and (3) can a simple 
traditional system like MLR predict these phase distributions 
in soils more accurately than an advanced expert system like 
ANFIS? As earlier stated, ANFIS, although widely reported 
for their robustness in extracting complex nonlinear rela-
tionship from data, has never been applied to modelling the 
partition coefficients of metal ions in soil. This work will be 
the first to integrate experimental dataset in expert systems 
like ANFIS to develop a capability for predicting the phase 
distribution of these chemical species in soils, hence the 
novelty of this work. It is worth noting that in this paper, we 
search not only for an accurate prediction, but we research 
for the smallest combination of inputs to produce such pre-
diction. We also evaluated the sensitivity of the models to 
each of the regressed vectors. Accordingly, we produce a 
robust and trustworthy model with a good interpretability-
accuracy trade-off.

Materials and methods

Soils characterisation

Five topsoil samples were selected from a pool of soils 
stemming from southwestern Nigeria. This region is cov-
ered with dense forest and savannah vegetation (trees and 

shrubs), with and without canopy formation (Fagbemi and 
Shogunle 1995). The climate is characterized by 28–32 °C 
(annual average) temperature and a mean annual precipita-
tion of 1000–1500 mm, with the rainy season lasting for 
7–8 months. Generally, the soils are ferruginous tropical 
soils with kaolinite as the dominant clay mineral (Agbao-
gun and Fischer, 2020). According to US soil taxonomy, 
the dominant soil types in this region are Arenic Paleudalfs, 
Rhodic Paleudalfs, Oxic Tropudalfs, Typic Tropudults, 
Typic Tropaquepts, Oxic Paleudalfs, Oxic Paleustalfs, Aquic 
Tropopsamments, and Typic Ustipsamments (pro parte) 
(Fagbemi and Shogunle 1995). These can be broadly classi-
fied as Luvisols, Lixisols, Gleysols, and Arenosols according 
to the IUSS Working Group WRB (2014). As observed by 
Giresse (2008), almost all the tropical soils are fairly repre-
sented in the Western part of the African continent, hence 
the choice of this study location. The soils were selected to 
cover a relatively wide range of physicochemical parameters. 
The physicochemical properties of the soils were determined 
as previously described by Agbaogun and Fischer (2020).

Metal ion solutions

Two thousand–mg/L  Pb2+,  Cu2+, and  Cd2+ stock solutions 
were prepared from lead (II) nitrate (Pb(NO3)2), copper 
(II) nitrate hemipentahydrate (Cu(NO3)2.2.5H2O), and cad-
mium (II) nitrate tetrahydrate (Cd(NO3)2.4H2O), respec-
tively. Working solutions in the range 10–180 mg/L were 
prepared by serial dilution of the stock in 0.001-M  KNO3 

Fig. 1  Schematics of a fuzzy 
inference process with crisp 
output
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(indifferent electrolyte). Nitrate was chosen as indifferent 
electrolyte because of its small capacity for complexa-
tion with cations (Msaky and Calvet 1990; Silveira et al. 
2003). Other chemicals used include nitric acid  (HNO3) 
and sodium hydroxide (NaOH) which were received in 
analytical quality from Sigma Aldrich, Germany.

Adsorption experiments

For sorption kinetics tests, 1  g each of the samples, 
except for UI (Uni-Ibadan) that was 0.5 g, was mixed 
with 50 mL of 50-mg  L−1 solution of the metal ions in 
100-mL polypropylene centrifuge tubes. Samples were 
withdrawn at 15 min, 30 min, 60 min, 180 min, 360 min, 
540  min, 720  min, and 1440  min of contact. For the 
effects of pH, 1 g of the samples was equilibrated for 24 h 
with 20 mL (except for UI that was 30 mL) of 50-mg  L−1 
pH conditioned metal ion solutions. The solutions were 
conditioned to pH 2.0 ± 0.1, 3.0 ± 0.1, 4.0 ± 0.1, 5.0 ± 0.1, 
6.0 ± 0.1, and 7.0 ± 0.1 with either dilute  HNO3 or NaOH 
solution. Adsorption isotherms and effects of concen-
trations tests were carried out in a thermostated rotary 
shaker for 24 h at 293 K, 313 K, and 333 K, with 1 g 
each of the samples (except for UI-Pb that was 0.5 g) and 
20 mL of solutions with metal ion concentrations rang-
ing from 10 to 60 mg  L−1 (for AK-Pb at 293 K, BK-Pb at 
293 K, and for IB-Pb and OD-Pb, at the three tempera-
tures). AK, BK, IB, and OD here represent the sampling 
locations Akanran, Bakatari, Ibadan, and Odeda, respec-
tively. Other isotherm tests were carried out with metal 
ion concentrations ranging from 30 to 180 mg/L. At the 
end of the reaction period, the mixtures were centrifuged 
at 3000 rpm for 15 min. The supernatants were then fil-
tered with 0.45-µm regenerated cellulose (RC) membrane 
filters (Millipore, VWR, Germany), and the filtrates were 
analysed for their residual metal ion concentrations with 
atomic absorption spectrometry, AAS (Varian AA240FS, 
Varian Inc., Germany). All experiments were performed 
in duplicate. Blank samples and controls were also run 
in parallel for quality control measures. It was assumed 
that the differences between the initial metal ion con-
centrations (Co, µmol  L−1) and the residual concentra-
tions in the aqueous phase (Ce, µmol  L−1) were solely 
due to sorption. Therefore, the amount adsorbed by soil 
(Qe, µmol  kg−1) was calculated based on mass balance 
as follows:

(1)Qe =

(
Co − Ce

ms

)
∗ V

where V (L) is the volume of the solution and ms is the 
mass of the soil (kg). The linear distribution coefficient (Kd) 
was calculated from Eq. 2:

Stemming from two traditional Eqs. 1and 2,

For 1 L (V) of a specified initial metal ion concentration and 
1 kg of soil (Ms), Kd can be calculated from the values of Qe 
(experimental or predicted) by Eq. 4 (Agbaogun et al. 2021).

Further, the adsorption mechanisms were empirically 
described by various mathematical equations. For sorption 
isotherms, two most commonly used equations—Langmuir 
and Freundlich (Eqs. 5 and 6)—were used to fit the isotherm 
data, using the nonlinear least square method. The kinetics 
data were fitted to pseudo second-order (PSO) equation and 
the two-stage kinetic model, TSKM (Eqs. 7 and 8, respec-
tively), also using nonlinear least square method.

where Qm
* is the maximum adsorption capacity (µmol  g−1) of 

the adsorbent, Qe and Ce are as earlier described in Eq. 1, KL (L 
µmol−1) is the Langmuir constant that is related to the affinity of 
the binding sites, Kf (µmol1−n  Ln  kg−1) is the specific Freundlich 
constant, and n (dimensionless) is the Freundlich intensity param-
eter which indicates the magnitude of the adsorption driving force 
or the surface heterogeneity. Qt (µmol  kg−1) is the amount of 
metal adsorbed at time t (min); k1  (min−1) is the fast rate constant, 
while k2 (µmol  kg−1  min−0.5) is the slow or diffusion rate constant.

All linear regressions were done with Microsoft Excel® 
(2013), while the nonlinear regressions were developed with 
Matlab 2019b, using the “lsqcurvefit” algorithm. The good-
ness of fit of the regressions was determined by the coefficient 
of determination (R2), Eq. 9.

(2)Kd =
Qe

Ce

(3)Kd =
QeV

C0V − QeMs

(4)Kd =
Qe

C0 − Qe

(5)Qe =
KQ∗

m
Ce

1 + KCe

(6)Qe = KfC
n
e

(7)Qt =
k2Q

2
e
t

1 + k2Qet

(8)Qt(t) = Qe

t
1+k1t

k1

+ 2 ∗ k2 ∗ t0.5
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where y* and y are the observed and predicted values, 
respectively. ym is the mean value of y*, and n is the number 
of observations.

Description of ANFIS

Fuzzy neural networks are connectionist systems that inte-
grate both neural network and fuzzy logic.

ANFIS are trained as neural networks, while their struc-
tures are interpreted as a set of fuzzy rules (i.e. the Tak-
agi–Sugeno-Kang, TSK fuzzy rules). Ostensibly, fuzzy rules 
are logical sentences upon which derivation can be executed 
(Jang 1993). The act of executing this derivation is referred 
to as inference process (Jang 1993). In ANFIS, the output of 
each rule (consequent part) is a linear combination of input 
variables (their preconditions) plus a constant term, while 
the final output is the weighted average of each rule’s output. 
For instance, if the FIS under consideration is of the rule 
base containing two if–then rules of TSK’s type, with two 
inputs x and y, and one output f, the TSK fuzzy rules will be:

where fi is output and pi, qi, and ri are the consequent 
parameters of the ith rule (Agbaogun et al. 2021). Ai and Bi 
are linguistic labels whose membership function parameters 

(9)R2 = 1 −

∑n

i=1
(y∗

i
− y)2

∑n

i=1
(y∗

i
− ym)

2

(10)R1 ∶ IFxisA1andyisB1, THENf1 = p1x + q1y + r1

(11)R2 ∶ IFxisA2andyisB2, THENf2 = p2x + q2y + r2

are premise parameters and are represented by fuzzy sets 
(Jang, 1993). Here, the inferred output y* is calculated:

Generally, an ANFIS structure consists of 5 layers: the 
fuzzification layer, the product layer, the normalised layer, 
the defuzzification layer, and the output layer (Fig. 2) (Jang, 
1993). Each of these layers is tasked with different functions 
and contains several nodes described by the node function—
i.e. adaptive nodes (for parameters that are adjustable in the 
system) or fixed nodes (for parameters that are nonadjust-
able) (Jang 1993). ANFIS training algorithm uses a com-
bination of backpropagation gradient, descent algorithm, 
and a least square method to learn and recognise the pattern 
of the dataset (train dataset). Subsequently, another dataset 
(test dataset) is used to check the generalisation capability 
of the resulting systems. More details about the theory and 
applications of fuzzy set theory and the structure of ANFIS 
can be found in Zadeh (1965), Takagi and Sugeno (1985), 
and Agbaogun et al. (2021).

MLR

Just like ANFIS, the aim of MLR is to model the relation-
ship between the input variables and the target (or response). 
A time-honoured technique going back to Pearson’s 1908 
use of it, MLR is employed to account for (predict) the vari-
ance in an interval dependent, based on linear combinations 
of interval, dichotomous, or dummy independent variables 

(12)y∗ = f =
(w1f1 + w2f2)

w1 + w2

= w1f1 + w2f2

Fig. 2  ANFIS architecture for 
two input vector Sugeno fuzzy 
systems (Jang, 1993)
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(Vatcheva et al. 2016). An MLR model with n observations 
is expressed as Eq. 13 (Brereton 2007).

where y is the dependent (predicted) variable, φo is the 
intercept, φi is the partial regression coefficients, xi (i = 1, 
2,…n) are predictors/independent variables, and ε is the 
random error.

MLR can be a useful predictive method, but due to its 
dependency on linearly correlated relationships, it may lead 
to inaccurate results for nonlinear and complex systems like 
adsorption (Yilmaz and Kaynar 2011). Again, one of the 
factors that affects the standard error of a partial regression 
coefficient is the degree to which that independent vari-
able is correlated with the other independent variables in 
the regression equation (Vatcheva et al. 2016). Other things 
being equal, an independent variable that is very highly cor-
related with one or more other independent variables will 
have a relatively large standard error. MLR suffers the curse 
of multicollinearity. This is a problem because it undermines 
the statistical significance of an independent variable, accen-
tuates the problem of overfitting (where the model may do 
well on the known training set but will fail at the unknown 
testing set), and reduces the precision of the estimated coef-
ficients as well as the p values (Vatcheva et al. 2016).

Modelling with ANFIS and MLR

The ambition here is to model the adsorption capacity, Qe, 
of the soil-metal ion system, using the batch experimental 
dataset. Based on the established correlations, the follow-
ing eight variables were selected as potential regressors for 
the models: soil/solution pH, initial metal ion concentration 
(Co), temperature (T), organic carbon content (Corg), cation 
exchange capacity (CEC), amorphous iron and manganese 
oxide contents (Feo and Mno, respectively), and percentage 
clay content (%clay). These eight variables are referred to as 
input vectors and Qe as the output vector. A dataset of 340 
patterns was generated from these input and output vectors 
and was randomly divided into 90% (for training) and 10% 

(13)y = �o +

n∑

i=1

�ixi + �

(for testing), under tenfold cross validation. The fuzzy infer-
ence system (FIS) object was automatically generated using 
grid partitioning. We used the generalised bell (gbellmf) and 
linear membership function types for the input and output 
vectors, respectively. The number of membership functions 
for each input was set at two.

In modelling, selection of best subset of vectors is crucial 
in reducing the training time and improving the prediction 
accuracy. This is achieved by removing irrelevant, redun-
dant, and noisy vectors (i.e. selecting the subset of vectors 
that can achieve the best performance in terms of accuracy, 
uncertainties, and explanatory power). This task is there-
fore one of parsimony, i.e. realising a balance between two 
opposing objectives: simplicity (as few regressors as pos-
sible) and fit (as many regressors as needed) (Agbaogun 
et al. 2021). Generally, two options are possible (i) exhaus-
tive search (i.e. all possible regressors) or (ii) random subset 
of regressors. Ideally, the best subset(s) of regressors can 
be found by applying the exhaustive search (Al-Ani 2005), 
although this becomes prohibitive as the number of vectors 
increases. Nevertheless, we used the “all possible regres-
sors” method in this paper since only eight input vectors 
were involved. Therefore, starting with one-vector models, 
we built the models stepwisely (i.e. sequential forward selec-
tion) until the “all eight vector” model was obtained. In this 
way, using Matlab 2019b, we elaborated several ANFIS and 
MLR models. In addition to the coefficient of determina-
tion, R2 (Eq. 8), we used two other error metrics: root mean 
square error (RMSE) and mean absolute error (MAE) to 
evaluate and compare the performances of these models. 
These metrics are given by Eqs. 14–15 (Chai and Draxler, 
2014).

where y* and y are the observed and predicted values, 
respectively, and N is the number of observations.

(14)RMSE =

√√√√ 1

N

n∑

i=1

(y∗
i
− y)2

(15)MAE =
1

N

n∑

i=1

||y
∗

i
− y|

Table 1  Soil physical–chemical parameters

Fed Ald Mnd Total Feo Alo Mno Total illite Kaolinite clay silt sand Textural class

AK 6.63 1.41 0.12 59.49 8.91 0.51 0.88 10.30 0.57 0.53 0.28 1.38 13.97 86.03 4.17 46.82 49.01 sandy loam

Bk 5.79 1.92 0.51 38.70 12.63 0.44 1.81 14.88 0.35 0.39 0.16 0.91 7.43 92.57 4.67 43.22 52.11 sandy loam

IB 5.73 0.53 0.51 22.32 9.38 0.55 1.04 10.97 0.49 0.59 0.22 1.29 22.64 77.36 3.52 31.60 68.40 sandy loam

OD 5.92 0.53 0.05 27.62 2.02 0.32 0.03 2.37 0.25 0.36 0.15 0.76 17.51 82.49 2.40 24.12 73.48 loamy sand

UI 7.07 4.01 0.39 111.74 13.67 0.57 3.13 17.37 1.86 0.54 2.32 4.73 21.62 78.38 6.01 59.03 34.96 silty loam

        metal oxides (g/Kg) Clay minerology (%) Particle size (%)Soil pH Corg 
(%)

%N CEC 
(mmolc/Kg)

CEC is expressed in  mmolc  kg−1; subscripts “d” and “o” are dithionate and oxalate extractable metal oxides, respectively
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R2 gives the degree of association between predicted and 
measured values (Agbaogun et al, 2021). One of its useful 
properties is the intuitive nature of its scale (i.e. it ranges 
from zero to one, with zero indicating that the proposed 
model does not have any prediction power, while one indi-
cates perfect prediction). RMSE indicates how close the 
observed data points are to the predicted values (Chai and 
Draxler, 2014). The lower the values of RMSE, the better 
the fit. MAE, on the other hand, measures the average mag-
nitude of the errors in a set of forecasts, without considering 
their directions (Martin, 2020). Just like RMSE, the lower 
the values of MAE, the lower the prediction errors. There-
fore, the best or optimal model is that which has the least 
MAE and RMSE and the highest R2.

Results and discussion

Soil characterisation

The characteristics of the soils used in this study (presented 
in Table 1) showed significant differences in the established 
components and properties related to heavy metal retention 
by soils. With the exception of UI which was slightly neu-
tral (pH = 7.07), all other samples were acidic (pH 5.7–6.6). 
Organic carbon content varied from 4.0% in UI to 0.5% in IB 
and OD. The CEC ranged from 22.32 (IB) to 111.7  mmolc/
Kg (UI). OD recorded the least cumulative pedogenic and 
cumulative free metal oxides (2.37 and 0.15 g  kg−1, respec-
tively), while UI recorded the highest of both parameters 
(17.37 and 4.73 g  kg−1, respectively). UI also has the high-
est of clay and silt proportions (6 and 59%, respectively), 
while OD has the least (2.4 and 24%, respectively). Using 

the USDA soil texture classification, soils AK, BK, and IB 
were classified as sandy loam; OD was loamy sand, while UI 
was silty loam. The clay mineralogy revealed the presence of 
only kaolinite (predominantly, 77–93%) and illite.

Adsorption isotherms

The sorption isotherm coefficients Kd, Kf, and Qm* are valu-
able parameters to compare the retention and/or interactions 
of metal ions with soils. High values of these coefficients 
indicate high retention of the metal ion by soil, while low 
values indicate that a large fraction of the metal remains in 
soil/solution, with consequences for higher mobility. Due 
to nonlinearity of the plots Qe versus Ce for most of the 
soil-metal ion systems, Kd could not be determined as the 
slopes of the isotherm lines, neither could Kd at single con-
centration be compared because of some differences in the 
experimental variables. Nevertheless, the isotherm data were 
fitted to both Langmuir and Freundlich equations to obtain 
Qm* and Kf, except in few soil-metal ion systems where the 
isotherms could not be established, and Qm* were restricted 
to Qm experimental (Table 2).

From the results, both equations have almost similar fits, 
with R2 ranging from 0.93 to 1.0. Bradl (2004) has also con-
cluded that adsorption behaviour of heavy metals in soils can 
be described adequately by either Freundlich or Langmuir 
model (Bradl 2004). Arising from the Freundlich plots, we 
observed n ˂ 1 in all cases. While the general trends of n 
with basic soil properties were not readily discernible, how-
ever, UI with the highest %Corg (4.01) recorded the highest 
n values (i.e. 0.74 for Cd and 0.51 for Cu). Generally, given 
the heterogeneous nature of soil surfaces, increasing surface 
coverage makes less active sites accessible, thus leading to 

Fig. 3  Trend of Qm in the soil 
samples at 313 K
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Fig. 4  pH profiles of metal 
adsorption: a Pb, b Cd, and c 
Cu
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less stable surface binding and/or higher probability of des-
orption. The lower the value of n, the less stable the surface 
binding and/or the higher the probability of desorption.

We observed that Kf and Qm*/Qm for the three metal 
ions followed the trend UI > AK > BK > IB ≥ OD. This 
correlates well with most of the measured soil phys-
icochemical parameters, notably %Corg, pH, CEC, total 
pedogenic and amorphous Fe and Mn oxides, and %clay 
content. For instance, UI which has the highest values of 
all measured soil parameters had the highest Qm* and Kf, 
whereas IB and/or OD with the least of all the soil param-
eters had the least of the coefficients, thus confirming the 
already established soil physicochemical control of metal 
ion adsorption.

The trend of Qm* with the metals followed the sequence 
Cu ˃ Pb ˃ Cd. This correlates with the orders of their 
electronegativity (Pauling scale). It also correlates with 
respective first hydrolysis constants (pKb) of the metals, 
indicating that hydroxo-species  (MeOH+) may play an 
important role in the formation of the surface complexes. 
However, apart from Cd which returned the least kf, the ion 
with higher kf between Cu and Pb cannot be readily estab-
lished. For Cd and Cu, Qm*/Qm increased with increase in 
temperature from 293 to 313 K, but decreased from 313 
to 333 K. For Pb however, Qm increased with increase in 
temperature from 293 to 313 K and further increased from 
313 to 333 K. Figure 3 shows the trend of Qm of the metals 
in the soils at 313 K.

We also compared our results, Qm*/Qm especially, 
with the values reported in the literature for soils 
from other tropical climes, including Nigerian soils 
from agroecological zones different from the present 
study area. In this study, the values obtained for Cu 
(12,881–61,027  µmol   kg−1) is within the range (i.e. 
24,700–199,200 µmol  kg−1) reported for Cu by Sangium-
sak and Punrattanasin (2014) in Thailand soils. Gener-
ally, values reported for the three metals in other tropical 
soils are within our ranges. For instance, Cazanga et al. 
(2008), Moreira and Alleoni (2009), Xie et al. (2018), 
and Diagboya et al. (2015) reported 38,300, 2600–31,500, 
36,000, and 41,385–71,754 µmol   kg−1 respectively for 
Cu in Chilean, Brazilian, Chinese, and Nigerian soils. 
Cazanga et al. (2008) and Diagboya et al. (2015) reported 
48,100 and 33,200–72,010  µmol   kg−1 for Pb in Chil-
ean and Nigerian soils, respectively, while we reported 
5062–35,037  µmol   kg−1. Also, Moreira and Alleoni 
(2009) and Diagboya et al. (2015) reported 3500–6800 
and 9074–17,881  µmol   kg−1 for Cd in Brazilian and 
Nigerian soils, respectively, while this study reported 
8000–21,100 µmol  kg−1.

pH dependency of adsorption

Soil or solution pH is the most important parameter influenc-
ing metal-solution and soil-surface chemistry. Since most 
metal ions precipitate at pH above 8, which may even be 
lower in the presence of soil colloids, the pH dependency of 
the adsorption was studied between pH 2 and 7. As shown 
in Fig. 4, except for UI where adsorption was nearly 100 
percent even at pH 2, metal adsorption was generally lowest 
at pH 2, increased very significantly from pH 2 to 3, and 
went to near completion between pH 3 and 4. According to 
Bradl et al. (2004) and Xie et al. (2018), adsorption of metal 
ions by soils increases from near zero to maximum over a 
relatively small pH range (i.e. pH-adsorption edge). As this 
study demonstrates, the pH range 2–4 is the pH-adsorption 
edge for most of the tested soil-metal systems.

There are several explanations for this correlation 
between pH and adsorbed amounts. Majorly, at low pH, the 
content of  H+ is high, leading to soil mineral dissolution and 
release of ions such as  Mg2+,  Fe2+, and  Al3+ which com-
pete for the available adsorption sites with the metal ions 
being investigated. Secondly, most of the surface groups 
behave like Lewis acids or bases. At low pH, they become 
protonated, consequently producing positive surface charges 
which may weaken their abilities to form complexes with the 
heavy metal ions. Conversely, at high pH, the inorganic OH 
groups (silanol, aluminol, etc.) and the organic OH groups 
(COOH) become deprotonated (i.e. negatively charged), 
thus making it possible for the adsorbing cations to bond 
directly with them by ionic forces and surface coordinative 
mechanisms.

The near 100% adsorption of UI even at pH 2 was not in 
accordance with these arguments. However, one or a combi-
nation of the following reasons might be able to explain the 
phenomenon: (i) In agreement with the already established 
high adsorption capacity of this particular soil, the amount 
of added metal ions was essentially too low to saturate the 
available sorption sites; (ii) the soil has a high buffering 
capacity to resist appreciable mineral dissolution, thus mak-
ing the amount of released  Mg2+,  Fe2+, and  Al3+ insuffi-
cient to compete efficiently with the added metal ions for the 
abundant sorption sites; and (iii) comparably high amount of 
organic and inorganic mineral surfaces in this soil enhanced 
the formation of inner-sphere complexes thus enabling it to 
overcome the electrostatic repulsion created by the highly 
acidic condition (Blume et al. 2016).

Adsorption kinetics

Figure 5 shows the metal ion adsorption profile with time. 
As shown in these decline curves, the adsorption process 
can be classified into two stages: an early stage rapid adsorp-
tion (t = 0–60 min), followed by a slow rate-limiting second 

Fig. 5  Kinetic profiles of a Pb, b Cd, and c Cu in the soil samples◂
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stage (t = 60–200 min), leading to an asymptote at long time. 
Although the data were fitted to both nonlinear PSO and 
TSKM equations, better fits were obtained with TSKM (R2 
0.80–0.98) than with PSO (R2 0.70–0.87). Therefore, only 
the TSKM parameters are selectively presented (Table 3).

From Table 3, it could be observed that the model fits dif-
fer not only from soil to soil, but also from metal to metal, 
with Cu having the best overall fit. Despite the similarities 
in the Qe cal for Pb and Cd, adsorption velocity, rated by 
k1, of Cd is lower than that of Pb and Cu. This is a further 
argument for higher mobility of Cd. According to McGrath 
and Cegarra (1992) and Bradl (2004), Cu shows relatively 
higher affinity for soil organic matter than the other metals. 
Therefore, relative contribution of the second adsorption 
stage, rated by k2, which is highest for Cu, might correlate 
with higher importance of organic matter for Cu adsorption. 
The trends of Qe clearly agreed with the soil’s parameters, as 
already pointed out in the preceding section, and UI which 
has the highest of the measured soil parameters also gave 
the highest k1 for the three metals (1.4, 2.0, and 3.4  min−1, 
for Cd, Pb, and Cu, respectively). Nevertheless, k1 and k2 
cannot be clearly explained by the soil’s physical–chemical 
attributes.

ANFIS and MLR models

Ideally, the distribution coefficient (Kd), rather than Qe, 
provides a better insight into the adsorptive behaviour of 
metals in soils and as such remains a valuable tool to assess 
and compare metal mobility and retention in soil systems 
(Alloway 1995; Covelo et al. 2004). However, the ANFIS 
and MLR models developed worked better for Qe as the out-
put vector, than for Kd. While this may be connected to the 
reasons earlier stated, further, Souza et al. (2018) were also 
of the opinion that an intensive variable such as Qe is a bet-
ter choice as an output variable for adsorption modelling. 
It then follows that once Qe can be accurately predicted, 
the corresponding Kd values can be calculated from Eq. 3, 
as previously stated. In this work, however, due to the high 
values of Qe in µmol  kg−1, and the need to scale the error 

matrices (MAE and RMSE) between 0 and 1, we used the 
log-transformed values of Qe instead.

With the exhaustive search approach, we obtained a total 
of 255 models (i.e. 1 eight-vector model, 8 seven-vector 
models, 28 six-vector models, 56 five-vector models, 70 
four-vector models, 56 three-vector models, 28 two-vector 
models, and 8 one-vector models) for each of ANFIS and 
MLR (both training and test systems). The models were 
assessed and compared based on their RMSE, MAE, and 
R2. While all the 255 ANFIS and 255 MLR models can be 
found as supplementary material to this paper, only few of 
the models are presented here (Table 4) to explain the major 
intricacies in our results. Nevertheless, the table captured the 
best of both MLR and ANFIS systems. It should be noted 
that the best model corresponds to the subset(s) of vectors 
that returned the lowest MAE and RMSE values, and the 
highest R2, for both training and test systems. Whereas more 
weight is usually placed on the test systems for overall deci-
sion on performance, good enough, the three performance 
indices in this work followed the same trends, in both train-
ing and test systems.

As can be seen from Table 4, the best of ANFIS sys-
tems—M13 and M14 (both three-vector models)—
returned MAEtest 0.131/0.132, RMSEtest 0.160, and R2

test 
0.77, whereas their corresponding MLR models returned 
MAEtest 0.154/0.156, RMSEtest 0.195/0.196, and R2

test 0.67. 
Generally, the R2 values indicate that MLRs show greater 
deviation in fitting to the measured responses than their 
corresponding ANFIS. In addition, the MAE and RMSE 
for the ANFIS models are comparatively smaller than 
those of the corresponding MLRs, thus indicating that 
ANFIS is able to predict the adsorption with relatively 
lower error and uncertainty and/or higher accuracy. This 
confirms the previous arguments of Ghaedi et al. (2014), 
Rezaei et  al. (2017), and Agbaogun et  al. (2021) that 
because of the nonlinear nature of ANFIS, it has better 
predictive power than MLR.

Further, as earlier stated, the models were developed 
with combinations of both soil properties (Corg, CEC, Fe, 
Mn, and %clay) and operational variables (Co, pH, and 
temperature). Since exhaustive search was used, these two 

Table 3  The two-stage kinetic model parameters

Fed Ald Mnd Total Feo Alo Mno Total illite Kaolinite clay silt sand Textural class

AK 6.63 1.41 0.12 59.49 8.91 0.51 0.88 10.30 0.57 0.53 0.28 1.38 13.97 86.03 4.17 46.82 49.01 sandy loam

Bk 5.79 1.92 0.51 38.70 12.63 0.44 1.81 14.88 0.35 0.39 0.16 0.91 7.43 92.57 4.67 43.22 52.11 sandy loam

IB 5.73 0.53 0.51 22.32 9.38 0.55 1.04 10.97 0.49 0.59 0.22 1.29 22.64 77.36 3.52 31.60 68.40 sandy loam

OD 5.92 0.53 0.05 27.62 2.02 0.32 0.03 2.37 0.25 0.36 0.15 0.76 17.51 82.49 2.40 24.12 73.48 loamy sand

UI 7.07 4.01 0.39 111.74 13.67 0.57 3.13 17.37 1.86 0.54 2.32 4.73 21.62 78.38 6.01 59.03 34.96 silty loam

        metal oxides (g/Kg) Clay minerology (%) Particle size (%)Soil pH Corg 
(%)

%N CEC 
(mmolc/Kg)

Qe cal and Qe exp (µmol  kg−1) are the estimated and experimental adsorption quantity (respectively) of the metal ions per unit mass of the soil; 
k1  (min−1) is the fast sorption rate constant; and k2 (µmol  kg−1  min−0.5) is the slow or diffusion rate constant
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groups also corresponded to two separate models, i.e. M9 
(a subset exclusively of soil properties) and M12 (a subset 
exclusively of operational variables). While M9 (ANFIS) 
showed MAEtest, RMSEtest, and R2

test 0.266, 0.321, and 
0.147, respectively, M12, on the other, showed MAEtest, 
RMSEtest, and R2

test 0.144, 0.176, and 0.73, respectively. 
This points out that whereas the adsorption conditions 
alone gave a very good model, explaining 73 percent of 
the residuals, the soil properties alone gave a very poor 
model, which explains only 16 percent of the residuals, 
and with considerably high uncertainty. Obviously, under 
given reaction conditions, the soil type is not as decisive as 
initially thought, and its influence on heavy metal ion dis-
tribution is comparably low. This agreed with the results 
obtained by Agbaogun et al. (2021) in the modelling of 
organic compounds (phenylurea herbicides) by ANFIS, 
using the same soils. According to Thiele and Leinweber 
(2001), it could be that the sorption equilibriums of both 
metal ions and organic compounds in these studies were 
underpinned by other soil properties not considered. Even 

Co alone (M19) gave a better fit that than the combination 
of all soil parameters, explaining 66 percent of the residu-
als. pH (M18) explained 17 percent of the residuals, fol-
lowed by Corg (M21) 15 percent. CEC, Fe, Mn, and %clay 
are almost equally weighted, explaining 12–14 percent, 
while temp explained only 6 percent of the residuals and 
returning the highest uncertainty indexes.

Further, student’s t distribution was applied to calcu-
late the scattering range of the predicted outputs vs actual 
outputs, at 95% (significance level), i.e. the confidence 
range in which 95% of all values are expected. This gave 
the opportunity to further analyse the effects of random 
errors in the models. Based on the scattering ranges and 
the distributions of points around the fitted lines (y = x) 
as shown in Fig. 6, one can gain further insights into the 
comparative advantages of ANFIS over MLR and also 
graphical relative performances of the selected models.

Measured Qeai)

aii)

Measured Qebi)

bii)

Fig. 6  Scatterplots of Qe (estimated) vs Qe (experimental) µmol  kg−1for a M1, b M9, c M13, and d M19, for both ANFIS and MLR test systems
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Conclusion

The ability to adsorb or retain heavy metals has become 
one of soil’s major attributes, as it holds the potential to 
evaluate the environmental risks of metal ions. In this 
study, noncompetitive adsorption of Pb, Cu, and Cd onto 
tropical soils has been investigated. The sequence of affin-
ity of the metal ions to soil, as indicated by their Qm*, 
is Cu > Pb > Cd. The lowest soil loading of Cd in this 
sequence is indicative of its higher environmental con-
cern than Cu and Pb and explains why more of Cd could 
accumulate in the tissues of plants grown on sludge-treated 
plots than Cu or Pb (Berti and Jacobs 1996).

Several ANFIS and MLR models were developed to 
predict the equilibrium adsorption capacity (Qe) of these 
metals unto Nigerian soils, using the most influential vari-
ables such as soil/solution pH, initial metal ion concentra-
tion (Co), temperature, soil organic carbon (Corg), CEC, 
amount of clay, and amorphous metal oxides (Fe and Mn). 
It can be inferred from the results of both models that 
under the given conditions, soil type is not as decisive as 

initially thought and its influence on metal ion distribution 
is low. This however throws up the need for further inves-
tigation, as some soil properties outside the ones investi-
gated here could be decisive.

Further, the study shows that both ANFIS and MLR 
are suitable for predicting adsorption capacities. However, 
comparing their performances based on the three error 
metrics, ANFIS generally outperformed MLR. Conclu-
sively, two ANFIS models, M13 and M14, were adjudged 
the best for the task of modelling the adsorption capaci-
ties of metal ions in soils. These models delivered overall 
three-vector combinations: pH, Co, and Corg/%clay, and 
satisfied our search not only for the most accurate predic-
tion but also for the smallest combination of input vectors 
to produce such prediction, with low uncertainty and high 
accuracy and interpretability trade-off. Given their ease of 
programmability, ANFIS models can be used as effective 
tools for in silico estimation of heavy metal partition or 
distribution equilibriums in untested soils, thus obviating 
the need for the expensive, laborious, and time-consuming 
field or laboratory investigations.

Measured Qe
ci)

cii)

Measured Qe
di)

dii)

Fig. 6  (continued)
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