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Abstract
This work aims to design a sustainable two-echelon supply chain not only based on the widely used cost perspective, but also 
based on the efficient use and preservation of limited resources. For this purpose, a branch and efficiency (B&E) algorithm is 
developed, which includes an optimization model and an evaluation model. The proposed tri-objective optimization model 
simultaneously minimizes the total cost of the supply chain, maximizes the sustainability score, and minimizes inequity 
among customers. The solutions obtained from the optimization model are then evaluated by extended data envelopment 
analysis (EDEA) models based on common criteria (i.e., cost and service) and traffic congestion criterion. To take into 
account real-world conditions, parameters related to labor and demand are assumed under uncertainty. Since the presented 
models consist of more than one objective function, fuzzy goal programming (FGP) method is utilized to tread the multi-
objectiveness. The obtained results from tackling a case study problem demonstrate that considering sustainability issues 
can positively affect both the economic and social aspects of the problem. Furthermore, the developed B&E algorithm is 
able to reduce costs in each iteration; this is what supply chain managers are interested in. On the other hand, this algorithm 
can provide more services to applicants compared to one of the competing algorithms.

Keywords Supply chain design · Data envelopment analysis · Branch and efficiency algorithm · Traffic congestion · 
Sustainability

Introduction

Strategic supply chain planning determines the infrastruc-
ture and physical structure of a supply chain through network 
design. The reason for using supply chain network design is 
to integrate and coordinate the operations of corporations 
which have grown over time (Govindan et al. 2017). Since 
strategic decisions require investment and affect the long-
term performance of a supply chain, the uncertainty of envi-
ronments must be regarded in supply chain network design. 

The uncertainty of environments can result from the plan-
ners’ expectations and decision-makers’ lack of information 
about the probability distributions of the random parameters 
where, the effect of uncertainty on supply chain design is 
considered by fuzzy mathematical programming and robust 
optimization, respectively. Since turbulent and dynamic envi-
ronments lead to inherent uncertainty in the supply chain 
structure, it is essential to design the supply chain network in 
such a way that the customer demand is met and the perfor-
mance of the supply chain is assured (Hosseini et al. 2019). 
The multiple-sourcing strategy through improving the ser-
vice level, and lateral transshipments through the horizontal 
interaction between supply chain members, leads to supply 
chain resilience, and accordingly, decreasing the costs and 
increasing the customer service level (Wei et al. 2018).

To satisfy the social and economic demand and pre-
vent environmental degradation, the supply chain planning 
should be sustainable. It should be noted that the transporta-
tion system, logistics, and COVID-19 pandemic affect the 
sustainable pillars including the economy, society, and envi-
ronment which is explained as follows:
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 I. The vehicles transporting goods from origin to 
destination play a significant role in sustainability. 
Therefore, measuring the efficiency of vehicles con-
cerning sustainability is important in supply chain 
planning (Kumar et al. 2019). In general, the vehi-
cles that transport the goods in the supply chain 
have low acceleration, inferior braking, large tuning 
radius, and heavy weight which lead to an impact on 
the pavement lifetime and their maintenance, traffic 
capacity, and safety. The engines of such vehicles 
are a major source of pollution emissions that jeop-
ardize the environmental aspect related to sustain-
ability. It is worth noting that the sustainability of 
the transport system is one of the important factors 
in sustainable development, so that the Council of 
the European Union (2001) introduces the control of 
harmful emissions as a requirement for the sustain-
ability of transport systems. Therefore, not paying 
attention to emissions in transportation systems in 
the supply chain, in addition to the negative impact 
on people’s perception, may accuse the supply chain 
of violating the law and condemn it to heavy fines. 
In this regard, neglecting the pillars of sustainability, 
including the environmental pillar, can lead to more 
pollution and threaten urban viability (del Mar Mar-
tínez-Bravo et al. 2019). In addition, due to the large 
load of these vehicles, they not only have a higher 
risk of accidents, but also are potentially involved in 
more severe accidents. From an economic point of 
view, it may be affordable to use the full capacity of 
the transportation system, but other aspects would be 
at stake. Therefore, it is necessary to pay attention to 
the types of vehicles because it affects traffic opera-
tions, transportation planning in the supply chain, and 
stability (Wang and Zeng 2018). However, very few 
studies in supply chain planning have addressed traf-
fic congestion criteria (Jouzdani et al. 2013; Bai et al. 
2011; Gao and Cao 2020).

 II. Considering the reverse logistics in supply chain 
planning, not only the natural resources and the 
environment are preserved, but also the firms’ com-
petitive advantages increase. Thus, the firms both 
comply with environmental protection legislation 
and profit from the product recovery because of their 
competitive advantage (Zarbakhshnia et al. 2020). 
In addition, the environmental concerns of supply 
chain managers have made reverse logistics a key 
component in supply chain design (Özkır and Başlıgıl 
2012).

 III. The COVID-19 pandemic has disrupted both human 
lives and the economy and impacted the labor which 
is the most essential factor in the functionality of sup-
ply chains. Due to COVID-19 restrictions, on the one 

hand, illness, death, social distance, fear of worker 
illness, and travel restrictions have caused a reduc-
tion in labor availability, and on the other hand, the 
demand for electronic commerce has grown. As a 
result, providing services of transportation and goods 
delivery is disrupted during the COVID-19 pan-
demic. For this purpose, it is necessary to address 
labor availability for product flow in supply chain 
planning (Nagurney 2021a, b).In this way, more 
attention is paid to society in sustainability.

The rest of the paper is organized as follows. The “Lit-
erature review” section reviews the most relevant studies 
concerning the application of DEA models. In the “Prob-
lem statement and mathematical modeling” section, the effi-
ciency of vehicles is measured by an extended DEA model. 
Considering the efficiency scores, a tri-objective optimiza-
tion model is developed for supply chain network design. 
The developed B&E algorithm is used to run this model. 
For this purpose, a leader–follower model and a bi-objective 
model are developed. In the “Uncertainty modeling” section, 
the parameters related to labor and demand are taken into 
account uncertain. To deal with this uncertainty and obtain a 
deterministic counterpart, fuzzy chance-constraint program-
ming and robust optimization are employed. In the “Solution 
approach” section, the developed models are treated by goal 
programming (GP) and fuzzy goal programming (FGP). In 
the “Case study” section, a sensitivity analysis is performed 
on some of the important parameters which are introduced 
as contributions to the supply chain network design. Then, 
through a case study, the proposed models are validated. 
Finally, in the “Conclusion and outlook” section, the conclu-
sions are provided.

Literature review

Data envelopment analysis (DEA) is a widely used technique 
for performance evaluation in supply chain management and 
supply chain planning.Furthermore, the DEA technique has 
many applications in the field of sustainability (Hermoso-
Orzaez et al. 2020; Jiang et al. 2021; Ebrahimi et al. 2021; 
Omrani et al. 2018; Kalantary et al. 2018; Aydin & Tirkolaee 
2022). By mathematical programming, DEA measures the 
relative efficiency of peer decision-making units (DMUs) for 
producing the maximum output or using the minimum input 
where each DMU has some inputs and outputs. In this way, 
comparing each DMU with other DMUs, both the progress of 
DMUs is controlled and the potentials of DMUs are introduced 
into business processes (Lima-junior and Carpinetti 2017; 
Soheilirad et al. 2017). It should be noted that the conventional 
DEA model faces two challenges. The first one is the structure 
of DMUs where the conventional DEA model considers the 
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system to be a black-box to measure the overall efficiency of 
DMUs, while the efficiency of each DMU may be affected 
by a structure consisting of different scenarios and each sce-
nario may have some priorities compared to other ones. For 
this purpose, Du et al. (2015) developed the leader–follower 
DEA model to deal with the priorities as a hierarchical struc-
ture through a non-cooperative game. The second challenge is 
related to solving the conventional DEA model. It should be 
noted that solving these models is iterative, and the efficiency 
of each DMU should be calculated compared to other DMUs 
in each iteration. In this regard, a simultaneous DEA model 
was proposed by Klimberg and Ratick (2008) which can cal-
culate the efficiency of all DMUs in one iteration.

The research efforts focused on the DEA for supply chain 
network design are reviewed as follows. In some of these 
researches, using the exogenous data, the DEA model is run 
first and then, the supply chain network is designed according 
to the results of the DEA model. Amirteimoori (2011) pro-
posed two DEA models for efficient transportation planning, 
which calculates the efficiency of links between warehouses 
and destinations. The final efficiency of each link was derived 
from the average efficiency of the two proposed models, where 
the first model assumes destinations as DMUs and the second 
model assumes warehouses as DMUs. Finally, by optimiza-
tion model, the number of units shipped between warehouses 
and destinations was determined to minimize the sum of inef-
ficiency links. Babazadeh et al. (2015) offered a two-phase 
model for the strategic design of a biodiesel supply chain net-
work. In the first phase, the DEA model evaluated the cultiva-
tion areas based on social and climatic criteria, and then, in 
the second phase, the areas with the desirable efficiency score 
were regarded as candidate locations. The proposed math-
ematical model minimized the costs related to the locations. 
Omrani et al. (2017) suggested a multi-objective optimization 
model, to design an efficient supply chain network, that mini-
mizes the costs and maximizes the efficiency of warehouses 
and plants. The supply chain structure included suppliers, fac-
tories, warehouses, and customers. The scenario-based robust 
optimization was used to address uncertain conditions. Lozano 
and Adenso-Diaz (2017) developed a bi-objective three-stage 
supply chain model that minimizes the cost and product losses. 
The product flow optimization model presented was solved by 
minimization of the maximum weighted deviation of differ-
ent objective function values with respect to the correspond-
ing optimal value. Kumar et al. (2019) proposed a two-phase 
optimization model for sustainable transportation planning. In 
the first phase, since there were different types of vehicles, the 
efficiency of each vehicle type is measured based on sustain-
ability pillars. The results of the first phase were considered an 
objective function in the second phase and, along with other 
objective functions related to the costs and customers’ rela-
tionships, developed a tri-objective optimization model for 
transportation planning.

Some other research studies have focused on endogenous 
data. In these research studies, the DEA model is run using 
the results of the supply chain network optimization model. 
In this regard, Grigoroudis et al. (2014) offered a recursive 
DEA (RDEA) algorithm to design the supply chain network 
such that, in the first iteration, the supply chain network opti-
mization model is solved, and then, the efficient solutions are 
evaluated using DEA model. In the second iteration, using 
the results of the previous iteration, the supply chain network 
optimization model was solved, and the efficient solutions of 
this iteration were determined by the DEA model. Petridis 
et al. (2016) suggested a branch and efficiency (B&E) algo-
rithm for designing a two-stage supply chain. Their algo-
rithm was a development of the algorithm proposed by 
Grigoroudis et al. (2014). In this algorithm, the inputs and 
outputs were provided based on the initial solutions. Then, 
the candidate warehouses were evaluated using the DEA 
model. In this way, the efficient solutions were included in 
the optimization model by efficiency cuts constraints. Pari-
azar and Sir (2018) developed a multi-objective stochastic 
programming model for supply chain design where supply 
availability and quality were affected by disruptions. Genetic 
algorithm (GA)-based search technique was used to tackle 
the complexity of the problem. After obtaining the supply 
chain configurations from the suggested GA, they were eval-
uated by the DEA model to calculate their fitness value. The 
inputs and outputs of the DEA model were also derived from 
the objective functions of the proposed model. As the main 
disadvantage of their approach, GA was not able to take 
into account other components of the optimization model as 
inputs and outputs, because it could only evaluate the final 
supply chain configurations. Therefore, the efficiency scores 
did not directly affect the constraints of the optimization 
model, and its impact was limited to fitness value. Moheb-
alizadeh et al. (2021) suggested a nonlinear optimization 
model under stochastic conditions to design a closed-loop 
supply chain network. The objective functions of this model 
were related to profit, emission rate, social responsibility, 
and efficiency. The DEA model was also used to measure 
the efficiency score. Guo et al. (2022) integrated the supply 
chain design with the DEA model so that the performance of 
the solutions of the supply chain design optimization model 
was evaluated in order to select the optimal solutions that 
are efficient. They took into consideration environmental, 
social, and economic criteria to obtain the efficiency of the 
solutions. Finally, due to the multi-layer nature of supply 
chains, some studies have utilized the DEA model to meas-
ure the supply chain efficiency. For example, Tavana et al. 
(2013) developed a network DEA model to evaluate a three-
stage supply chain, focusing on a semiconductor industry 
case study. Izadikhah and Farzipoor (2018) evaluated the 
supply chain performance, which includes two echelons 
called supplier and producer, from an economic, social, and 
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environmental point of view. The structure of the evaluation 
model was based on a network DEA model with stochastic 
data. The application of this model was validated by evaluat-
ing 27 pasta supply chains.

Considering the requirement of location-allocation 
decisions to high investment, it is necessary to generate 
an efficient scheme design for the logistics network. There-
fore, Hong and Mwakalonge (2020) proposed a multi-
objective programming model to design a biofuel logistics 
network and then evaluated various schemes through the 
DEA model based on changing the importance weights 
of each objective function. Fathi and Saen (2018) offered 
a DEA network model to assess the performance of two-
stage supply chains where the connections among sup-
ply chain echelons are bidirectional. Kalantary and Saen 
(2018) developed a network DEA model to assess the sus-
tainability of multi-period supply chains. The application 
of this model was analyzed through a real case study in 
dairy industries. Álvarez-rodríguez et al. (2019) developed 
a network DEA model to evaluate a two-stage supply chain 
with three time periods. Tavana et al. (2016) broke down 
a two-stage supply chain into two sub-chains entitled sup-
plier-manufacturer and manufacturer-distributor and then 
measured the efficiency of the sub-chains and the whole 
supply chain by a network DEA model.

Table 1 reviews and compares the research studies which 
employed DEA models in supply chain network design 
under a variety of criteria.

The research gaps are investigated based on a detailed 
comparison between the research works presented in 
Table 1. In this regard, the contributions of this study and 
why they are used in the real world in order to cover the 
existing research gaps are listed as follows:

 i. An optimization model with three objective functions 
is proposed to simultaneously take into account the 
objective functions of minimizing the costs, maximiz-
ing the profits through the product recovery process, 
maximizing the efficiency of vehicle types, and mini-
mizing the inequity in unmet demand.

 ii. In the proposed supply chain network, the direct 
shipment between plants and customers and the lat-
eral transshipment among warehouses are addressed 
simultaneously in order to improve the service level. 
In the real world, applying lateral transshipment and 
direct shipment strategies can impact supply chain 
efficiency by reducing supply chain-related costs and 
increasing service levels (Rabbani et al. 2020).

 iii. Reverse logistics is considered through the product 
recovery by plants, where, both the disposal frac-
tion and performance factors are effective in the 
recovery of products. In this way, the supply chain 
becomes environmentally friendly by considering 

the reverse f low. It should be noted that public 
awareness and government legislation are push-
ing real-world supply chains to deal with reverse 
logistics (Govindan et al. 2015).

 iv. It should be noted that only a few researchers have 
focused on supply chain network design through 
endogenous data, and, on the other hand, the conven-
tional DEA models are commonly used for efficient 
design. Therefore, in addition to focusing on supply 
chain network design through endogenous data, two 
variants of DEA models are developed. The applica-
tion of DEA in supply chains is very widely used in 
the real world because the efficiency of supply chains 
can be improved by planning based on the results 
obtained from this type of data-driven method (Krmac 
and Djordjević 2019).

 v. Despite the significant role of traffic congestion on 
sustainability and transportation systems, this crite-
rion has not been addressed in the literature. Here, the 
effect of traffic congestion on supply chain design is 
regarded. In fact, supply chain planners are strongly 
recommended to consider traffic congestion because 
traffic congestion affects not only the environmen-
tal aspect but also the economic aspect of the sup-
ply chain. In addition, traffic congestion regulates the 
load of the transportation system in supply chains 
(Jouzdani and Govindan 2021).

 vi. There are different types of vehicles that transport 
goods among echelons. For this reason, such vehi-
cles differ in both their characteristics and their 
efficiency scores. The efficiency score of vehicle 
types is measured by an extended DEA model. Our 
extended model evaluates vehicle types in terms of 
sustainability. In this way, through the application 
of our model for supply chain design, the concern 
of supply chain managers regarding pollution, which 
entails both legal fines and ruining people’s percep-
tion, is addressed through the environmental pillar. 
Moreover, it is worth noting that sustainability in the 
real world affects many business activities and the 
performance of components related to supply chains 
(Govindan et al. 2020).

 vii. The impact of the COVID-19 pandemic on sup-
ply chain network design is taken into account 
by planning the labor. In the conditions of a pan-
demic, which is one of the epidemic events in the 
real world, productivity and access to labor as one 
of the essential resources in the supply chain are 
jeopardized. Hence, considering labor issues makes 
supply chains more realistic in terms of application 
(Nagurney 2021c).

 viii. Uncertain conditions are tackled in both the modeling 
and solution approach.
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It is worth noting that our research compared to 
very recent high-quality research in the field of effi-
cient design of supply chain, such as Guo et al. (2022); 
Moheb-alizadeh et al. (2021), has capabilities such as 
considering traffic congestion, direct and lateral trans-
portation, human resources and uncertainty conditions 
for it, solution method under uncertainty, types of vehi-
cles, and the development of new performance evalua-
tion models to assessment optimal solutions. A graphical 
representation of the proposed methodology of the study 
is depicted in Fig. 1.

Problem statement and mathematical 
modeling

This work aims to propose an algorithm based on DEA 
to design two-stage supply chain networks with respect 
to sustainability, resilience, reverse logistics, and the 
COVID-19 pandemic in such a way that the costs are 
minimized and at the same time the efficiency scores 
are maximized. In the following, the main criteria of the 
study are explained. To deploy the vehicles at different 
stages in the supply chain, the efficiency score of the 
vehicle types is measured based on the pillars of sustain-
ability. The resilience is enhanced in the supply chain by 
taking into account lateral transshipment between the ech-
elon members, and direct shipment between suppliers and 
customers. The reverse logistics investigates the shipment 
of returned products from customers to suppliers and 
then inserts the recovered products in the forward sup-
ply chain network. The COVID-19 pandemic in the sup-
ply chain is observed based on the relationship between 
labor and product flow, where there is a concern about 
labor shortages. Therefore, a B&E algorithm is developed 
for designing a two-stage supply chain network which 
includes three echelons entitled plants, warehouses, and 
customers, by considering the sustainability, resilience, 
reverse logistics, and COVID-19 pandemic. The pro-
posed algorithm integrates the multi-objective optimiza-
tion model with the extended DEA model to reduce the 
total cost and also filter the higher efficient solutions, 
iteratively. The graphical representation of the suggested 
two-echelon supply chain network is depicted in Fig. 2.

Considering the fact that transportation affects not 
only the economy and society but also the environ-
ment, sustainable development is influenced by efficient 
transportation. Increasing the efficiency of the vehicles 
reduces environmentally destructive effects and increases 
the balance in economic and social pillars of sustaina-
bility. Therefore, transportation planning in the supply 
chain necessitates the efficiency evaluation of vehicle 
types through criteria related to economy, society, and Ta
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environment. Accordingly, a DEA model is extended to 
evaluate the performance of vehicle types. The notation 
of the parameters and decision variables related to the 
model are given in Table 2.

The extended DEA model (EDEAM) maximizes the 
minimum efficiency and minimizes the maximum effi-
ciency so that the distance between the minimum effi-
ciency and the maximum efficiency is minimized. If the 
value of this distance is zero, the efficiency of the vehi-
cle would be stable. The stable solution is due to the 
presence of a saddle point where, at this point, the mini-
max criterion and maximin criterion coincide (Hillier 
and Lieberman 2001). The mathematical formulation of 
this model is given as follows:

subject to

(1)maximize Z = e +
∑
λ

�
emin
λ

− emax
λ

�
−
∑
λ

ẽλ

(2)e ≤ eec
λ

∀λ

(3)e ≤ een
λ

∀λ

Fig. 1  Proposed framework of 
the study

Fig. 2  Graphical representation of the suggested supply chain net-
work
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Table 2  Notation of indices, parameters, and decision variables

Indices and sets Descriptions
i Plants
j, j

′, jo Warehouses (DMUs), warehouses other than the observed warehouse, warehouse under observation
k Customers
λ, λo Vehicles, vehicles under observation
t Iterations
iD, jD Inputs and outputs at each DMU
iec, jec Inputs and outputs related to the economy at vehicle λ
ien, jen Inputs and outputs related to the environment at vehicle λ
iso, jso Inputs and outputs related to the society at vehicle λ
s, s′, s′′   Scenarios
LD,FD Leader and follower related to DEA models
Parameters Descriptions
pu
i

Upper bound of produced quantities at plant i
pl
i

Lower bound of produced quantities at plant i
qu
ij

Upper bound of transported quantities from plant i to warehouse j
qu
jk

Upper bound of transported quantities from warehouse j to customer k
wu
j

Upper capacity of warehouse j for products transported from echelon 1 to echelon 2
bj Coefficient relating to quantity at capacity at warehouse j for products transported from echelon 1 to echelon 2
i0
j

Initial inventory level stored warehouse j

c
p

i
Production cost at plant i

cv
ij

Unit transportation cost of products transported from plant i to warehouse j

c
f

ij
Route transportation cost of products transported from plant i to warehouse j

cv
jk

Unit transportation cost of products transported from warehouse j to customer k

c
f

jk
Route transportation cost of products transported from warehouse j to customer k

cDS
ik

Route transportation cost of products transported from plant i to customer k
cLT
jj
′ Route transportation cost of products transported from warehouse j to warehouse j′

cLR
j
′
j

Route transportation cost of products transported from warehouse  j′ to warehouse j
f c
j

Establishment cost of warehouse j

c
LT Maximum quantity of products transported through lateral transshipment

c
DS Maximum quantity of products transported through direct shipment

cw Maximum warehouse capacity, for products that are transported in stages as well as for products that are transported later-
ally between warehouses

dR
k

Demand of customer k
η Service level
|k| Number of customers
∁λ Capacity of vehicle λ

la Upper bound on labor availability

� l
12

Productivity factor in order to transform the product flow to available labor related to echelons 1 and 2

� l
13

Productivity factor in order to transform the product flow to available labor related to echelons 1 and 3

� l
23

Productivity factor in order to transform the product flow to available labor related to echelons 2 and 3
ca
ij

Cost of a unit of labor on link (i, j)
ca
ik

Cost of a unit of labor on link (i, k)
ca
jk

Cost of a unit of labor on link (j, k)
ca
d

Shortage cost related to labor availability
cg Penalty cost related to shortages
BSU Government subsidy to encourage supply chains in the use of sustainable vehicles
BR
i

Benefit of producing product through the recovery process for each plant
ROR Rate of returned products by customers
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Table 2  (continued)

f D
i

Disposal fraction of products for each plant
pe
i

Performance factor for each plant
�D Confidence level
IW
iDjs

Amount of input iD for DMU j in scenario s

OW

jDjs
Amount of input jD for DMU j in scenario s

IV
iecλ

Amount of input iec for vehicle λ
OV

jecλ
Amount of input jec for vehicle λ

IV
ienλ

Amount of input ien for vehicle λ
OV

jenλ
Amount of input jen for vehicle λ

IV
isoλ

Amount of input iso for vehicle λ
OV

jsoλ
Amount of input jso for vehicle λ

� Non-Archimedean infinitesimal epsilon

T
fr

j
Free flow travel time from warehouse j to customers

�TC, �TC Modified parameters related to the BPR function
�TC Quality of service parameter
aj Solutions with the efficiency score greater than or equal to this threshold, are selected with ξj
�̃ l
12
, �̃ l

23
, �̃ l

13
Uncertain productivity factors

�̂ l
12
, �̂ l

23
, �̂ l

13
Maximum deviation of productivity factors from deterministic values

f D1∗, f D2∗
s

Aspiration levels belonging to Formulas (66)–(67)
wD1,wD2 Weight of each objective function related to Formulas (127)–(130)
wLF ,wL,wF Weight of each objective function (leader–follower, leader, follower)

f LF
D∗, f L

D∗, f F
D∗ Aspiration levels defined in Formulas (132)–(134); where f LD∗ is the optimal solution for the leader model and f FD∗ is the 

optimal solution for the follower model. When the proposed model is solved in Formulas (90) – (98) without the pres-
ence of Formulas (91)–(92), the optimal solution of Formula (90) is found which is f LFD∗

f Ic, f Ip, f Ie Aspiration levels (ideal solutions) belonging to FGP
f Nc, f Np, f Ne Aspiration levels (nadir solutions) belonging to FGP
�c, �p, �e Weight associated with each fuzzy goal
Variables Descriptions
pi Production quantity at plant i
pR
i

Number of recovered products by each plant
q1→2

ijλ
Transported quantity from plant i to warehouse j using vehicle λ

q2→3

jkλ
Transported quantity from warehouse j to customer k using vehicle λ

q1→3

ikλ
Transported quantity from plant i to customer k (direct shipment) using vehicle λ

q2→2

jj
′ Transported quantity from warehouse j to warehouse j′ (lateral transshipment)

q2→2

j
′
j

Transported quantity from warehouse j′ to warehouse j (lateral transshipment)
wj Capacity of warehouse j for products transported from echelon 1 to echelon 2
gk Percentage of the unmet demand of customer k
g
′

k
The amount of the unmet demand of customer k ( g′

k
=dR

k
g
k
)

gM The maximum percentage of unmet demand
�D Inequity in satisfying customer demand
x1→2

ij
1 if a connection between plant i and warehouse j exists, 0 otherwise

x2→3

jk
1 if a connection between warehouse j and customer k exists, 0 otherwise

yj 1 if warehouse j is established, 0 otherwise
ξe
j

1 if warehouse j is established under the efficiency level of a %, 0 otherwise
la
ij

Availability of labor on link (i, j) which is denoted in person hours
la
ik

Availability of labor on link (i, k) which is denoted in person hours
la
jk

Availability of labor on link (j, k) which is denoted in person hours
�a Deviation between available labor and upper bound on labor availability
�jiDs Weight assigned to input iD for DMU j in scenario s
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(4)e ≤ eso
λ

∀λ

(5)emin
λ

≤ eec
λ

∀λ

(6)emin
λ

≤ een
λ

∀λ

(7)emin
λ

≤ eso
λ

∀λ

(8)emax
λ

≥ eec
λ

∀λ

(9)emax
λ

≥ een
λ

∀λ

(10)emax
λ

≥ eso
λ

∀λ

(11)
|||emaxλ

− emin
λ

||| ≤ ẽλ ∀λ

(12)
∑
iec
�V
iecλ

I
V

iecλ
= 1 ∀λ

(13)
∑
ien
�V
ienλ

I
V

ienλ
= 1 ∀λ

(14)
∑
iec
�V
isoλ

I
V

isoλ
= 1 ∀λ

Table 2  (continued)

�jDjs Weight assigned to output jD for DMU j in scenario s
djs Inefficiency level of DMU j in scenario s
�js Inefficiency level of DMU j in scenario s
�m
j

Minimum efficiency level of DMU j
�V
iecλ

Weight assigned to input iec for vehicle λ
�V
jecλ

Weight assigned to output jec for vehicle λ

�V
ienλ

Weight assigned to input ien for vehicle λ
�V
jenλ

Weight assigned to output jen for vehicle λ

�V
isoλ

Weight assigned to input iso for vehicle λ
�V
jsoλ

Weight assigned to output jso for vehicle λ
eec
λ

Efficiency of vehicle λ on the basis of economic factors
een
λ

Efficiency of vehicle λ on the basis of environmental factors
eso
λ

Efficiency of vehicle λ on the basis of social factors
e Minimum efficiency of vehicles
emin
λ

Minimum efficiency of vehicle λ on the basis of economic, environmental and social factors
emax
λ

Maximum efficiency of vehicle λ on the basis of economic, environmental and social factors
ẽλ Deviation value from stable efficiency for the vehicle λ
eec
λ

Inefficiency of vehicle λ on the basis of economic factors
een
λ

Inefficiency of vehicle λ on the basis of environmental factors
eso
λ

Inefficiency of vehicle λ on the basis of social factors
TBC
jk

Congested travel time (BPR) from warehouse j to customer k

TDC
jk

Congested travel time (Davidson) from warehouse j to customer k

�̃u
k

Fuzzy random variable related to each customer

Pos�̃
u
k (x) Possibility distribution

q
′1→2

ij�
, q

′2→3

jk�
, q

′1→3

ik�
   Variables that provide the necessary protection in the robust solution

f c, f p, f e Objective functions related to the total cost, total profit and inequity
f D1, f D2

s
Objective functions related to the network efficiency

d+
D1
, d−

D1
, d+

s,D2
, d−

s,D2
Positive and negative deviations related to Formulas (127)–(130)

f L
D

, f F
D, f LFD Objective function related to the leader efficiency, objective function related to the follower efficiency, objective function 

related to the leader–follower efficiency
dL+, dL− Positive and negative deviations related to leader
dF+, dF− Positive and negative deviations related to follower
dLF+, dLF− Positive and negative deviations related to leader–follower
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Objective function (1) consists of three terms. The minimum 
efficiency related to economic, social, and environmental dimen-
sions is maximized in the first term. The minimum efficiency 
of each vehicle is maximized and the maximum efficiency of 
each vehicle is minimized, in the second term. If the max–min 
efficiency is equal to the min–max efficiency, the efficiency is 
stable. In the third term, the deviation between the minimum and 
maximum efficiency is minimized. Constraints (2)-(4) determine 
the minimum efficiency related to economic, environmental, and 
social dimensions, Constraints (5)–(7) specify the minimum effi-
ciency related to economic, environmental, and social dimen-
sions for each vehicle, Constraints (8)–(10) characterize the max-
imum efficiency related to economic, environmental, and social 
dimensions for each vehicle; the deviation between the minimum 
and maximum efficiency for each vehicle is measured in Con-
straint (11). Since the absolute term leads to the nonlinearity 
of this constraint, it is linearized as −ẽ� ≤ emax

�
− emin

�
≤ ẽ� . In 

Constraints (12)–(14), inputs related to economic, environmen-
tal, and social dimensions are arbitrarily set to one. Constraints 
(15)–(17) measure the inefficiency level related to economic, 
environmental, and social dimensions. In Constraints (18)–(20), 
the upper bound of the efficiency of each DMU is set to one. 

(15)
∑
jec
�V
jecλ

OV
jecλ

+ eec
λ
= 1 ∀λ

(16)
∑
jen
�V
jenλ

OV
jenλ

+ een
λ
= 1 ∀λ

(17)
∑
jso
�V
jsoλ

OV
jsoλ

+ eso
λ
= 1 ∀λ

(18)
∑
jec
�V
jecλ

OV
jecλo

−
∑
iec
�V
iecλ

I
V

iecλo
≤ 0 ∀λ, λo;λo ≠ λ

(19)
∑
jen
�V
jenλ

OV
jenλo

−
∑
ien
�V
ienλ

I
V

ienλo
≤ 0 ∀λ, λo;λo ≠ λ

(20)
∑
jso
�V
jsoλ

OV
jsoλo

−
∑
iec
�V
isoλ

I
V

isoλo
≤ 0 ∀λ, λo;λo ≠ λ

(21)eec
λ
= 1 − eec

λ
∀λ

(22)een
λ
= 1 − een

λ
∀λ

(23)eso
λ
= 1 − eso

λ
∀λ

(24)
�V
jecλ

,�V
jenλ

,�V
jsoλ

, �V
iecλ

, �V
ienλ

, �V
isoλ

≥ � ∀λ, jec, jen, jso, iec, ien, iso

(25)e, emin
λ

, emax
λ

, ẽλ, e
ec
λ
, een

λ
, eso

λ
≥ 0 ∀λ

Constraints (21)–(23) measure the efficiency level related to eco-
nomic, environmental, and social dimensions, and Constraints 
(24) and (25) indicate the positive decision variables and non-
negative decision variables, respectively.

The proposed EDEAM is a general model and as a result, 
it can measure the efficiency of vehicle types based on vari-
ous inputs and outputs. Kumar et al. (2019) introduced some 
inputs and outputs by which the efficiency of vehicle types 
can be evaluated in terms of sustainability. These inputs and 
outputs are represented in Fig. 3. In this figure, the network 
structure of EDEAM is presented which consists of three divi-
sions, representing three pillars of sustainability. On the other 
hand, each division has independent inputs and outputs, com-
pared to other divisions. The efficiency score of the vehicle 
types in terms of sustainability is derived from the efficiency 
scores of all divisions. In other words, by integrating three 
divisions, the efficiency score of the vehicles is measured.

After calculating the efficiency of the vehicle types with 
respect to sustainability, a multi-objective optimization model 
for supply chain network design is introduced. The results of 
the efficiency measurement are regarded as inputs of the opti-
mization model. The proposed optimization model has three 
objective functions whose mathematical formulation is given 
by Formulas (26)–(63). This tri-objective optimization model 
aims to minimize the total cost, maximize the total profit, and 
minimize the inequity. In the following, the reasons for apply-
ing these objectives are explained. Cost minimization is one 
of the most widely used objectives of mathematical models. 
The production, establishment, labor, shipment, transporta-
tion, and shortages are among the cost-related factors in the 
model that should be minimized. To increase the service level 
and protect the supply chain structure against disruptions, the 
supply chain should be designed with respect to resilience. In 
the proposed supply chain structure, direct shipment from the 
first echelon to the third echelon is considered to increase the 
number of sources that serve the customer. Besides, the lateral 
transshipment among the members of the second echelon is 
taken into account to improve the service level and prevent 
disruptions to inventory. Therefore, considering direct ship-
ment and lateral transshipment has led to a resilient supply 
chain design. The COVID-19 pandemic, on the other hand, 
disrupts the most essential supply chain functions which 
depend on labor. The issues such as illness, death, risk miti-
gation through travel restrictions, and social distancing lead 
to the labor shortages. For this reason, in the proposed sup-
ply chain structure, the labor availability is planned for each 
stage. The efficiency of vehicles as a criterion for selecting 
a transportation system plays an important role in obtaining 
a sustainable transportation system. Therefore, in the opti-
mization model, the profit obtained from the use of sustain-
able vehicles is maximized. In addition, the profit obtained 
from producing the products through the recovery process is 
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maximized. The companies have to collect and recover the 
used products due to the environmental legislation. Thus, the 
companies not only produce environmentally friendly prod-
ucts and save the consumption of resources, but also gain a 
competitive advantage. In this regard, the benefits resulting 
from reverse logistics in the proposed supply chain structure 
are regarded as well. Finally, the concept of inequity in satis-
fying the customer demand is considered which can minimize 
the gap between the customer’s unmet demands.

(26)

minimize f c =
∑
i

c
p

i
pi +

∑
i

∑
j

∑
λ

cv
ij
q1→2

ijλ
+
∑
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+
∑
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∑
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k
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f
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+
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j

f c
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∑
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k

∑
λ
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+
∑
j

∑
j
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�
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� q
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�

+ cLR
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�
j
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j
�
j

�
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∑
j
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ij
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+
∑
i

∑
k
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+
∑
j

∑
k
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jk
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jk
+ ca

d
�a

(27)
maximize f p =

∑
λ

BSU

��
emin
λ

+emax
λ

2

��∑
i

∑
j

q1→2

ijλ
+
∑
j

∑
k

q2→3

jkλ
+
∑
i

∑
k

q1→3

ikλ

��

+
∑
i
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i
p
R

i

(28)
minimize f e = �D

subject to

(29)pi + pR
i
=
∑
j

∑
λ

q1→2

ijλ
+
∑
k

∑
λ

q1→3

ikλ
∀i

(30)pi ≤ pu
i
∀i

(31)pl
i
≤ pi ∀i

(32)

∑
i

∑
λ

q1→2

ijλ
+

∑
j
� ∈j,j�≠j

q2→2

j
�
j

=
∑
k

∑
λ

q2→3

jkλ
+

∑
j
� ∈j,j�≠j

q2→2
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� ∀j

(33)
∑
j

∑
j
� ∈j,j�≠j

q2→2
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� =

∑
j

∑
j
� ∈j,j�≠j

q2→2

jj
�

(34)q2→2

jj
� = q2→2

j
�
j

∀j, j
�
;j

�
≠ j

(35)
∑
j

∑
j
� ∈j,j�≠j

(
q2→2

jj
� + q2→2

j
�
j

)
≤ c

LT

(36)
∑
i

∑
k

∑
λ

q1→3

ikλ
≤ c

DS

(37)
∑
λ

q1→2

ijλ
≤ qu

ij
x1→2

ij
∀i, j

(38)
∑
λ

q2→3

jkλ
≤ qu

jk
x2→3

jk
∀j, k

(39)
∑
λ

q1→2

ijλ
+ q2→2

j
�
j

≤ cwyj ∀j, j
�
;j

�
≠ j

Fig. 3  Structure of the devel-
oped EDEAM
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(40)
∑
λ

q2→3

jkλ
+ q2→2

jj
� ≤ cwyj ∀j, j

�
;j

�
≠ j

(41)wj ≥ bj

�∑
i

∑
λ

q1→2

ijλ
+ i0

j

�
∀j

(42)wj ≤ wu
j
yj ∀j

(43)
gk ≥

�
dR
k
−

�
∑
j

∑
λ

q2→3

jkλ
+
∑
i

∑
λ

q1→3

ikλ

��

dR
k

∀k

(44)gk ≤ gM ∀k

(45)gk − gk� ≤ �D ∀k, k
�
;k

�
≠ k

(46)−�D ≤ gk − gk� ∀k, k
�
;k

�
≠ k

(47)
∑
k

gk ≤ (1 − η)|k|

(48)

pR
i
≤

(1−f Di )p
e
i∑

i
(1−f Di )p

e
i

(ROR)

�
∑
j

∑
k

∑
λ

q2→3

jkλ
+
∑
i

∑
k

∑
λ

q1→3

ikλ

�
∀i

(49)
∑
j

q1→2

ijλ
≤ ∁λ ∀i, λ

(50)
∑
k

q2→3

jkλ
≤ ∁λ ∀j, λ

(51)
∑
k

q1→3

ikλ
≤ ∁λ ∀i, λ

(52)
q1→2

ijλ

� l
12

≤ la
ij
∀i, j, λ

(53)
q2→3

jkλ

� l
23

≤ la
jk
∀j, k, λ

(54)
q1→3

ikλ

� l
13

≤ la
ik
∀i, k, λ

(55)la
ij
≤ la ∀i, j

(56)la
jk
≤ la ∀j, k

In this model, Objective Function (26) minimizes 
production costs, variable and fixed transportation costs 
related to stage 1 and stage 2, establishment cost, direct 
shipment cost, lateral transshipment cost, maximum 
shortage cost related to demand satisfaction, available 
labor cost in stage 1, available labor cost in stage 2, labor 
cost available between echelon 1 and 3, and maximum 
shortage cost related to available labor. Objective func-
tion (27) maximizes the profit from using sustainable 
vehicles in the supply chain and the profit from produc-
tion through the recovery process. It is worth mention-
ing that through this objective function, not only the 
economic aspect of the transportation system in the 
supply chain is addressed, but also the aspects related 
to the environment and society, which are very effec-
tive in dealing with pollution and improving livability. 
In addition, this objective function takes into account 
the reverse flow, which makes the supply chain envi-
ronmentally friendly due to the conservation of natural 
resources. Objective function (28) minimizes inequity in 
satisfying customer demand. Constraint (29) expresses 
the balance between the produced quantity, through the 
raw material and the recovery process, and the quantity 
that the customer receives through shipment and direct 
shipment. Constraints (30)–(31) indicate the upper and 
lower bound related to production. Constraint (32) pre-
sents the balance between the quantities of products 
received through shipment and lateral transshipment to 
each warehouse and the quantities of products sent to 
customers through shipment and lateral transshipment 
from each warehous. Constraint (33) states the balance 
among all products that leave the warehouses under 
lateral transshipment and all products which enter the 
warehouses under lateral transshipment. In Constraint 

(57)la
ik
≤ la ∀i, k

(58)la − la
ij
≤ �a ∀i, j

(59)la − la
jk
≤ �a ∀j, k

(60)la − la
ik
≤ �a ∀i, k

(61)pi, q
1→2

ijλ
, q2→3

jkλ
, q1→3

ikλ
, q2→2

jj
� ,wj, gk , g

M , pR
i
, la
ij
, la
jk
, la
ik
≥ 0 ∀i, λ, k, j, j

�
;j

�
≠ j

(62)x1→2

ij
, x2→3

jk
, yj ∈ {0, 1} ∀i, j, k

(63)�a and �D, free variable

28290 Environmental Science and Pollution Research  (2023) 30:28274–28304

1 3



(34), the quantities sent from warehouse j′ to warehouse j 
through lateral transshipment are equal to those received 
by warehouse j from warehouse j′ through lateral trans-
shipment. Constraints (35)–(36) specify the maximum 
capacity related to lateral transshipment and direct ship-
ment. In Constraints (37)–(38), if and only if there exists 
a connection between two echelons, the products will 
be transported at each stage, according to the capacity 
of that connection. Constraints (39)–(40) guarantee the 
establishment of a warehouse that is connected to stage 
1, stage 2, and other warehouses. In Constraint (41), the 
minimum warehouse capacity for products transported 
from echelon 1 to echelon 2 is a coefficient of the quan-
tity of products received by the warehouse plus the initial 
inventory of the warehouse. This coefficient is deter-
mined based on packaging, warehousing, and quality 
control activities. If the warehouse is established, Con-
straint (42) shows the maximum warehouse capacity for 
products transported from echelon 1 to echelon 2. Con-
straint (43) specifies the maximum percentage of unmet 
demand of customer k . Constraint (44) characterizes 
the maximum percentage of unmet demand. Constraints 
(45)–(46) measure the inequity related to the customer 
demand satisfaction. Constraint (47) indicates the upper 
bound which is related to the lack of customer service. 
In Constraint (48), the number of recovered products 
belonging to each plant is determined based on the dis-
posal fraction and performance of each plant, as well as 
the rate of return of all products sent to the customers. In 
Constraints (49)–(51), the total load transported by each 
vehicle type, in stages 1 and 2 and between the echelons 
1 and 3, should not exceed the capacity of the vehicles’ 
types. In Constraints (52)–(54), according to the linear 
production function in economics, the product flow is 
related to available labor in stages 1 and 2 and echelons 
1 and 3. Constraints (55)–(57) indicate the upper bound 
on the available labor, in each link (i, j) , (j, k) , and (i, k) . 
Constraints (58)–(60) determine the deviation between 
the upper bound of the availability of labor on each link 
and available labor on each link. Finally, Constraints 
(61), (62), and (63) represent the non-negative continu-
ous decision variables, binary decision variables, and 
unrestricted in sign decision variables, respectively.

The following assumptions are incorporated into the 
proposed model:

 i. In the supply chain network, only a single product is 
produced, maintained, and transported.

 ii. Shortage is allowed. It is not necessary to satisfy all 
the customers’ demands.

 iii. Warehouse capacity is limited.
 iv. Customer is supplied by multiple sources.

 v. Used products are collected and recovered in plants 
and sent to distributors. There is no difference between 
the used and new products in the mathematical model.

 vi. Only a percentage of the used products can be recovered.
 vii. Labor belonging to the echelons of each stage can han-

dle all types of vehicles.
 viii. For shipments among the echelons in addition to the 

number of transported units, attention is paid to vehi-
cle types and labor where the transportation flow is 
forward.

The proposed B&E algorithm is developed for the 
acceptance of efficient and feasible solutions. The 
multi-objective optimization model presented in For-
mulas (26)–(63) is considered as the master problem 
(MP) in the B&E algorithm. When MP is solved, based 
on the resulting inputs and outputs, the efficiency score 
of each warehouse is calculated by the DEA model. The 
inputs and outputs are displayed in Fig. 4.

All the criteria, other than the traffic congestion cri-
terion, are derived directly from solving the MP. In this 
work, the traffic congestion is examined by two scenarios. 
The scenarios are defined according to Davidson’s func-
tion and the BPR function. The traffic congestion functions 
are formulated in accordance with Khisty and Lall (2002) 
and are given in Eqs. (64)–(65):

On the other hand, a bi-objective model and a 
leader–follower model are developed in order to evalu-
ate the DMUs. In the bi-objective model, the minimum 
efficiency level of each DMU is maximized with respect 
to all scenarios, and the efficiency level of each DMU is 
maximized in each scenario. The bi-objective model is 
formulated as follows:
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(66)maximize f D1 =
∑
j

�m
j

(67)maximize f D2
s

=
∑
j

�js ∀s

(68)
subject to

�m
j
≤ �js ∀j, s
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Objective function (66) maximizes the minimum effi-
ciency level of DMUs, Objective Function (67) maximizes 
the efficiency level of DMUs in each scenario, Constraint 
(68) expresses a minimum efficiency score per DMU, Con-
straint (69) indicates the inefficiency level in each DMU, in 
Constraint (70), the weighted sum of inputs is arbitrarily set 
equal to one, Constraint (71) presents the efficiency level of 
each DMU based on the weighted sum of outputs, in Con-
straint (72), the upper bound of the efficiency score of each 
DMU is set equal to one, Constraint (73) forestalls weights 
from being zero, and Constraint (74) displays non-negative 
continuous decision variables.

Each of the functions related to traffic congestion is taken 
into account as a scenario where, in the bi-objective model, no 
priority is given to the scenarios. Here, the abovementioned 
leader–follower model is developed to deal with the priorities 
of the scenarios in evaluating the DMUs. In this regard, each 
scenario is considered a player so that each player’s decision 
affects the subsequent players’ feasible choices set. Thus, the 
leader model shown by Formulas (75)–(81) measures the effi-
cient scores of DMUs by considering the leader scenario.

(69)�js = 1 − djs ∀j, s

(70)
∑
iD
�jiDsI

W

iDjs
= 1 ∀j, s

(71)
∑
jD
�jDjsO

W

jDjs
+ djs = 1 ∀j, s

(72)
∑
jD
�jDjsO

W

jDjos
−
∑
iD
�jiDsI

W

iDjos
≤ 0 ∀s, j, jo;jo ≠ j,

(73)�jDjs, �jiDs ≥ � ∀j, jD, i, s

(74)djs,�js,�
m
j
≥ 0 ∀j, s

Objective function (75) maximizes the efficiency level of DMUs 
in the leader scenario. Constraint (76) determines the efficiency 
level of each DMU in the leader scenario. In Constraint (77), the 
weighted sum of the inputs related to the leader is arbitrarily set 
equal to one. Constraint (78) presents the efficiency level of each 
DMU in the leader scenario based on the weighted sum of outputs. 
In Constraint (79), the upper bound of the performance score of 
each DMU is set equal to one in the leader scenario, Constraint 
(80) forestalls weights from being zero, and Constraint (81) displays 
non-negative continuous decision variables.

In addition, the follower model shown by Formulas 
(82)–(89) measures the efficiency of DMUs by considering 
the follower scenario such that the leader’s efficiency level 
is preserved.

(75)maximize f L
D

=
∑
j

�js ∀s ∈ {LD}

(76)
subject to

�js = 1 − djs ∀j, s ∈ {LD}

(77)
∑
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= 1 ∀j, s ∈ {LD}

(78)
∑
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(79)
∑
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−
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≤ 0 ∀j, jo;jo ≠ j, s ∈ {LD}

(80)�jDjs, �jiDs ≥ � ∀j, jD, i, s ∈ {LD}

(81)djs,�js ≥ 0 ∀j, s ∈ {LD}

(82)maximize f F
D

=
∑
j

�js ∀s ∈ {FD}

Fig. 4  Inputs and outputs to measure the efficiency of solutions
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Objective function (82) maximizes the efficiency level 
of DMUs in the follower scenario, Constraint (83) fixes 
the optimal solution related to the leader scenario, Con-
straint (84) specifies the efficiency level of each DMU 
in the follower scenario, in Constraint (85), the weighted 
sum of the inputs related to the follower is arbitrarily 
set equal to one, Constraint (86) presents the efficiency 
level of each DMU in the follower scenario based on the 
weighted sum of outputs, in Constraint (87), the upper 
bound of the efficiency score of each DMU is set equal 
to one in the follower scenario, Constraint (88) forestalls 
weights from being zero, and Constraint (89) displays 
non-negative continuous decision variables.

Finally, the overall efficiency of DMUs is measured by 
the leader–follower model shown by Formulas (90)–(98), 
where the efficiency level of the leader and the efficiency 
level of the follower are preserved.
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Objective Function (90) maximizes the efficiency level 
of DMUs by considering the leader–follower approach, 
Objective Function (91) minimizes the deviation between 
the objective function related to the leader and the leader 
scenario’s optimal solution, Objective Function (92) mini-
mizes the deviation between the objective function related 
to the follower and the follower scenario’s optimal solu-
tion, Constraint (93) determines the efficiency level of each 
DMU in the leader–follower approach, in Constraint (94), 
the weighted sum of the inputs related to the leader–fol-
lower approach is arbitrarily set equal to one, Constraint (95) 
indicates the efficiency level of each DMU is related to the 
leader–follower approach based on the weighted sum of the 
outputs, in Constraint (96), the upper bound of the efficiency 
score of each DMU is set equal to one in the leader–follower 
approach, Constraint (97) forestalls weights from being zero, 
and Constraint (98) displays non-negative continuous deci-
sion variables. It is worth mentioning that �js

′and �js′′ show 
the efficiencies of the DMUs. Where the efficiencies of all 
DMUs are set equal to one, it is more strict to reach the goal. 
Therefore, managers who take into account the efficiency of 
DMUs necessary for their decisions can apply a strict view.

Aggregating the results obtained from the bi-objective and 
leader–follower models by geometric mean, the efficiency of 
the solutions is obtained. Then, according to the decision-
maker, the most efficient solutions are added to the MP by 
constraints entitled efficiency cuts. Therefore, the MP model 
would be updated, and the feasible and efficient solutions 
are filtered by re-solving the updated MP. This iterative pro-
cedure stops when the values of the solutions do not change 
or the number of solutions required by the decision-maker is 
generated. In this regard, the flowchart of the proposed B&E 
algorithm is depicted in Fig. 5.

In the proposed B&E algorithm, MP is solved at itera-
tion zero, according to the vehicle’s efficiency scores. If 
the number of DMUs exceeds the predetermined thresh-
old, then the inputs and outputs are provided. Here, it is 

(94)
∑
iD
�jiDs

�
IW
iDjs�

+ IW
iDjs��

�
= 1

∀j, s ∈
�
LD,FD

�
s� ∈

�
LD,

�
s��
�
FD

�

(95)

∑
jD
�jDjs� (O

W

jDjs
� + OW

jDjs��
) + djs = 1

∀j, s ∈
�
LD,F

D
�
,

s� ∈
�
LD

�
, s�� ∈ {FD}

(96)
∑
jD
�jD js(O

W

jDjos�
+ OW

jDjos��
) −

∑
iD
�jiDs(I

W

iDjos
� + IW

iDjos��
) ≤ 0

∀j, jo;jo ≠ j, s ∈
�
LD ,FD

�
,

s� ∈
�
LD

�
, s�� ∈ {FD}

(97)�jDjs� , �jiDs ≥ � ∀j, jD, i, s ∈ {LD,F
D
}

(98)djs,�js ≥ 0 ∀j, s ∈ {LD,FD}
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assumed that each warehouse is a DMU. Therefore, the 
warehouses are evaluated based on the inputs and outputs 
obtained from MP, and the efficiency of each warehouse 
is measured by bi-objective and leader–follower mod-
els. In the first iteration, based on the results obtained 
from the aggregation of bi-objective and leader–follower 
models, MP is reformulated by efficiency cut constraints 
to filter out the solution with the highest efficiency for 
selection. In this regard, Eq. (99) is added to the MP to 
filter the solutions with an efficiency greater than or equal 
to the acceptable threshold. Accordingly, the 6th term of 
Eq. (26) is transformed to Eq. (100) and, Eqs. (39)–(42) 
are transformed to Eqs. (101)–(104), after reformulation.

(99)
ξe
j
=
�

1,

0,

√∏
s �js≥aj,

otherwise,
∀j, s ∈ {leader − follower,Bi − objectvie}

(100)
∑
j

f c
j
yj =

∑
j

f c
j
ξe
j

If the updated MP improves the objective functions 
at each iteration, the next iteration starts; otherwise, 
the optimal solution is found. If the efficiency cut con-
straints lead to the infeasibility of MP, then the acceptable 
threshold for the solutions should be wider to provide the 
number of solutions that is sufficient for solving the MP. 
Otherwise, the solution of the previous iteration can be 
reported as the optimal solution.

(101)
∑
λ

q1→2

ijλ
+ q2→2

j
�
j

≤ cwξe
j
∀i, j;j

�
≠ j

(102)
∑
λ

q2→3

jkλ
+ q2→2

jj
� ≤ cwξe

j
∀k, j, j

�
;j

�
≠ j

(103)wj ≥ bj

�∑
i

∑
λ

q1→2

ijλ
+ ξe

j
i0
j

�
∀j

(104)wj ≤ wu
j
ξe
j
∀j

Fig. 5  Flowchart of the sug-
gested B&E algorithm
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In the following, the relationships between the solution 
space of MP and the solution space of subsequent iterations 
are explained by a proposition and then, the relationships 
among the solutions of subsequent iterations are explained 
by two corollaries.

Proposition If Sf ,0 represents the space of the solutions 
related to Formulas (26)–(63), and Sf ,t is the solution spaces 
for subsequent iterations, then f c,0 ≥ f c,1 ≥ ⋯ ≥ f c,T , where 
f c,t(t = 0, 1,… ,T) is the objective function related to the 
costs, at each iteration.

Proof Due to the addition of efficiency cuts at each 
iteration to the proposed model in Formulas (26)–(63), 
the number of DMUs selected for subsequent iterations 
reduces. Thus, in each iteration, both the binary and 
continuous decision variables for non-efficient solu-
tions are zero. In other words, since the binary and 
continuous decision variables in each iteration are a 
subset of the binary and continuous decision variables 
in the previous iteration, the feasibility set reduces in 
subsequent iterations, compared to the previous itera-
tions. Therefore, the overall cost is minimized through 
iterative efficiency cuts.

Corollary 1 The average of the overall costs of (t + 1) th and 
(t + 2) th iterations are not greater than the overall cost of t 
th iteration.

Proof According to the Proposition, the feasibility set 
reduces in subsequent iterations compared to the previous 
iterations. On the other hand, the optimal solutions of the 
next iterations are the feasible solutions of the previous itera-
tions. Therefore, considering f c,t ≥ f c,t+1 and f c,t ≥ f c,t+2 , it 
can be concluded that f c,t ≥.

Corollary 2 The average of the overall costs of itera-
tions (t + 1) to T  , is not greater than the overall cost of 
iteration t .

Proof According to Proposition and Corollary 1, it can be 
concluded that f c,t ≥ f c,t+1+f c,t+2+⋯+f c,T

T
.

Uncertainty modeling

Since the conditions in the real world are not deterministic, 
the planning should be performed such that the uncertainty 
is treated. Furthermore, since managers expect that decisions 
related to supply chain design in complex and uncertain real 
business environments will still perform well, in our article, 

two important parameters that have a significant effect on sat-
isfying demand and supply chain performance, that is demand 
and labor, are considered under uncertain conditions (Peidro 
et al. 2009; Govindan et al. 2017).

Treating the uncertainty of demand: fuzzy 
chance‑constraint programming

In Constraint (43), demand is assumed to be a deter-
ministic parameter while this assumption is not really 
applicable because the demand amount for each customer 
is organized and determined before the optimal design of 
the supply chain network. Therefore, in some conditions, 
the amount of demand may change. Due to the real-world 
uncertainty conditions, it is inappropriate to assume a 
deterministic amount of demand for supply chain net-
work design. Fuzzy chance-constraint programming is 
a powerful approach to solving optimization problems 
under uncertain conditions. To measure a fuzzy event, 
the concept of possibility is presented. Although the 
possibility is used for expressing the fuzzy behavior of 
phenomena, it is not self-dual; therefore, the concept of 
credibility is developed. In the concept of credibility, a 
confidence level is used to hold a fuzzy constraint (Bai 
2016; Liu 2009). In this regard, Constraint (43) is trans-
formed into Constraint (105) to consider the concept of 
credibility for customer demand.

Theorem 1 Let the demand of each customer be a triangu-
lar fuzzy random variable, which is shown by Constraint 
(106):

(a) If 0 < 𝛼D < 0.5 then, Constraint (107) is equivalent to 
Constraint (105).

(b) If 0.5 ≤ �D ≤ 1 then, Constraint (108) is equivalent to 
Constraint (105).

Proof Since assertion (b) can be proved similar to assertion 
(a), assertion (a) is only proved.

The possibility distribution associated with ξ̃u
k
 which is 

represented by Eq. (109):

(105)Cr{g
�

k
+
∑
j

∑
λ

q2→3

jkλ
+
∑
i

∑
λ

q1→3

ikλ
≥ dR

k
} ≥ �D ∀k

(106)�̃u
k
=
(
d1
k
, d2

k
, d3

k

)
;d1

k
≤ d2

k
≤ d3

k
∀k

(107)g
�

k
+
∑
j

∑
λ

q2→3

jkλ
+
∑
i

∑
λ

q1→3

ikλ
≥ 2d2

k
�D − d1

k
(2�D − 1) ∀k

(108)g
�

k
+
∑
j

∑
λ

q2→3

jkλ
+
∑
i

∑
λ

q1→3

ikλ
≥ d3

k

�
2�D − 1

�
− d2

k
(2�D − 2) ∀k
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If 0 < 𝛼D < 0.5 , then we have:

Therefore, Constraint (111) is equivalent to Constraint 
(105):

If Eq. (112) is denoted for Nc ∈ (0 , 1] , then Eq. (113) is 
defined as follows:

Given Pos�̃
u
k (x) , 

(
�̃u
k

)
inf

(
2�D

)
 is the solution of Eq. (114):

By solving Eq. (114), Eq. (115) is obtained as follows:

Thus, Cr{g�

k
+
∑

j

∑
λ q

2→3

jkλ
+
∑

i

∑
λ q

1→3

ikλ
≥ dR

k
} ≥ �D is 

equivalent to Eq. (116):

Accordingly, assertion (a) is proved.

Treating the uncertainty of labor‑related 
parameters: robust optimization

Nowadays, the COVID-19 pandemic resulted in labor 
shortages in the supply chain. Generally, the consequences 

(109)Pos�̃
u
k (x) =

⎧
⎪⎪⎨⎪⎪⎩

x−d1
k

d2
k
−d1

k

, if x ∈
�
d1
k
, d2

k

�
,

d3
k
−x

d3
k
−d2

k

, if x ∈
�
d2
k
, d3

k

�
,

0, otherwise,

∀k

(110)

Cr

�
g

�

k
+
∑
j

∑
λ

q2→3

jkλ
+
∑
i

∑
λ

q1→3

ikλ
≥ dR

k

�

= 1

2

�
1 + sup

x ≤ d0
k

Pos
�ξu
k (x) − sup

x > d0
k

Pos
�𝜉u
k (x)

�
= 1

2

sup

x ≤ d0
k

Pos
�𝜉u
k (x);

d0
k
= g

�

k
+
∑
j

∑
λ

q2→3

jkλ
+
∑
i

∑
λ

q1→3

ikλ

∀k

(111)
sup

x ≤ d0
k

Pos�̃
u
k (x) ≥ 2�D ∀k

(112)
(
�̃u
k

)
sup

(Nc) = sup
{
d0
k
| sup

x≤d0
k

Pos�̃
u
k (x) ≥ Nc

}
∀k

(113)
(
�̃u
k

)
sup

(
2�D

)
≤ d0

k
∀k

(114)
x−d1

k

d2
k
−d1

k

− 2�D = 0 ∀k

(115)2�Dd
2

k
+ d1

k
(1 − 2�D) =

(
�̃u
k

)
sup

(
2�D

)
∀k

(116)

g
�

k
+
∑
j

∑
λ

q2→3

jkλ
+
∑
i

∑
λ

q1→3

ikλ
≥ 2d2

k
�D − d1

k
(2�D − 1) ∀k

of illness, death, travel restrictions, risk mitigations, and 
social distancing are the causes of labor shortages that 
lead to disruption in the supply chain. The COVID-19 
pandemic, despite the growth of electronic commerce, 
had a devastating effect on freight service provision and 
transportation, due to labor shortages (Nagurney 2021a, 
b). Accordingly, the effect of labor availability on supply 
chain planning should be investigated. Considering the 
fact that labor availability is an essential factor in the sup-
ply chain functions during the COVID-19 pandemic and, 
at the same time, the COVID-19 pandemic threatens the 
human lives, conservatism solutions should be applied in 
supply chain planning. Soyster (1973) proposed a conserv-
atism of robust solutions for linear programming, where 
the technological coefficients are uncertain.

In this study, the productivity factors related to the availabil-
ity of labor in shipments among the echelons are assumed to be 
uncertain parameters. Therefore, the uncertain counterpart of 
Constraints (52)–(54) is provided by Constraints (117)–(119).

Then, in accordance with Soyster (1973), the deterministic 
counterpart of Constraints (117)–(119) is provided by Con-
straints (120)–(125):

(117)
q1→2

ijλ

�̃ l
12

≤ la
ij
∀i, j

(118)
q2→3

jkλ

�̃ l
23

≤ la
jk
∀j, k
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q1→3

ikλ

�̃ l
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∀i, k

(120)
q1→2

ij�

� l
12

,
q
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�̂ l
12
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∀i, j, �

(121)−q
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ij�
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�1→2

ij�
∀i, j, �
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+
q
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∀j, k, �
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, q
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jk�
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Solution approach

The models proposed in this study have more than one 
objective function; hence, it is necessary to convert them 
into single-objective models for solving.

For this purpose, this section employs GP and FGP as 
solution approaches for the proposed multi-objective opti-
mization models.

Goal programming

GP is one of the multi-objective programming techniques 
which converts a multi-objective model into a single-
objective model. In GP, the decision-maker determines an 
aspiration level for each objective function. The objective 
function of GP is the minimization of deviations from the 
aspiration levels (Charnes and Cooper 1977). In this work, 
GP is used to solve the bi-objective optimization model 
presented in Eqs. (66)–(74). In this regard, Eq. (127) is the 
objective function of GP, and Eqs. (66)–(67) are replaced 
with Formulas (128)–(129):

Theorem 2 Assuming f D1∗ and f D2∗
s

 as globally optimal 
solutions of Eqs. (66) and (67), respectively, the solution 
produced by the model including Formulas (127)–(130) 
and Formulas (68)–(74) is a Pareto efficient solution for the 
model built up by Formulas (66)–(74).

Proof Let ℶ∗ be the optimal solution obtained from solving 
Formulas (127)–(130) and (68)–(74) where ℶ∗ denotes the 
optimal decision variables. If ℶ∗ is not an efficient solution 
for the model built up by Formulas (66)–(74), there exists 
another feasible solution, ℶ∗∗ , that the values of the objec-
tive functions obtained from ℶ∗∗ have fewer deviations 
from the aspiration levels, compared to the values of the 
objective functions obtained from ℶ∗ . On the other hand, 
the parameters wD1 and wD2 are all positive. Therefore, the 
weighted sum of the deviations related to the objective 
functions obtained from ℶ∗∗ is less than the weighted sum 

(127)maximize wD1
(
d+
D1

+ d−
D1

)
+ wD2

∑
s

(d+
s,D2

+ d−
s,D2

)

(128)
∑
j

�m
j
− d+

D1
+ d−

D1
= f D1∗

(129)
∑
j

�js − d+
s,D2

+ d−
s,D2

= f D2∗
s

∀s

(130)d+
D1
, d−

D1
, d+

s,D2
, d−

s,D2
≥ 0 ∀s

of the deviations related to the objective functions obtained 
from ℶ∗ , which is in contradiction to the optimality of ℶ∗.

Theorem 3 The sum of efficiency scores calculated under 
uncertain conditions are less than or equal to the sum of 
efficiency scores under deterministic conditions.

Proof When the conditions are deterministic, only one of 
two scenarios is regarded to calculate the total efficiency 
score while, under uncertainty, more than one scenario 
is taken into account for this purpose. For uncertain con-
ditions, the size of the feasible region can be reduced 
by adding each scenario. In other words, in measuring 
the efficiency, a model that considers all the scenarios is 
more stringent than a model dealing with only one sce-
nario. Therefore, the total efficiency score under deter-
ministic conditions is not less than the total efficiency 
score calculated under uncertain conditions.

Corollary 3 If DMUs are efficient after calculating the sum 
of the efficiency scores under uncertain conditions, then 
DMUs are efficient under deterministic conditions.

Proof Based on Theorem 3, it is revealed that when the 
DMU is efficient under uncertain conditions, the lower 
bound of the efficiency score calculated under determin-
istic conditions is equal to one. On the other hand, the 
upper bound of each DMU is equal to one. Hence, DMUs 
are efficient under deterministic conditions.

Since Formulas (90)–(98) represent a multi-objective 
optimization model to measure the efficiency score of ware-
houses, they can be converted into a single-objective opti-
mization model by GP. For this purpose, Eqs. (90)–(92) are 
replaced by Eqs. (132)–(134). The objective function of the 
GP, which includes the deviations related to Eqs. (90)–(92), 
is shown by Eq. (131):

(131)
minimize wLF

(
dLF+ + dLF−

)
+ wL

(
dL+ + dL−

)
+ wF

(
dFL+ + dFL−

)

(132)
∑
j

�js − dLF+ + dLF− = f LF
D∗ ∀s ∈ {LD,FD}
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∑
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�
∑
jD
�jD jsO

W

jDjs
� −

∑
iD
�jiDsI

W

iDjs
�

�
− dL+ + dL− = f L

D∗ ∀s ∈
�
LD ,FD

�
, s

�
∈ {LD}

(134)

∑
j

�
∑
jD
�jD jsO

W

jDjs��
−
∑
iD
�jiDsI

W

iDjs��

�
− dF+ + dF− = f F

D∗ ∀s ∈
�
LD ,FD

�
, s�� ∈ {FD}

(135)dLF+, dLF−, dL+, dL−, dFL+, dFL− ≥ 0
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Theorem 4 Assuming f LFD∗, f LD∗, and f FD∗ as globally opti-
mal solutions for Eq. (90), the leader model and the follower 
model, respectively, then the solution for the model built 
up by Formulas (131)–(135) and Formulas (93)–(98) is a 
Pareto efficient solution for Formulas (90)–(98).

Proof Let Δ∗ be the optimal solution obtained from solving 
the model generated by Formulas (131)–(135) and Formulas 
(93)–(98), where Δ∗ denotes the optimal decision variables. 
If Δ∗ is not an efficient solution for Formulas (90)–(98), then 
there is another feasible solution, Δ∗∗ , so that the values 
of the objective functions obtained from Δ∗∗ have fewer 
deviations from the aspiration levels, compared to the ones 
obtained from Δ∗ . On the other hand, the parameters wLF , 
wL , and wF are all positive. Therefore, the weighted sum of 
the deviations related to the objective functions obtained 
from Δ∗∗ is less than the weighted sum of the deviations 
related to the objective functions obtained from Δ∗ , which 
is in contradiction with the optimality of Δ∗.

Theorem 5 The sum of the efficiency scores calculated by 
Formulas (90)–(98) is less than or equal to the sum of the 
efficiency scores where the leader and follower divisions are 
regarded as a whole unit.

Proof When there exists a whole unit to calculate the total 
efficiency score, Eqs. (91)–(92) should be deleted. Delet-
ing these equations does not reduce the size of the feasible 
region of Formulas (90)–(98). In other words, in measuring 
the efficiency, the model that is considered to be a whole unit 
is less stringent than the model dealing with the leader and 
follower as independent divisions. Therefore, the total effi-
ciency score calculated when the leader and follower divi-
sions are taken into account as a whole unit is not less than 
the total efficiency score calculated by Formulas (90)–(98).

Corollary 4 If DMUs are efficient after calculating the sum 
of efficiency scores obtained by Formulas (90)–(98), then 
DMUs are efficient where the divisions are regarded as a 
whole unit.

Proof Based on Theorem 5, it is revealed that for an effi-
cient DMU, the lower bound of the efficiency score obtained 
from the model that considers the divisions as a whole unit 
is equal to one. On the other hand, the upper bound of each 
DMU is equal to one. Therefore, DMUs are efficient, where 
divisions are regarded as a whole unit.

Fuzzy goal programming

Determining the precise amount of aspiration level by 
decision-maker can be challenging. The FGP approach can 

be used to account for the ambiguity in aspiration levels 
(Zimmermann 1978). In this regard, Formulas (26)–(63) 
are solved by FGP. Fuzzy goals for Eqs. (26)–(28) are 
determined in Eqs. (136)–(138) (Tiwari et al. 1987). In 
Formulas (136)–(138), approximately less than or equal 
to is denoted by ≲ . The membership functions assigned to 
fuzzy goals are presented in Eqs. (139)–(141):

By investigating the objective functions in the proposed 
model, the ideal and nadir solutions are calculated. To 
obtain the ideal solution for each objective function, it is 
sufficient to solve each objective function by considering 
Constraints (29)–(63). The nadir solution of each objective 
function is the worst value that each objective function 
achieves in the ideal solutions of other objective func-
tions. Formulas (142)–(144) are the fuzzy counterparts of 
Formulas (26)–(63).

subject to.
Formulas (29)-(63),

Theorem 6 The solution of the model generated by Formulas 
(142)–(144) is a Pareto efficient solution for the model built 
up by Formulas (26)–(63).

(136)f c ≲ f Ic,

(137)f Ip ≲ f p,

(138)f e ≲ f Ie,

(139)�f c =

⎧
⎪⎨⎪⎩

1, if f c ≤ f Ic,

1 −
f c−f Ic

f Nc−f Ic
, if f Ic ≤ f c ≤ f Nc,

0, if f c ≥ f Nc,

(140)�f p =

⎧⎪⎨⎪⎩

0, if f p ≤ f Np,

1 −
f Ip−f p

f Ip−f Np
, if f Np ≤ f p ≤ f Ip,

1, if f p ≥ f Ip,

(141)�f e =

⎧⎪⎨⎪⎩

1, if f e ≤ f Ie,

1 −
f e−f Ie

f Ne−f Ie
, if f Ie ≤ f e ≤ f Ne,

0, if f e ≥ f Ne.

(142)maximize �c�f c + �p�f p + �e�f e

(143)�f c ,�f p ,�f e ≤ 1

(144)�f c ,�f p ,�f e ≥ 0
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Proof Let ℵ∗ be the optimal solution obtained from solv-
ing the model generated by Formulas (142)–(144) where 
ℵ∗ denotes the optimal decision variables. If ℵ∗ is not an 
efficient solution for the model produced by Formulas (26)–
(63), then there is another feasible solution, ℵ∗∗ , such that 
the values of the objective functions obtained from ℵ∗∗ are 
better than the values of the objective functions obtained 
from ℵ∗ . In other words, the membership functions belong-
ing to ℵ∗∗ are greater than or equal to the membership 
functions belonging to ℵ∗ , and at least one of the member-
ship functions that belongs to ℵ∗∗ is greater than its corre-
sponding membership function which belongs to ℵ∗ . Since 
the parameters denoting the weights are all positive, the 
weighted sum of the membership functions of ℵ∗∗ is greater 
than the weighted sum of the membership functions of ℵ∗ , 
which is in contradiction to the optimality of ℵ∗.

Case study

In this section, the application of the proposed models is 
indicated by a case study. It is assumed that there are 5 
plants, 20 possible warehouses, and 5 demand zones in the 
proposed supply chain network. In addition, it is assumed 
that the goods are shipped in the supply chain network by 
5 vehicle types. In this case study, the supply chain net-
work and vehicle types data are extracted from Petridis et al. 
(2016) and Kumar et al. (2019), respectively. In this section, 
the effects of the contributions of this work included to the 
supply chain model proposed by Petridis et al. (2016) are 
analyzed, and then, the proposed B&E algorithm is imple-
mented on the case study.

At first, the sensitivity of the parameters added to the sup-
ply chain network model is analyzed where the results are 
represented in Fig. 6. Figure 6a illustrates the relationship 
between sustainability and the objective function related to 
the costs. In this regard, increasing the government subsi-
dies on using efficient vehicles leads to a reduction in total 
cost. Therefore, by considering sustainability, not only the 
economic aspect of the transportation system in the sup-
ply chain is addressed, but also an environmentally friendly 
supply chain is designed. Figure 6b shows the relationship 
between the costs of each unit of labor related to the stages 
and the objective function related to the costs. In this case, 
increasing the labor costs leads to an increase in total cost. 
Therefore, the key parameters related to sustainability and 
the impact of the COVID-19 pandemic led to decreasing 
and increasing the objective function of costs, respec-
tively. Figure 6c and d illustrate the resilience effect on the 
objective function of costs where, based on these figures, 
an increase in the cost of direct shipment and lateral trans-
shipment increases the total cost. Therefore, increasing the 
resilience costs leads to an increase in total cost. Figure 6e 

displays the effect of reverse logistics on the customer ser-
vice level. Based on this figure, increasing the production 
benefits through the recovery process reduces the unsatis-
fied demand of all five customers. This means that not only 
does the supply chain meet environmental requirements, 
but it can meet more demands by saving resources. Finally, 
Fig. 6f demonstrates the relationship between the confidence 
level and customer service level. Again, increasing the con-
fidence level leads to an increase in the number of demands 
which should be satisfied. For this reason, rising the confi-
dence level, where there is a capacity constraint, leads to an 
increase in unsatisfied demand. Therefore, increasing the 
production amount through recovery as well as increasing 
the confidence level rises and reduces the customer service 
level, respectively.

Now, the proposed B&E algorithm is implemented to the 
case study introduced by Petridis et al. (2016). In this regard, 
some parameters are taken into account based on the ones 
presented by Petridis et al. (2016) and Kumar et al. (2019) 
while the other parameters are set according to Table 3.

The optimal solution for the model proposed by Petridis 
et al. (2016) demonstrated that 12 warehouses are selected 
to be established. On the other hand, to reduce the number 
of selected warehouses, when the B&E algorithm is imple-
mented for the next iteration, 8 warehouses are selected to 
be established, which makes their problem infeasible. There-
fore, the average of the two solutions calculated by Petridis 
et al. (2016), is considered the maximum number of ware-
houses required in the model proposed in this study. In other 
words, when the number of warehouses is less than 10, the 
proposed B&E algorithm is terminated. In iteration 0, the 
MP is solved and then, the inputs and outputs are provided 
for the bi-objective and leader–follower models. The results 
obtained from iterations 0 and 1 are reported in Table 4.

After evaluating the solutions of MP, the solutions of the 
bi-objective and leader–follower models are aggregated by 
geometric mean. The results of warehouse evaluation are 
reported in Table 5.

As shown in Table 5, the number of efficient warehouses 
drops below 10. Therefore, the algorithm would be termi-
nated at iteration 1. The MP is resolved with respect to effi-
cient warehouses and the results are reported in Table 4. As 
proved in the proposition, the objective function of costs 
is reduced at iteration 1 compared to iteration 0. On the 
other hand, the membership functions of iteration 1 have 
been improved compared to the membership functions of 
iteration 0. Based on the results, both the proposed B&E 
algorithm and the models proposed for evaluating the 
warehouses perform better than the algorithm and models 
proposed by Petridis et al. (2016). Based on the results in 
Table 5, the proposed models for warehouse evaluation led 
to the selection of 9 efficient warehouses for supply chain 
network design, while the model developed by Petridis et al. 

28299Environmental Science and Pollution Research  (2023) 30:28274–28304

1 3



(2016) selects 12 efficient warehouses. Therefore, the pro-
posed models have more discrimination power in measuring 
the efficiency of DMUs. On the other hand, not only the 
number of warehouses selected by the developed models is 
less than the ones selected by Petridis et al. (2016), but also 

the proposed B&E algorithm can improve the customer ser-
vice level. As shown in Fig. 7, the B&E algorithm reduces 
the unmet demand for all 5 customers, compared to Petridis 
et al. (2016). Therefore, despite reducing the number of 
selected warehouses, the service level was improved as well.
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Fig. 6  Sensitivity analysis of the key parameters
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Conclusion and outlook

To enhance the business image and receive government 
subsidies, the companies are required to design their sup-
ply chain network efficiently in such a way that the eco-
nomic criteria and sustainability pillars are addressed. 

In this regard, the EDEA model and the developed B&E 
algorithm were integrated where the efficiency score of 
the vehicle types which transport the goods between the 
echelons of the supply chain was measured by the EDEA 
model, based on pillars of sustainability. The results 
obtained from the EDEA model were incorporated into a 
tri-objective optimization model developed to supply chain 
network design. The proposed optimization model consid-
ered not only the production, shortages, and transportation 
as common components of supply chain network design, 
but also other components including the reverse logistics, 
resilience, and the effect of the COVID-19 pandemic, the 
inequity in unsatisfied demand of customers, and the effi-
ciency of vehicles in terms of sustainability. The resilience 
was investigated to increase the service level and better 
inventory management through direct shipment among the 
echelons and lateral transshipment among the members 
of an echelon. The reverse logistics system was taken into 
account based on the process of recovering the products in 
the supply chain network. In addition, considering the fact 
that the COVID-19 pandemic affects the most essential 
functions of the supply chain, called labor, the relation-
ships between the product flow and labor were established 
in the optimization model. The results of the optimization 
model were filtered through the developed B&E algorithm 
so that the efficient solutions were only selected in each 
iteration, and hence, the optimization model was updated 
by efficiency cuts in each iteration. The efficiency of each 
solution was assessed by two models including the bi-

objective model and the leader–follower model where both 
models are extensions of the DEA model. The inputs and 
outputs of the models were related to the service level, 
cost, and traffic congestion. The reason to deal with traffic 
congestion was the vehicles transporting goods between 
the echelons are generally slow and heavyweight. These 
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Table 4  Results obtained from 
applying the suggested B&E 
algorithm

Iteration 0

f c 5,766,200 �f c 0.953

f p 0.492 �f p   0.991
f e 0.002 �f e 1.000
Iteration 1
f c 3,655,300 �f c 0.984
f p 0.361 �f p 1.000
f e 0.009 �f e 1.000

Table 5  Warehouse evaluation 
results

DMU Leader–fol-
lower model

Bi-
objective 
model

Geometric mean DMU Leader–fol-
lower model

Bi-
objective 
model

Geometric mean

1 0.868 0.997 0.930 11 0.893 1.000 0.945
2 0.868 1.000 0.932 12 0.944 1.000 0.972
3 0.557 1.000 0.746 13 0.809 0.888 0.848
4 0.501 1.000 0.708 14 1.000 1.000 1.000
5 0.917 0.945 0.931 15 0.897 0.955 0.926
6 0.955 0.916 0.935 16 0.803 0.959 0.878
7 0.917 1.000 0.958 17 0.715 1.000 0.846
8 0.806 1.000 0.898 18 0.826 1.000 0.909
9 0.895 0.923 0.909 19 0.908 0.928 0.918
10 1.000 1.000 1.000 20 0.502 1.000 0.709
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characteristics not only led to the traffic congestion but 
also threaten all the pillars of sustainability. Despite the 
importance of the traffic congestion criterion, the research 
literature has not focused on this context. Therefore, two 
criteria related to traffic congestion were regarded in the 
efficient design of the supply chain network. On the other 
hand, considering the role of uncertainty in the real-world, 
parameters related to the demand and labor were assumed 
to be uncertain and were treated using fuzzy chance-con-
strained programming and robust optimization, respec-
tively. Furthermore, GP and FGP methods were utilized to 
treat multi-objectiveness of the models. Finally, the appli-
cation of the proposed models in this work was validated 
through a case study. The results demonstrated that the 
proposed models not only reduce the costs but also per-
form better than the competing models, both in improving 
the service level and increasing the discrimination power 
in measuring the performance.

This research provided a wide range of research opportu-
nities for future studies. In this regard, the following recom-
mendations are given to extend the current study:

 i. Applying other techniques to handle and analyze 
uncertainty such as stochastic optimal control (Savku 
and Weber 2018; Pervin et al. 2018; Tirkolaee et al. 
2022c), possibilistic programming (Tirkolaee et al. 
2022b), and regression models (Özmen et al. 2017, 
2018), which can be compared to the proposed 
method,

 ii. Expanding the supply chain network by includ-
ing more levels such as suppliers and retailers and 
with respect the target industry (Paksoy et al. 2013; 
Tirkolaee et al. 2021a),

 iii. Addressing the application of Industry 4.0 and digital 
technologies to deal with traffic congestion (Jahani 
et al. 2021; Tirkolaee et al. 2021b),

 iv. Developing heuristic and meta-heuristic algorithms 
to tackle to complexity of the problem in large scales 
(Goli et al. 2020; Tirkolaee et al. 2022a; Babaei et al. 
2022), which can be also compared to the developed 
B&E algorithm.
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