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Abstract
The tannery industries have become an important part of societal growth; however, these processes have produced huge 
volumes of effluents containing heavy metals, particularly Cr(VI) oxyanions. The study is crucial and cost-effective for 
reducing the chromium (VI) from industrial wastewater. In order to meet the sustainable development goal (SDG) objective 
6.3, the capacity of Sambucus nigra L. to adsorb heavy metal is established with the purpose of eradicating hazardous chemi-
cal contamination and reducing pollution. In this study, discontinuous tests were carried out to determine the efficiency of 
Cr(VI) sorption on leaves of Sambucus nigra L. Adsorption factors such as pH, temperature, adsorbent dosage, and contact 
time were evaluated. At a dosage of 3 g/L and pH 2, an efficiency of 98.22% was achieved under favorable conditions. The 
equilibrium and kinetic models that best fitted the experimental data are non-linear Freundlich and; pseudo-second order, and 
intra-particle diffusion, respectively. The thermodynamic parameters of the adsorption process, including Gibbs free energy 
(ΔG0), enthalpy (ΔH0), and entropy (ΔS0), were measured at 291, 303, 323, and 343 K, indicating that the phenomena was 
spontaneous and endothermic. The chemical analyses and surface morphology of the adsorbent were analyzed using SEM 
(scanning electron microscopy), EDS (energy dispersive spectroscopy), FTIR (Fourier transform infra-red), XRD (X-ray 
diffraction), and ICP-OES (inductively coupled plasma optical-emission spectroscopy) techniques. The results showed that 
Sambucus nigra L. has a significant removal efficiency of Cr(VI) in the contaminated solutions, establishing adsorbent as a 
low cost, readily available, and environmentally friendly and ensuring its potential for industrial usage.
Graphical abstarct.
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Introduction

Currently, industrial wastewater management is unsus-
tainable, which has a detrimental impact on achieving 
sustainable development by 2030. The presence of metal 
ions and organic compounds in water supplies is a result 
of economic expansion and development (Mughal et al. 
2022). Biological molecules, unlike metal ions, are mostly 
susceptible to organic reduction (Beksissa et al. 2021). 
Because of their high toxicity and bioavailability, metal 
ions are a constant source of worry in various ecosystems. 
In this sense, chromium metal is found in many ecosys-
tems because of a lack of strategic management in corpo-
rate social responsibility (CSR) (Peng et al. 2020). Met-
allurgical industries, mining, tanneries, paints, batteries, 
radiators, smelters, and mineral weathering all emit con-
siderable quantities of chromium (Rouhaninezhad et al. 
2020; Thabede et al. 2020; Tao et al. 2021). Chromium’s 
most prevalent oxidation states in the environment are Cr 
(III) and Cr (VI). Among them, Cr (III) is essential for 
cellular metabolism (sugars, fats, and proteins) in humans, 
animals, and plants (Cherdchoo et al. 2019). Soil (humic 
acid, pH, redox potential) and groundwater oxidize Cr 
(III), transforming it to Cr (VI) metallic element. Even 
in trace concentration, this metallic state is more harm-
ful and toxic to public health because of its teratogenic, 
carcinogenic, and mutagenic properties (Cherdchoo et al. 
2019; Shooto 2020b; Khalil et al. 2021).

According to the EPA (Environmental Protection 
Agency), the maximum allowed contamination level of 
water standard for total chromium is 0.1 mg/L (US EPA 
2022). However, the WHO (World Health Organization) 
standard recommends 0.05  mg/L (WHO  2020; WHO, 
n.d.). In view of these negative effects and to improve 
public health, Cr (VI) ions must be removed prior to 
discharge. To date, technologies such as coagulation, 
filtration, chemical precipitation, reverse osmosis, ion 
exchange, and membrane systems have been used (Ray 
et al. 2020; Rouhaninezhad et al. 2020; Tejada et al. 2021). 
However, these technologies have certain drawbacks, such 
as high operating costs, generation of secondary pollution, 
and limited efficiency. In this sense, adsorption technol-
ogy is considered a more efficient and easier to monitor 
(Cherdchoo et al. 2019), low cost, and environmentally 
friendly way (Shooto 2020b). Many adsorbents have been 
investigated for managing the Cr (VI) from industrial efflu-
ents, including coffee and tea residues (Cherdchoo et al. 
2019), tea residues (Nigam et al. 2019), black cumin seed 
(Thabede et al. 2020), Harpagophytum residues (Shooto 
2020b), Eichhornia crassipes and Lemna minor leaves 
(Balasubramanian et al. 2020), mango bark (Pathania et al. 
2020), Mentha piperita residues (Al et al. 2020), Acacia 

sawdust (Khalid et al. 2018), rice husk (Khalil et al. 2021), 
and water hyacinth residues (Kumar and Chauhan 2019). 
In this line, it is always interesting to search for new adsor-
bents that are affordable, accessible, effective, and easy 
to apply.

Sambucus nigra L., sometimes referred to as “Sauco,” 
is a member of the Caprifoliaceae family and is indig-
enous to Asia, Europe, and America (Ağalar 2019; 
Domínguez et al. 2020; Ruíz and Mejía 2020). It is a 
plant well-known for its physical, chemical, and biologi-
cal properties. It is a tree or shrub that ranges in height 
from 1 to 12 m which has longitudinal fractures, deep 
furrows, and aged shafts. It has leaves with seven to nine 
leaflets that are imparipinnate, oblong, and pointed at the 
apex and have serrated edges that are 4 to 6 cm long and 3 
to 7 cm wide (National Institute for the Defense of Com-
petition and the Protection of Intellectual Property 2018; 
Ağalar 2019; Quiñones et al. 2020; Navas et al. 2021; 
Boroduske et al. 2021). The tree has been demonstrated 
to have antiviral qualities, which have been used to treat 
COVID-19 (Boroduske et al. 2021; Huaccho et al. 2020), 
as antioxidants to treat malignant cells (Filip et al. 2021), 
and for the food sector (Ağalar 2019). These goodnesses 
are due to chemical components such as polyphenols, phe-
nolic acids, flavonoids, and tannins (Filip et al. 2021). In 
addition to these chemical elements, Sambucus nigra L. 
contains 41.9% fiber, 21.2% protein, 18.3% dry matter, 
and 19.4% carbohydrates (Quiñones et al. 2020); likewise, 
chemical components such as polysaccharides (cellulose, 
hemicellulose, and lignin), these chemical groups char-
acterize the biomaterial as a best option for the treatment 
of heavy metals from industrial effluents (Kumar and 
Chauhan 2019).

Sambucus nigra L. has not yet been studied for its poten-
tial to adsorb heavy metals. Therefore, based on the afore-
mentioned criteria, the biomass leaves were employed as an 
adsorbent to control the chromium (VI) from synthetic solu-
tions. FTIR, SEM, and X-ray diffraction analyses were per-
formed to know the surface characteristics and determine the 
chromium (VI) adsorption, and the adsorption experiments 
were carried out batch-wise and it was studied based on 
evaluating the effect of contact time, adsorbent dosage, pH 
of the sample, and adsorption capacity in aqueous solution.

Materials and methods

Materials and reagents

The chemical reagent used for the execution of the research 
was highly pure and analytical grade. Potassium dichro-
mate  (K2Cr2O7) of 99.0% purity, purchased from Spectrum 
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Chemical Mfg. Corp. All the glass materials were rinsed with 
double distilled water and dried in an oven at 55 °C before use.

Preparation of the bioadsorbent

Four kilograms of Sambucus nigra L. leaves was collected 
from the university campus of the Universidad Nacional 
del Centro del Perú, washed with tap water to remove dust 
and other adhered particles, and then rinsed with double 
distilled water. They were then dried at 65 °C for 72 h 
until they reached a constant weight, ground, and sieved 
with mesh No. 60 (ASTM), labeled, and stored in drying 
conditions until further use.

Batch adsorption studies

A standard chromium stock solution of 1000 mg/L was 
made by dissolving the required amount of potassium 
dichromate in double distilled water. Working solutions at 
different concentrations were made by successive dilutions 
of the standard solution. Adsorption experiments were per-
formed in 50 mL of 10 mg/L chromium (VI) solution at 
a dose of 3 g/L of adsorbent. The pH of the solution was 
adjusted by adding a few drops of 0.1 N  HNO3 or 0.1 N 
NaOH. After the contact process, they were filtered with 
Whatman N° 41 filter paper. The residual Cr (VI) concen-
tration was analyzed using the ANALYTIK JENA NOVA 
PRO-400 atomic absorption spectrophotometer. Sorption 
tests were conducted at various Cr (VI) concentrations, pH 
levels, temperatures, reaction times, and adsorbent dos-
ages. The adsorption capacity of Sambucus nigra L.,  qe 
(mg/g), was determined using the mass balance equation 
as presented in Eq. 1.

where Co (mg/L) and Ce (mg/L) represent the initial and 
equilibrium concentration of Cr (VI) respectively, V is the 
volume of the solution (L), and m is the weight of the dry 
biomass (g).

The percentage removal capacity of Cr (VI) was calcu-
lated by using the Eq. 2:

where Co and Cf (mg/L) are the initial and final Cr (VI) 
concentration before and after adsorption, respectively. The 
maximum adsorption capacity and the efficiency of the sorb-
ate-biosorbent phenomenon were determined in relation to 
the experimental adsorption data.

(1)qe =
(Co − Ce)

m
∗ V

(2)%R =
Co − Cf

Co

x100

Equilibrium study

To determine the sorbent-sorbate ratio at different Cr (VI) 
concentrations and equilibrium data, adsorption isotherms 
were modeled. In this study, Langmuir and Freundlich 
equilibrium isotherms were used.

Langmuir isotherm model

The Langmuir isotherm (Langmuir 1918) suggests that the 
phenomenon occurs on a homogeneous surface forming a 
monolayer when the adsorbent has reached saturation (each 
active site was occupied by one element), with no interac-
tion between the adsorbed metals, uniform energy, and no 
transmission of the adsorbate (Ighalo and Adeniyi 2020).

The linearized Langmuir equation is presented in Eq. 3.

where qm (mg/g) is the maximum adsorption capacity by 
the adsorbent on the monolayer and KL (L/mg) is the energy 
constant of the adsorption process. The values of qm and KL 
(Langmuir constant) were determined from the slope and 
the interaction of the Ce/qe vs Ce figure. Also, the feasibility 
of the adsorption process was determined by the dimension-
less factor (RL). The RL values were determined based on 
the Eq. 4:

The RL values represents whether the adsorption is 
unfavorable or favorable. Unfavorable when RL > 1, linear 
when RL = 1, favorable when it is between 0 < RL < 1 and 
irreversible when RL = 0.

Non-linear Langmuir equation is shown in Eq. 5.

The Freundlich isotherm

This model proposes a multilayer sorption with interac-
tions between the adsorbed particles and heterogeneous 
energy distribution at the active sites, i.e., the binding 
forces between the sorbent-sorbate are stronger at the 
beginning of the process and decreases as the level of 
accumulation increases. The linearized form of the Fre-
undlich isotherm (Freundlich 1906) is shown in Eq. 6. The 
non-linear equation is presented in Eq. 7.

(3)
Ce

qe
=

1

KLqm
+

Ce

qm

(4)RL =
1

1 + KLCo

(5)qe =
qmKLCe

1 + KLCe
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where qe is the amount of contaminant removed (mg/g), KF 
(mg/g) is the Freundlich’s constant, Ce is the equilibrium 
concentration (mg/L), and n is related to adsorption capacity 
and adsorption intensity. The values of KF and n are deter-
mined from the slope and intercept of the linear figure Log 
qe vs Log Ce.

Study of the kinetics

The main factors in the adsorption process are mass trans-
fer, chemical reaction, and reaction rate (Ighalo and Adeniyi 
2020; Tejada et al. 2021). The mass transfer kinetics is 
described by the velocity between the aqueous and solid 
phase (Bazzazzadeh et al. 2020). To calculate the removal 
rate, the following times were considered: 2, 4, 15, 25, 35, 
55, 100, 130, and 150 min with a concentration of 10 mg/L.

Pseudo‑first‑order model

The model refers that the mass transfer of the adsorbate ions 
is corresponding to the active sites on the adsorbate surface 
could due to carbonyl group, alcohol, carboxylic acid, or 
phenols, N–H bend of amine with an unsaturated hydrocar-
bon, alkyl halides. The linearized form of the pseudo-first-
order equations is presented in Eq. 8.

where qt and qe (mg/g) are the amount of Cr (VI) adsorbed at 
time t (min) and equilibrium, respectively and first-order rate 
constant is represented by K1  (min−1). The value of qe and 
K1 was determined from the intercept and slope of the log 
(qe − qt) vs t plot. The non-linear form of pseudo-first-order 
equation is shown in Eq. 9.

Pseudo‑second‑order model

To determine the adsorbate contact time at the solid–liquid 
interface, adsorption mechanism depending on the physical 
and chemical characteristics of the adsorbent, crucial factors 
in the construction of wastewater treatment facilities. Further-
more, this model characterizes all the processes of adsorp-
tion, such as internal-exterior particle diffusion, and describes 
the chemical processes involving valence forces via electron 

(6)Logqe = LogKF +
1

n
LogCe

(7)qe = KFC
1

n

e

(8)Log
(

qt − qe
)

= −
K
1

2.303
t + Logqe

(9)qt = qe
[

1 − exp(−k
1
t)
]

exchange between adsorbent and adsorbate. The linearized 
equation of the model is shown in Eq. 10.

where K2 is the second-order rate constant (mg/g min). The 
value of K2 and qe were estimated from the intercept and 
slope of the t/qt vs t figure. The non-linear form of pseudo-
second-order equation is presented in Eq. 11.

The kinetic of adsorption process was also evaluated by the 
Webber’s pore-diffusion equation which is shown in Eq. 12.

where Kint is the rate constant for the intraparticle diffusion 
rate.

Thermodynamic studies

Thermodynamic parameters determine the nature of the 
adsorption procedure (Nigam et al. 2019). For the thermo-
dynamic analysis of the sorption process, the Gibbs free 
energy change (ΔG°), entropy change (ΔS°), and enthalpy 
change (ΔH°) were determined in relation to temperatures 
291, 303, 323, and 343 K. The calculation of the thermo-
dynamic parameters using the adsorption equilibrium con-
stant and Kd is presented in Van’t Hoff Eqs. 13 and 14. Kd 
dimensionless equation explained by Lima et al. (2019) is 
considered as shown in Eq. 15.

where ΔG° is the Gibbs free energy (kJ/mol), ΔH° is the 
sorption enthalpy variation (kJ/mol), T is the temperature 
(K), ΔS° is the entropy (kJ/mol K), R is the gas constant 
(8.314 J/mol K), m is the mass of the adsorbent, and V is the 
volume of the adsorbate solution.

Results and discussions

The effectiveness of adsorption processes of experimental 
batch technique is determined by using the several factors 
(pH, adsorbent dosage, contact duration).

(10)
t

qt
=

t

qe
+

1

K
2
q2
e

(11)qt =
q2
e
K
2
t

1 + qeK2
t

(12)qt = Kintt
1

2 + C

(13)ΔGo = ΔHo − TΔSo

(14)LnKd =
ΔSo

R
−

ΔHo

RT

(15)Kd =
qe

Ce

×
m

V
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Effect of pH

The pH point of zero charge (pHpzc) of the adsorbent is 
a very important factor in the sorption process, which is 
defined as the pH value of the aqueous solution at which the 
net surface charge of the sorbent is neutral or null (Labied 
et al. 2018) and was determined following the experimental 
protocol defined by Lavado-Meza et al. (2021), for which 
a series of solutions was prepared with 0.05 g of adsorbent 
in 50 ml of deionized water, initial pH levels from 2.0 to 
12.0, pH were adjusted using 0.1 M solutions of HCl and 
NaOH, and samples were shaken at 150 rpm at 20 °C for 
24 h. The final pH levels were then measured and the final 
pH values  (pHf) were plotted against the initial pH values 
 (pHi). The pHpzc of the adsorbent was 5.86, which is shown 
in Fig. 1. This implies that at pH values lower than pHpzc 
the adsorbent acquired positive charges determining a higher 
performance in the removal of Cr (VI) anions, likewise, at 
pH > pHpzc, the adsorbent acquired negative charges signifi-
cantly reducing the removal of Cr (VI) ions. This is due to 
strong electrostatic attraction between the positively charged 
surface of the adsorbent and the dichromate  (Cr2O7

2−) and 
chromate  (HCrO4

−) anion species (in acidic medium, anion 
 HCrO4

− is the more dominant) of the adsorbate, resulting 
in increased adsorption efficiency. These results are similar 
to those obtained by Baruffi et al. (2019) and Haroon et al. 
(2020).

Figure 2 shows the adsorption capabilities of Sambucus 
nigra L. adsorbent to adsorb Cr (VI) at various pH levels 
(range of 2 to 12) with chromium species distribution as 
described by Shen and Ke (1986) and Spessato et al. (2021). 
During the removal process, pH becomes a crucial param-
eter for determining adsorption effectiveness. The maximum 

removal efficiency was achieved at pH = 2.0 (98.2%) with a 
qe of 1.64 mg/g, while the minimum efficiency at pH = 12 
was 49.8% with a qe of 0.83 mg/g.

At different pH levels, Cr (VI) appears to take on distinct 
ionic forms. Cr (VI) occurs mostly in the form of  HCrO4

−, 
and  Cr2O7

2− in the pH range 2.0 to 6.0, with  HCrO4
− domi-

nating (Ghorbani et al. 2020; Pathania et al. 2020). The max-
imum removal was determined due to electrostatic attraction 
at acidic pH between  HCrO4

− ions and the adsorbent sur-
face (protonated H +) with positive charge (below the zero 
charge point 5.86), which leads to an increase in the amount 
adsorbed; however, a decrease in removal was observed at 
pH 6.0 to 12, which could be due to negative charge on 
adsorbent surface, resulting in a reduction of the adsorbed 
amount. According to Saha and Orvig (2010), there are four 
mechanisms for removing chromium from aqueous solution: 
(1) anionic adsorption, (2) reduction coupled to adsorption, 
(3) cationic and anionic adsorption, and (4) reduction and 
anionic adsorption. Consequently, the Cr (VI) adsorption 
ions could be referred to as mechanism 4 (reduction and ani-
onic adsorption). A fraction of Cr (VI) would be reduced to 
Cr (III) by the action of the functional groups on the surface 
of the biomaterial and dissolving in the solution, while the 
majority of Cr (VI) ions would be adsorbed by the adsorbent 
via electrostatic attraction (Ghorbani et al. 2020; Pathania 
et al. 2020; Shooto 2020b).

Effect of adsorbent dose

The adsorption capacity of the adsorbent at a defined initial 
concentration depends on the dose of the biomaterial. The 
present study employed an initial concentration of 5 mg/L Cr 
(VI), a contact time of 25 min, and a pH of 2 to investigate 
the effect of adsorbent dose ranging from 1 to 5 g/L.

As demonstrated in Fig. 3, increasing the adsorbent dos-
age from 1 to 3 g/L increased the adsorption percentage from Fig. 1  pH point of zero charge (pHpzc) graph

Fig. 2  Effect of pH on Cr (VI) adsorption with Cr species distribution
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67.86 to 98.78. Indeed, this rise reflects an increase in the 
number of active groups (carbonyl group, alcohol, carbox-
ylic acid, or phenols, N–H bend of amine with an unsatu-
rated hydrocarbon, alkyl halides) as well as an expansion of 
contact surface areas. In addition, at doses ranging from 4 to 
5 g/L, chromium (VI) adsorption was reduced from 97.24 to 
95.34%. This occurrence was presumably caused by adsorp-
tion site overlapping, an imbalance in sorbate-adsorbent con-
centration, and overcrowding of biosorbent particles in the 
solution (Al et al. 2020; Bazzazzadeh et al. 2020). Accord-
ing to Khalil et al. (2020), the low removal rate of Cr (VI) 
with increasing adsorbent dose could be due to unsaturated 
binding sites, which shows that the adsorption sites increase 
with increasing adsorbent dose, but the ratio between the 
doses determined with the initial ratio of Chromium (VI) 
ions adsorption is reduced.

Effect of contact time

The percentages of Cr (VI) removal capacity as a function 
of time are shown in Fig. 4. In an aqueous solution at a 
concentration of 15 mg/L, pH = 2, 3 g/L adsorbent, and 
18 °C, the impact of contact time (2–150 min) was studied. 

The removal capacity of Cr (VI) by the adsorbent Sambu-
cus nigra L. was very fast in the initial phase, achieving a 
removal of 92.83% in the first 15 min, but this effect gradu-
ally decreased with time, most likely due to competition 
between the reduction of surface active sites and Cr (VI) 
ions, so that after 35 min, 70.31% was removed. At the 
beginning of the sorption process, the percentage of chro-
mium removal was higher due to a higher availability of the 
surface area and the porosity of the adsorbent (Haroon et al. 
2020; Nnadozie and Ajibade 2020). The slight increase was 
observed from 55 min; this could be explained by the longer 
agitation time in the sorption process (Khalil et al. 2021). 
After attaining the maximal adsorption capacity, equilibrium 
was attained, indicating that all the adsorbent’s active sites 
were completely saturated with Cr (VI) and that the adsor-
bent had no more accessible functional groups to react the 
metal. These results are consistent with findings reported 
by Achary et al. (2020), Khalil et al. (2020), and Al et al. 
(2020).

Adsorption isotherm

To understand the Cr (VI) removal process in solution on the 
adsorbent Sambucus nigra L., it was necessary to analyze the 
equilibrium isotherm. The linear Langmuir equilibrium fig-
ure is presented in Fig. 5a, and the calculated parameters are 
summarized in Table 1. At 18 °C, the maximum adsorption 
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capacity (qm) for complete coverage on the monolayer was 
6.389 mg/g. This result shows that the nature of the adsor-
bent surface was homogeneous. Also, the RL value is in the 
range of 0 to 1, which indicates that the adsorption process 
is favorable. These results agree with Nigam et al. (2019), 
Pathania et al. (2020), and Thabede et al. (2020).

The Freundlich isotherm is shown in Fig. 6a, and the 
equilibrium parameters are presented in Table 1. The value 
of 1/n comprised between 0 and 1 indicates a stronger bind-
ing to the adsorbent, i.e., a chemical process, whereas a 
value of 1/n more than 1.0 evidences an unfavorable removal 
process (Cherdchoo et al. 2019; Al et al. 2020). The result 
of 1/n = 5.72 being more than 1. Consequently, the adsorp-
tion process was not optimal with respect to the value of 
KF = 0.001 mg/g, concluding that the laboratory analyses 
did not accommodate the linear form of Freundlich equation. 

The non-linear isotherms of Langmuir and Freundlich mod-
els are shown in Figs. 5b and 6b, respectively. The summa-
rized data of non-linear models of Langmuir and Freundlich 
isotherms are shown in Table 2. The adsorption capacity of 
1.557 (mg/g) can be attributed to a low initial solute con-
centration and a high adsorbent dosage which provides more 
adsorption active sites that even after the removal process 
remain unsaturated (Kumar and Chauhan 2019; Wang et al. 
2020). In this regard, Cr (VI) ion forms a homogeneous 
monolayer with the active sites, so that when the adsorbent 
surface has formed a single layer, this can make the adsorp-
tion process not to continue forming adjacent layers (Neo-
laka et al. 2020). The non-linear models show that the R2 
values of adsorption process are 0.958 and 0.991 for Lang-
muir and Freundlich isotherms, repectively. These results are 
higher compared to linear model; hence, non-linear isotherm 
is better fit for the study.

Kinetic study

The modelling of heavy metal removal rate equations in liq-
uid systems is to be analyzed using non-linear regression 
(Tan and Hameed 2017). The adsorption rate consists of 
three steps: the transfer of adsorbate to the adsorbent surface 
(film diffusion), the transfer of adsorbate from the surface 
to the active sites (intraparticle diffusion), and the binding 
of adsorbate to the active sites (Chandana et al. 2018). To 
determine the mechanisms involved in the sorption rate pro-
cess, non-linear, pseudo-first order, pseudo-second order, 
and intra-particle diffusion kinetic models were analyzed, 
as shown in Table 3. To determine which of the models best 
fit the experimental data, the correlation value (R2) closest 
to unity (1) was used. The pseudo-first order, pseudo-second 
order, and intra-particle diffusion values were compared, 
noting that the pseudo-second order (0.974) and intra-par-
ticle diffusion (0.928) equations showed higher correlation 
(R2) values closer to unity. The good fit the pseudo-second 
order and intraparticle diffusion models which show that 
the removal of Cr (VI) ions was based on electrostatic inter-
actions (Khalil et al. 2020). The models determined that 

Table 1  Estimated constants for the linear Langmuir and Freundlich 
models

Isotherm models Parameters Values

Langmuir qm (mg/g) 6.389
KL (L/mg) 0.464
RL 0.301
R2 0.834

Freundlich KF (mg/g) 0.001
N 0.175
R2 0.764

y = 5.7171x - 2.885
R² = 0.7641
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Fig. 6  Freundlich models for Cr (VI) adsorption: (a) Linear, (b) non-
linear regression

Table 2  Estimated constants for the non-linear Langmuir and Freun-
dlich models

Isotherm models Parameters Values

Langmuir qm (mg/g) 1.557
KL (L/mg) 0.188
RL 0.301
R2 0.958

Freundlich KF (L/mg) 2936.3
N 2.811
R2 0.991
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adsorption occurred on the surface or through the pores 
of the adsorbent, characterizing it as chemical sorption or 
chemisorption.

Study of thermodynamic properties

Temperature variation affects the adsorption procedure 
by modifying the surface activity of the adsorbent along 
with the kinetic energy of the metal ions (Lima et  al. 
2019; Bazzazzadeh et al. 2020). The increase in Cr (VI) 
removal was observed by varying the temperature in the 
range 291–343 K. This effect conditioned the mobility of 
Cr (VI) ions and as well as the activity of the adsorbent 
functional groups (Shooto 2020a). The calculated values of 
the thermodynamic equilibrium parameters are presented in 
Table 4. Figure 7 shows that the sorption capacity of Cr (VI) 
increased as the solution temperature was higher. This effect 
demonstrates that high temperatures provide the metal ions 
with sufficient kinetic energy to overcome all the forces that 
hinder the removal processes (Shooto 2020a).

The positive value of ΔH° defines the endothermic con-
dition in Cr (VI) removal. The result of entropy variation 

ΔS° = 0.40 points to higher randomness at the solid–liquid 
interface, demonstrating higher sorption capacity of Cr (VI) 
ions (Mathai et al. 2022). It has been observed that the free 
energy changes (at temperatures of 303–343 K) are negative, 
while at 291 K, it is positive. Therefore, the adsorption of Cr 
(VI) at room temperature is not spontaneous, while at higher 
temperatures, it is spontaneous and feasible; these comparable 
results are reported by (Thabede et al. 2020; Al et al. 2020).

Comparative study

Adsorption is considered the most convenient, cost-effec-
tive, and user-friendly method for the removal of metal ions 
from an aqueous solution. Researchers have studied many 
adsorbents for the removal of pollutants from wastewater, 
such as agricultural wastes, forestry wastes, hydrogels, 
activated carbon, and nanoadsorbents (Mathai et al. 2022; 
Saha and Orvig 2010; Wang et al. 2020; Yadav et al. 2022; 
Yusuff et al. 2022). In this regard, the efficiency of metal ion 
removal depends on many factors, such as the composition 
of the adsorbents and the types of metals. This is one of the 
main reasons why adsorption studies have become one of the 
most active and frequent works of scientists.

Biosorbents with high adsorption capacity, low eco-
nomic cost, high availability, less sludge generation, reus-
ability, non-toxic, and environmentally friendly nature 
are characteristics that open a line of research to study 
new biomaterials specific to each region. In particular, 
biosorbents obtained from agricultural, animal and indus-
trial waste are of great interest. However, the choice of 
a biosorbent for a given metal is not easy and requires 
many experiments and in-depth research (Singha et al. 

Table 3  Calculated constants of the kinetic models for Cr (VI) 
adsorption on Sambucus nigra L. based on linear and non-linear mod-
els

Kinetic models Parameters Values

Linear model
Pseudo-first order K1 (1/min) 0.003

qe (mg/g) 4.869
R2 0.848

Pseudo-second order K2 (g/mg min) 0.029
qe (mg/g) 2.412
qe (projected) (mg/g) 1.353
R2 0.996

Non-linear model
Pseudo-first order K1 (1/min) 3.135

qe (mg/g) 4.650
R2 0.864

Pseudo-second order K2 (g/mg min) 2.847
qe (mg/g) 2.350
qe (projected) (mg/g) 1.353
R2 0.974

Intraparticle diffusion model K1 (1/min)
R2

0.745
0.928

Table 4  Thermodynamic 
analysis for Cr (VI)

∆G° (KJ/mol) ∆H° (KJ/mol K) ∆S° (KJ/mol K) Ea (KJ/mol)

Temperature K
291 303 323 343
0.52  − 4.29  − 12.31  − 20.33 117.21 0.40  − 105.92

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

280 290 300 310 320 330 340 350

qe
 (m

g/
g)

Temperature (K)

Fig. 7  Effect of Temperature on adsorption of Cr (VI) via Sambucus 
nigra L
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2011). Forest residues such as elderberry leaves gener-
ated from industrial activity can be a promising material 
for adsorption research. This biomass is composed of die-
tary pigments; anthocyanins; flavonoids; lectins; lupeol; 
β-sitosterol; holocalin; prunasin; zierin; rutin; sambu-
nigrin; tannin; choline; beltulin; vitamins A, B1, B2, 
B3, B5, B6, B9, C, and P; and minerals (Boroduske et al. 
2021; Kalak et al. 2020). These substances contain polar 
functional groups, such as carboxyl, phenolic, hydroxyl, 
sulpho, and amino groups that are able to bind metal ions. 
The binding mechanism may involve reactions such as 
electrostatic interactions, complexation, microprecipita-
tion, and chelation (Khalil et al. 2021; Saha and Orvig 
2010). Table 5 shows the comparative data of the results 
achieved by the leaves of Sambucus nigra L. in the treat-
ment of wastewater having Cr (VI) with other biomasses 
reported in the literature. The comparison revealed that the 
adsorbent generated by the leaves of Sambucus nigra L., as 
leftover biomass from agroforestry and industrial activity, 
is a low-cost adsorbent with superior performance in the 
removal at low concentrations and without chemical acti-
vation. Consequently, it is worthwhile to study the removal 
capacity of Cr(VI) ions with native forest residues. The 
Sambucus nigra L. (elderberry) tree grows rapidly and is 
widely available in many regions of Peru, producing large 
quantities of leaves and bark that are discarded as solid 
waste.

Elderberry leaves have never been explored as a adsor-
bent for Cr(VI) removal in Peru, and this is the first study 
which show the adsorption capacity of native Sambucus 

nigra L. These results demonstrate the significance of this 
biomass in industrial effluent remediation applications.

Adsorption mechanism of Cr(VI) via FTIR spectrum

The characterization of Cr(VI) adsorption mechanisms 
through Sambucus nigra L. (SNL) leaves using Fourier 
transform infrared (FTIR) spectra is presented in Fig. 8. 
The spectrum of Cr(VI) before and after adsorption was 
examined between 4000 and 400   cm−1 wavenumbers, 
which is shown in the figure as SNL and SNLCr(VI) for 
before and after adsorption, respectively. The peaks at 
2921 and 2851  cm−1 correspond to alkane C-H stretch-
ing, whereas the peaks at 1730 and 1713  cm−1 indicate 
C = O stretching (carbonyl group), as shown by both spec-
tra SNL and SNLCr (VI) (Moldovan et al. 2016). The band 
1651  cm−1 corresponds to C = C vibrations, while the band 
1683 to 1685  cm−1 for SNL to SNLCr(VI) spectra shows 
a minor shift. After Cr adsorption, the spectrum exhibits 
peaks at 1643, 1632, 1623, 1614, 1577, 1572, 1567, 1540, 
1530, 1508, 1498, 1488, 1427, 1386, 1269, 806, 757, 520, 
and 464  cm−1 which are absent from SNL spectra. The 
FTIR spectra range from 4000 to 400  cm−1 is shown in 
Fig. 8I, and two range graphs are shown in Fig. 8II and III 
to better comprehend the peaks changes before and after 
adsorption. Spectrum peaks on the surface of SNLCr(VI) 
obtained at 1643, 1632, 1623, and 1614  cm−1 (in Fig. 8 
zone a) are ascribed to the C = C stretching, indicating the 
presence of alkene groups. Chromium may attach to unsat-
urated alkene molecules. Peak 1594  cm−1 is not present in 

Table 5  Comparison of Cr (VI) adsorption capacity with other adsorbents

Adsorbent Maximum 
capacity 
(mg/g)

Dose g/L T° C pH Best fitting isotherm and kinetics References

Coffee and tea residue 87.72
94.34

2 30 2 Freundlich and pseudo-second order (Cherdchoo et al. 2019)

Tea residues 79.08 6 30 3.9 Langmuir and pseudo-second order (Nigam et al. 2019)
Black cumin seeds 9.98 1 40 1 Langmuir and pseudo-second order (Thabede et al. 2020)
Harpagophytum residues 77.24 0.19 35 1 Freundlich and pseudo-second order (Shooto 2020b)
Hyacinth and Lemnaminor Leaves 79.24

61.0
1
1

25 ± 1
25 ± 1

2
2

Langmuir and pseudo-second order; 
Langmuir and pseudo-second 
order

(Balasubramanian et al. 2020)

Mango bark 78.96 0.12 30 2 Langmuir and pseudo-second order (Pathania et al. 2020)
Mentha piperita 29.23 0.45 25 2 Freundlich and pseudo-second order (Al et al. 2020)
Acacia sawdust 6.34 4.9 30 2 Langmuir and pseudo-second order (Khalil et al. 2020)
Rice husk 379.63 0.6 20 ± 2 5.2 Langmuir and pseudo-second order (Khalil et al. 2021)
Hyacinth root 1.28 14 25 ± 5 3 Freundlich and pseudo second order (Kumar & Chauhan 2019)
Acorus calamus 14.64 0.2 25 1 Langmuir and pseudo-second order (Shooto 2020a)
Sambucus nigra L 6.39 3 18 2 Non-linear Freundlich, pseudo-

second order, and intra-particle 
diffusion

Present study
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SNLCr(VI); however, a few additional peaks (1577, 1572, 
1567, 1540, 1530, 1508, 1498, 1488, and 1427  cm−1) (in 
Fig. 8 zone b) exist, indicating peak displacement owing 
to chromium loading on the surface of SNL. These peaks 
correspond to the N–H bend of amine with an unsaturated 
hydrocarbon functional group. The existence of chromium 
in the form of  (NH4)2Cr2O7 is strongly supported by the 
N–H bending vibrations at these peak ranges (Schutte and 
Heyns 1970; Monico et al. 2016). Peaks 806 and 757  cm−1 
are in the chromate  (CrO4

2−) region, which are the source 
of asymmetric bridge (Cr–O–Cr) vibrations in  Cr2O7

2− and 
Cr–O stretching vibrations (Thangagiri et al. 2022). The 
peaks at 1386 and 1269  cm−1 (in Fig. 8 zone c) are caused 
by C-H bending and C-O stretching, indicating the pres-
ence of alcohol, carboxylic acid, or phenols (Shahadat et al. 
2015). Peak at 585 cm − 1, which corresponds to alkyl hal-
ides, is present in SNL but not in SNLCr(VI), due to peak 

shifting, and additional lower frequency peaks are present 
in SNLCr (VI). The vibrational of O–Cr–O or Cl–Cr–Cl is 
seen at lower frequencies (520, 464, and 409  cm−1) (Sopo-
trajanov et al. 1999).

Other peaks are practically the same in both com-
pounds SNL and SNLCr(VI) precise few which are slightly 
(1–10  cm−1) shifted that are also due to chromium loading 
(Singha et al. 2011). The FTIR analysis indicates chromium 
loading on compounds during the adsorption process.

XRD analysis

The chromium adsorption phenomenon by Sambucus 
nigra L. was also studied using XRD. The XRD pattern of 
the produced Sambucus nigra L. (SNL) is shown in Fig. 9, 
revealing the biomaterial’s amorphous nature. However, 
the few prominent peaks seen in the XRD at 24.34° and 
31.15° can be attributed to the carbon diffraction planes 
in the biomaterial (Chellappan et al. 2018). X’Pert High-
Score software was used for the analysis. The results 
established the presence of polyphenolic compounds in 
the SNL. Peak matches the reference number 01–076-
1367, indicating the presence of potassium compounds 
with hydrocarbon groups.

The XRD pattern of the utilized SNL for the chro-
mium adsorption is shown in Fig.  10. The halo of 

I

II

III

Fig. 8  FTIR spectrum graph of SNL and SNL Cr(VI) (before and 
after adsorption process). (I), Complete spectra range from 4000 to 
400  cm−1. (II), Spectra range from 1700 to 1200  cm−1. (III), Spectra 
range from 860 to 400 cm.−1

Fig. 9  XRD of SNL (before adsorption)

Fig. 10  XRD of Cr-SNL (after adsorption)



106992 Environmental Science and Pollution Research (2023) 30:106982–106995

1 3

diffraction at 23.75°and sharp peak at 30.45° are the 
indicative of presence of chromium ions on the plant 
biomaterial (Thangagiri et al. 2022). The results indi-
cated that chromium adsorption on this biomaterial 
is achievable, which was validated by XRD data. The 
XRD analysis also supports the presence of ammo-
nium chromium oxide as mentioned in the FTIR analy-
sis section. The peak seen in Cr-SNL corresponds to 
the reference code 01–075-1578. Two other reference 
card codes 01–084-1201 and 00–028-1188, coincide 
with the identified XRD peaks of the Cr-SNL sample, 
indicating the potential of chromium phosphate and 
sodium chromium phosphate compounds. Furthermore, 
the XRD pattern of the used biomaterial is observed 
the same as those of fresh material (Figs. 9 and 10) 

representing that there is no change in the amorphous 
structure of biomaterial being used (Gu et al. 2022).

SEM and EDS analysis

The SEM image of the utilized Sambucus nigra L. in the 
chromium removal is shown in Fig. 11, which confirmed 
the amorphous structure of the biomaterial, already revealed 
in XRD. The adsorbed chromium is accumulated the Sam-
bucus nigra L. biomaterial and it is shown in the figure at 
the spectrum 17 as white spots. The EDS of spectrum 17 
confirms the presence of chromium ions on the biomate-
rial and patches of white pattern on the SEM image are the 
evidence of the presence of the adsorbed chromium ions. 
Similar observation was reported earlier by Amaku et al. 

Fig. 11  SEM and EDS spectrum of Cr-SNL (spectrum-17)

Fig. 12  SEM and EDS spectrum of Cr-SNL (spectrum-19)
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(2021) for the chromium removal using extract of Dacryodes 
edulis leaves.

The another SEM image of the utilized SNL is presented 
in the Fig. 12, which is also confirmed by the presence of 
adsorbed chromium in the material and it is confirmed in the 
EDS of spectrum 19. In addition to chromium ions, silicon, 
iron, and aluminum ions are observed.

ICP‑OES analysis

Furthermore, chromium adsorption was validated using the 
ICP-OES. ICP-OES equipment was used to evaluate the 
SNL and SNL-Cr samples. The acquired findings clearly 
demonstrated the chromium adsorption via Sambucus nigra 
L. Before adsorption, ICP-OES measurement revealed a 
chromium value of < 0.0003 µg/L, but after batch adsorp-
tion, the result was 1720.37 µg/L.

Conclusion

This study describes the utilization of agroforestry and 
industrial residue Sambucus nigra L. as a novel physical 
adsorbent for the removal of Cr (VI), as an environmen-
tally friendly and low-cost solution. The adsorption pro-
cess experimental results best fitted the non-linear Freun-
dlich equilibrium model. The sorption of Cr (VI) onto the 
adsorbent was rapid, reaching equilibrium and stabilizing 
within 35 min. The pseudo-second-order model defining 
the phenomena with a chemical ion exchange mechanism 
best depicted the elimination process. The thermodynamic 
parameters revealed that the occurrence was both spontane-
ous and favorable. The result of adsorption is strongly sup-
ported by XRD, FTIR, SEM–EDS, and ICP-OES analyses. 
The results of these analyses provide significant evidence 
for chromium adsorption via Sambucus nigra L. As a con-
clusion, it has been demonstrated that this novel adsorbent 
can be useful to manage chromium in industrial wastewater.
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