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Abstract
Iron (Fe) is the most important trace element in the ocean, as it is required by phytoplankton for photosynthesis and 
nitrate assimilation. Iron speciation is important to better understand the biogeochemical cycle and availability of this 
micronutrient, in particular in the Southern Ocean. Dissolved Fe (dFe) concentration and speciation were determined in 
24 coastal subsurface seawater samples collected in the western Ross sea (Antarctica) during the austral summer 2017 as 
part of the CELEBeR (CDW Effects on glacial mElting and on Bulk of Fe in the Western Ross sea) project. ICP-DRC-MS 
was used for dFe determination, whereas CLE-AdSV was used to obtain the concentration of complexed and free dFe, of 
the ligands, and the values of the stability constants of the complexes. Dissolved Fe values ranged from 0.4 to 2.5 nM and 
conditional stability constant (logK’Fe’L) from 13.0 to 15.0, highlighting the presence of Fe-binding organic complexes of 
different stabilities. Principal component analysis (PCA) allowed us to point out that Terra Nova Bay and the neighboring 
area of Aviator and Mariner Glaciers were different in terms of chemical, physical, and biological parameters. A qualitative 
investigation on the nature of the organic ligands was carried out by HPLC–ESI–MS/MS. Results showed that siderophores 
represented a heterogeneous class of organic ligands pool.
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Introduction

Iron (Fe) is the most important trace element in the ocean 
ecosystem, being a micronutrient required for phytoplankton 
growth, and hence involved in marine primary productivity 
and carbon export (Ibisanmi et al. 2011). Given its role in 
primary production, Fe can regulate atmospheric carbon 
dioxide  (CO2) concentration and indirectly the global 
climate system. The oceanic concentration of Fe is low 
(typically < 1 nM in deep waters) which is caused by its 

poor solubility and biological uptake (Liu and Millero 
2002; Abualhaija and van den Berg 2014). Dissolved Fe 
concentration is very low in most of the Southern Ocean, 
with values as low as 50 pM (De Baar et al. 1999), and these 
regions are called high nutrient low chlorophyll (HNLC). In 
particular, these areas are characterized by high concentrations 
of macronutrients, but low amounts of phytoplankton 
biomass, measured in terms of chlorophyll (Chl) concentration 
(Gledhill and Buck 2012). This restriction in phytoplankton 
growth seems to be the result of Fe limitation, in accordance 
with Martin’s iron hypothesis (Martin 1990; Worsfold et al. 
2014), according to which the deficiency of this element is 
the factor responsible for the existence of HNLC areas. Some 
areas of the Southern Ocean have recently been defined as 
“green areas” and “blue desert areas,” based on the average 
concentrations of chlorophyll-a (Chl-a) measured in the 
summer season. Green areas (West Pacific, West Atlantic, and 
West Indian) are characterized by a concentration of Chl-a up 
to 5 mg  m−3; on the contrary in blue desert areas (East Pacific, 
West Atlantic, and East Indian), the Chl-a concentration is 
less than 0.1 mg  m−3. The presence of green and blue desert 
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areas has been linked to the melting rates of sea ice and the 
consequent release of Fe in surface waters. In green areas, the 
melting rate of ice is greater, so macro- and micronutrients 
are released into the water column, allowing phytoplankton 
growth (Meguro et al. 2004).

Almost all dissolved iron (dFe) in seawater is bound to 
organic ligands (L) of largely unknown identity (Gledhill 
and Buck 2012; Buck et al. 2015). These ligands increase the 
solubility of Fe and without them the concentration of dFe 
is thought to be significantly lower, due to the “scavenging” 
phenomena and for the formation and precipitation of Fe 
oxides and hydroxides (Ibisanmi et al. 2011).

Competitive ligand equilibration–adsorptive stripping 
voltammetry (CLE-AdSV) is the most common technique 
to measure the concentration of complexed and free dFe 
together with the concentration and binding strength of 
L (Croot et al. 2004; Gerringa et al. 2008; Laglera and 
Monticelli 2017). On the basis of CLE-AdSV results, L 
are generally referred to as either strong (L1 type) or weak 
(L2 type) ligands, though several additional ligand classes 
have also been reported (Hunter and Boyd 2007; Gledhill 
and Buck 2012; Bundy et al. 2018). However, through 
CLE-AdSV molecular composition of ligands cannot be 
inferred.

On the contrary, high-performance liquid chromatog-
raphy–electrospray ionization–tandem mass spectrometry 
(HPLC–ESI–MS/MS) provides a new powerful approach 
to identifying the unknown ligands involved in dFe specia-
tion. This technique allows the separation of the analytes 
through capabilities of HPLC, and it provides structural 
characterization by MS following the fragmentation pattern 
in the MS/MS spectra (McCormack et al. 2003).

Iron biogeochemistry in the Ross Sea has been investi-
gated in some recent studies, with particular attention to dFe 
(Gerringa et al. 2015a; McGillicuddy et al. 2015; Rivaro 
et al. 2019). Since the Ross Sea is a continental shelf zone, 
dFe inputs are higher than in the open Southern Ocean. In 
addition to vertical mixing and atmospheric inputs, there 
are continental and sediment inputs, intrusion of waters of 
circumpolar origin (Circumpolar Deep Water, CDW) and 
release of material from continental glacial platforms (ice 
shelf) and icebergs (Gerringa et al. 2015b; Henley et al. 
2020). For these reasons, primary production in the Ross 
Sea is estimated to be about 179 g C  m− 2  year−1, which is 
the highest of the coastal regions of the Southern Ocean 
(Arrigo et al. 2008; Smith et al. 2014). Despite this, the 
release rates of Fe during the spring/summer season can be 
limited, affecting primary production and consequently the 
entire phytoplankton community.

The different phytoplankton blooms in the Ross sea occur 
in different seasons and areas. Primesiophytes dominate in 
springtime in the open polynyas of the central-southern 
region, whereas diatoms dominate in summer in the western 

and eastern portion of the Ross sea. The temporal and spatial 
distribution of these groups has been related to the concen-
tration of dFe and the availability of light, in turn linked to 
the presence of ice coverage and vertical mixing (Smith et al. 
2014; Henley et al. 2020).

Basal melting of glaciers (e.g., Nansen, Mariner, and 
Aviator) provides fresh water to the western coastal area the 
Ross sea (Rignot et al. 2013). Glaciers could thus largely 
contribute to the dFe pool, potentially stimulating the bio-
logical pump and therefore to the transfer of  CO2.

The CELEBeR (CDW Effects on glacial mElting and 
on bulk of Fe in the Western Ross sea) project aimed at 
constraining the sources, stocks, and flows of Fe in the 
western Ross sea ecosystem. In particular, the specific 
objectives were to elucidate how the dFe chemical 
speciation controls and is controlled by phytoplankton 
and bacterioplankton communities and how the different 
sources impact Fe speciation and bioavailability for polar 
microorganisms.

Here, we present the distribution of dFe and its chemical 
speciation in the subsurface waters sampled in a well-studied 
system such as Terra Nova Bay (TNB) polynya and in the 
neighboring area of Aviator and Mariner Glaciers (AMG), 
which to date has not been studied in a systematic way. The 
data will be discussed using a multivariate approach that will 
help outlining the correlations among dFe concentration, dFe 
speciation parameters, and biogeochemical patterns. In order 
to better investigate the Fe chemical speciation and cycling, 
we coupled our CLE-AdSV data with HPLC–ESI–MS/MS 
analyses.

To our knowledge, this work is the first study 
that compares voltammetric and mass spectrometric 
measurements of Fe-binding ligands in the western Ross sea.

Materials and methods

Sample collection and processing

Samples were collected onboard the R.V. Italica from the 
ninth to the twenty-first of January 2017 in two different 
coastal sub-areas of the western Ross sea: Terra Nova Bay 
(TNB) and Aviator and Marine Glaciers (AMG) area (Fig. 1, 
Table S1) as part of the Italian National Program of Research 
in Antarctica (PNRA) activities.

A Sea Bird Electronics SBE9/11plus CTD profiler with 
two pairs of temperature-conductivity sensors was employed 
to acquire conductivity, temperature, and depth data. The 
CTD was coupled to a SBE 23 dissolved oxygen  (O2) sensor 
and to a Chelsea Aquatrack III fluorometer for measuring the 
oxygen concentration and the fluorescence, respectively. The 
samples were collected at subsurface (depth 10–40 m) where 
the fluorescence maxima were observed.
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A 5-L teflon-lined GO-FLO bottle (General Oceanics 
Inc.) was used to collect seawater samples for Fe analysis. 
The bottle was deployed on a Kevlar 6-mm diameter line, 
and it was sealed using a polyvinyl chloride (PVC) messen-
ger. After collecting the sample, the bottle was covered with 
plastic bags to reduce contamination.

Two liters of the water samples were collected in 
polyethylene bottles and immediately filtered using 
0.45-µm pore-sized polycarbonate (PC) filters previously 
washed in diluted suprapur hydrochloric acid (HCl) 
(Merck, Darmstadt, Germany) using a clean conditions 
filtration system, limiting filtration time to 1–2 h. This 
custom built filtration apparatus was successfully tested 
for trace metal analysis of Antarctic water samples 
(Rivaro et al. 2011). Aliquots of 200 mL were collected 
and frozen at − 20 °C. Suprapur® 65% nitric acid  (HNO3) 
(Merck, Darmstadt, Germany) was used for the cleaning 
of materials.

A SBE 32 plastic coated carousel sampler was used 
to collect water samples from 24 12-L Niskin bottles for 
 O2, nutrients, and carbonate system parameters. Seawater 
samples for carbonate analyses were collected at selected 
depths and were poured into 500-mL borosilicate glass 
bottles following standard operating procedures (Dickson 
et al. 2007). The samples were poisoned in the container 
with saturated  HgCl2 to stop biological activity. Samples 
were then stored in dark, cold (+ 4 °C) conditions. Sub-
samples for the determination of nutrients (silicate, 
phosphate, nitrate plus nitrite) were collected directly 
from the Niskin bottle, filtered through a 0.7-mm 
GFF filter and stored at − 30 °C in 50-mL low-density 
polyethylene containers, prior to analysis.

Total dissolved iron analysis

Ultrapure water from a Milli-Q system (Millipore, Wat-
ford, Hertfordshire, UK) was used throughout. Trace 
Select® Ultra 65%  HNO3 from Sigma–Aldrich (St. Louis, 
MO, USA) was used for the final stage of the cleaning 
procedure of materials and for the preparation of standards 
and samples.

Under a laminar flow hood, 50.0 g of acidified seawa-
ter sample (pH 1.8) and 500 μL of concentrated  NH4OH 
(Trace Select® Ultra Sigma–Aldrich) were added into an 
acid-cleaned 50-mL centrifuge tube; after 1.5 min, it was 
shaken and left to stand for 3 min. The sample was centri-
fuged at 3000 rpm for 3 min; the supernatant was discarded 
and the pellet was re-dissolved in 5 mL of 1% (v/v)  HNO3.

Inductively coupled plasma mass spectrometer (ICP-
DRC-MS Perkin Elmer-Sciex Elan DRC II, Concord, Ontario, 
Canada) equipped with a PFA-ST microconcentric pneumatic 
nebulizer sample introduction system (Elemental Scientific, 
Omaha, NE, USA), operating with a 20-mL inner volume 
Cinnabar spray chamber (Glass Expansion, Melbourne, 
Australia) was used for dFe determination. Full details of the 
procedure and of the instrumentation used by our research 
group are given in Ardini et al. (2011). The detection limit 
(LOD) of the method was computed as three times the standard 
deviation of 13 blanks. The LOD resulted 0.09 nM, which is 
adequate for our analytical purposes. Accuracy (trueness and 
precision) was verified by the analysis of the Geotraces GS 
seawater reference material. Accurate results were obtained for 
the dFe determination (found concentration 0.500 ± 0.030 nM 
and certified value 0.546 ± 0.046 nM) with an error of 8.42%. 
Precision was satisfactory with RSD% of 5.86%.

Fig. 1  A Positionof the Ross Sea in the Antarctic continent. B Sampling stations of the CELEBeR project for the areas of Terra Nova Bay 
(TNB) and the Aviator and Mariner Glaciers (AMG)
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Since the seawater samples have similar composition, 
calibration was performed by the addition calibration tech-
nique, a simplification of the standard addition method, in 
which the slope obtained for a single representative sample 
is used for the calibration of the other samples (Ardini et al. 
2011; Wu and Boyle 1998).

Iron organic speciation analysis by CLE‑AdSV

Under a laminar flow work area at ambient temperature, 
250 μL of 0.1  mM methanolic solution of 2,3-dihy-
droxynaphtalene (DHN) (Sigma–Aldrich, Saint Louis, 
Missouri, USA) were added to 50  mL homogenized 
sample. Aliquots of 7 mL of the sample/ligand solu-
tion were pipetted in 7 pre-cleaned 15-mL tubes with 
incremental additions of Fe(III) standard solution, with 
approximately four increments in the competition region 
and three increments where ligands are saturated. Sam-
ples were left to equilibrate overnight (ca. 15 h) in the 
dark to prevent the slow oxidation of DHN. Before the 
analysis of each aliquot, 300 μL of 0.4 M potassium 
bromate/0.1 M HEPPS (4-(2-hydroxyethyl)-piperazine-
1-propane-sulfonic acid)/0.05 M ammonium hydroxide 
were added to each sub-sample. Analyses were per-
formed using competitive ligand equilibration–adsorptive 
stripping voltammetry (CLE-AdSV) technique, by using 
884 Professional VA Metrohm (Herisau, Switzerland) 
instrument, according to the following operating condi-
tions:  N2 purge time: 300 s; adsorption potential: − 0.1 V; 
deposition time: 60 s; equilibration time: 8 s; potential 
step time: from − 0.3 to − 0.75 V; scan mode: sampled 
DC; frequency: 10 Hz; voltage step: 4 mV; stirrer speed: 
2000  min−1.

Organic ligands identification by HPLC–ESI–MS/MS

Sample preparation followed the extraction and the 
preconcentration procedures by solid-phase extraction 
(SPE) technique developed by our group in a previous 
study (Rivaro et al. 2021). In particular, 50 mL of sample 
were loaded onto C18 SPE cartridges 500  mg, 3  mL 
(Supelclean™ ENVI™—18, Supelco®). Conditioning 
step consisted in 3  mL of methanol (MeOH, HPLC 
grade, VWR, Radnor, PA, USA) and 3 mL of Milli-Q 
water (Millipore, El Paso, TX, USA) which was 
acidified at pH ~ 2 with HCl (Merck). The solid phase 
was washed by loading 10  mL of acidified Milli-Q 
water and then dried using a  N2 flow for 30 min. The 
elution was carried out with 3  mL of MeOH and the 
eluate dried by  N2 flow, then stored at − 20  °C until 
the analysis. Before the analysis, 50 μL of a 0.1% (v/v) 
formic acid (Carlo Erba Reagents, Milan, Italy) solution 

in water were added to the dry sample. Afterward, 10 
μL of sample were taken and diluted 1:1 with the same 
solution used before, then centrifuged for 5  min at 
13,000 rpm. The structural information of the organic 
ligands was carried out by a micro high -performance 
liquid chromatography–electrospray ionization–tandem 
mass spectrometry (HPLC–ESI–MS/MS) using a HPLC 
1100 series from Agilent Technologies (Santa Clara, 
California, USA) equipped with an autosampler and 
an Agilent Technologies XCT trap LC/MSD mass 
spectrometer, equipped with a high capacity ion trap. 
Full details of the procedure and of the instrumentation 
are given in Rivaro et al. (2021). Ferrioxamine E (FOE) 
(Merck, Darmstadt, Germany) and deferoxamine mesylate 
(DFMO) (Merck, Darmstadt, Germany) were used as 
standards for evaluating the presence of siderophore-
type ligands in our samples based on their MS/MS 
fragmentation pattern. FOE and DFMO are two of the 
few commercial siderophore standards available.

Dissolved oxygen, total alkalinity, pH, and nutrient 
analysis

Winkler method with a potentiometric detection of the end 
point of the titration was used to determine  O2 on board 
(Grasshoff et al. 1983). Automated titroprocessor (Methohm 
719, Herisau, Switzerland) was employed.

Total alkalinity (AT) and pH measurements were carried out 
using the methods described in Rivaro et al. (2010). Routine 
analyses of certified reference materials (batch 191, provided by 
A. G. Dickson, Scripps Institution of Oceanography) ensured 
the precision (± 3 μmol  kg−1) and the accuracy (± 4 µmol  kg−1) 
of the measurements. Potentiometric pH measures employed a 
combination glass/reference electrode with an NTC temperature 
sensor. The pH was expressed on the pH total scale (i.e.,  [H+] as 
moles per kilogram of seawater,  pHT). The tris(hydroxymethyl)
aminomethane (TRIS)/HCl buffer (batch 28, provided by A. 
G. Dickson, Scripps Institution of Oceanography) was used to 
standardize the electrode. The precision of the pH measurement 
was ± 0.007 units and was evaluated by repeated analysis of the 
AT certified material.

Nutrients were determined using a five-channel 
continuous flow Technicon® Autoanalyzer II. The accuracy 
and the precision of the method were checked by certified 
reference material (CRM) MOOS-3 (seawater certified 
reference material for nutrients) (Clancy et al. 2014). The 
precision of the method was estimated by analyzing five 
homogeneous aliquots of the CRM, and it was ± 0.10 μM for 
 NO3

−, ± 0.01 μM for  NO2
−, ± 0.10 μM for  NH4

+, ± 0.30 μM 
for Si(OH)4 and ± 0.07  μM for  PO4

3−. The measured 
nutrients in the CRM MOOS-3 were not significantly 
different (p < 0.05) from the certified values.
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Data processing

The Fe speciation results were obtained following the cal-
culations and the processing proposed by Gerringa et al. 
(2014).

The pH and AT values measured at 25  °C have been 
recalculated at in situ conditions using the  CO2SYS program 
(Pierrot et al. 2006). Equilibrium constants of  CO2 (K1 and 
K2) of Millero et al. (2006) and  pHT scale (Dickson et al. 
2007) together with CTD data (temperature, salinity, and 
pressure) were used for the calculations. In situ CT and  pCO2 
values have been calculated as well.

Principal component analysis (PCA) was applied to the 
dataset in order to explore the correlations between the dFe, 
the Fe speciation data and the measured environmental 
parameters (temperature, salinity, fluorescence,  O2, AT, 
CT, pH,  pCO2, nutrients, Chl-a, and phaeopigments) in 
samples. The data of Chl-a and phaeopigments (Phaeo) 
together with a full description of the physical structure of 
the water column were already published in Bolinesi et al. 
(2020) and Rivaro et al. (2020). Data were normalized by 
log-transformation; then, the data matrix was processed after 
autoscaling the data using the R based software CAT (Leardi 
et al. 2017).

Results

Environmental conditions and biogeochemical 
properties

All data are reported in Table 1. Boxplots of temperature, 
salinity, fluorescence,  O2, AT, pH, nutrients, and dFe are dis-
played in Fig. 2.

Temperature varied from − 1.66 to 1.74  °C at TNB 
and from − 1.31 to 1.03 °C at AMG; salinity from 33.88 
to 34.53 and from 34.06 to 34.47 at TNB and at AMG, 
respectively. The fluorescence provided an indication 
of the abundance of Chl-a, i.e., the abundance of 
phytoplankton, and ranged from 0.412 to 1.489 and from 
0.061 to 0.958 μg  L−1, respectively.

O2 ranged from 9.8 to 12.2 and from 9.8 to 11.9 mg  L−1 
at TNB and AMG, respectively. Almost all stations sam-
pled were near or above the  O2 saturation level (97–111%), 
except station 6 and 37 where the saturation was 83% and 
87%, respectively. Total alkalinity (AT) varied from 2309 
to 2375 μmol kg  sw−1 and from 2312 to 2350 μmol kg 
 sw−1, and pH from 7.98 to 8.29 and from 8.06 to 8.25. All 
 pCO2 values of the subsurface waters were below  pCO2 
atmospheric level (401.0 ppm https:// www. explo rator ium. 
edu/ sites/ defau lt/ files/ files/ South PoleC O2data_ 2020. pdf), 
varying between 210 and 381 µatm, with the lowest values 

calculated at stations 14 and 15. Total inorganic carbon 
(CT) varied from 2115 to 2283 μmol kg  sw−1 and from 
2128 to 2209 μmol kg  sw−1 at TNB and AMG, respec-
tively. TNB was characterized by a wider range of tem-
perature with positive values too and by a wider range of 
salinity than AMG (Bolinesi et al. 2020). These observa-
tions are consistent with fluorescence, pH, and  O2 data. 
Maximum of pH and CT and  pCO2 minima were recorded 
in those stations where both high  O2 and fluorescence val-
ues were found.

Nutrients were never fully depleted in both investigated 
areas; the lowest concentration of  NO3

− and  PO4
3− were 

recorded at station 14 at TNB (9.9 and 0.71 µM, respec-
tively). Nitrate ranged from 9.90 to 23.8 μmol  kg−1 (TNB) 
and from 10.4 to 25.8 μmol  kg−1 (AMG),  PO4

3− from 0.71 
to 1.96 μmol  kg−1 (TNB) and from 0.84 to 1.80 (AMG) and 
silicate from 23.3 to 63.1 μmol  kg−1 (TNB) and from 36.1 
to 61.2 μmol  kg−1 (AMG).

Total dissolved iron and organic speciation analysis

Total dissolved iron and iron speciation data are reported in 
Table 2. Dissolved iron concentrations ranged from 0.4 to 
2.5 nM at TNB area and from 0.5 to 2.0 nM at AMG area, 
respectively. The range is greater than the data reported for 
the open Southern Ocean (Boyd and Ellwood 2010; Ellwood 
et al. 2020), but comparable with the data collected in TNB 
during summer season (Grotti et al. 2001; Rivaro et al. 2012, 
2019). All the samples showed about > 99% of the dFe bound 
to organic ligands (L), in accordance with other Fe specia-
tion studies conducted in the Southern Ocean (Ibisanmi et al. 
2011; Rivaro et al. 2019). Organic ligands ranged from 1.1 
to 6.9 nM for the TNB area and from 1.3 to 7.1 nM for the 
AMG area. No marked differences between the two areas 
were observed and the range was comparable with previous 
speciation studies conducted in TNB polynya (Rivaro et al. 
2019). The concentration of L was always higher than the 
concentration of dFe. The difference between the concentra-
tion of L and dFe defines free ligands (L′), which represents 
the concentration of ligands with sites available to complex 
Fe. A small value of L′ suggests an almost total saturation 
of the available sites. The concentration of L′ displayed a 
wide range of values, from 0.3 to 6.2 nM at TNB and from 
0.2 to 6.3 nM at AMG. Similarly to the other parameters, the 
two sampling sites showed no substantial differences nor a 
common coast-open sea trend. The L/dFe ratio also provides 
information on the saturation state of organic ligands: a value 
close to one corresponds to ligands relatively saturated with 
Fe and indicates a low capacity of the ligands to complex 
and buffer further Fe additions (Thuróczy et al. 2010, 2011). 
On the contrary, a relatively high value (> 5) suggests that 
the ligand pool is undersaturated, and it can therefore buffer 
further Fe additions, increasing the potential solubility of Fe 
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by keeping it in the dissolved phase (Thuróczy et al. 2012). 
The L/dFe ratio ranged from 1.1 and 9.3 for TNB area and 
from 1.1 and 8.8 for AMG area, suggesting highly variable 
conditions among the stations even within the same study 
area. The values obtained are in accordance with previous 
works both for the Terra Nova Bay area and for other regions 
of the Southern Ocean (Boye et al. 2001; Lannuzel et al. 
2015; Rivaro et al. 2019; Gerringa et al. 2019). The logK’Fe’L 
values (13.0–15.0) are similar for the two areas under exami-
nation, highlighting that the Fe is stably complexed with the 
natural organic ligands present in sea waters.

Concerning the HPLC–ESI–MS/MS results, the MS/
MS spectra for DFMO and FOE standard are shown in 
Fig. 3.

With regard to the samples, some peaks present only in 
the samples were identified by comparing the chromato-
grams of the samples with the procedural blank (Fig. 4A). In 
the MS/MS, no losses of the mass characteristic for DFMO 
and FOE standard were observed. On the contrary, the fre-
quent loss of fragments with mass 19, 44, 46, 56, 64 was 
observed (Fig. 4B).

Relationships between environmental features 
and dissolved iron speciation

Differences and similarities among the stations sampled 
in both areas were outlined through PCA. Two principal 
components were identified: PC1 explained 39.8% of 
the total variance, while PC2 explained a further 20.7%. 
Temperature, pH, and  O2 loaded on the negative values of 
PC1 and positive values of PC2, while nutrients, CT and 
 pCO2 loaded on the positive values of PC1 and negative 
values of PC2 and, in particular, these variables were 
negatively correlated. On the contrary, fluorescence, Chl-
a and Phaeo, salinity, AT together with speciation data 
mainly loaded on the PC2. The loadings of the variables 
showed that L, L′, and L/dFe were negatively correlated 
with the other speciation parameters (dFe and logK’Fe’L) 
(Fig. 5A). As shown in the score plot (Fig. 5B), AMG and 
TNB stations essentially form two groups. In particular, 
the AMG stations are mainly distributed in the positive 
part of PC1 and those of TNB in the negative part and 
these also have a greater distribution along PC2. Moving 
along PC2, it is possible to observe that L concentration 
decreases from station 22 to station 15 and the logK’Fe’L 
decreases from station 15 to station 22. The score plot 
highlights that some samples (stations 2 and 6) did not fall 
into the clusters of samples collected at TNB. Station 2 
was characterized by the highest dFe, fluorescence,  PO4

3−, 
AT, CT, and  pCO2 and by the lowest  O2, temperature and 
pH. Station 6 had values intermediate between those of 
station 2 and those of the TNB cluster.

Discussion

The evaluation of the dependence of Fe speciation on 
physical and biological variables is one of the objectives 
of the CELEBeR project. The AMG area extends from 
the Aviator Ice tongue to the Mariner Ice tongue near 
Coulman Island. TNB is bounded by three steep glacier 
valleys, the Reeves Glacier and Priestley Glacier draining 
into the Nansen Ice Sheet (NIS) and the David Glacier 
terminating in the Drygalski Ice Tongue (DIT) (Rivaro 
et al. 2020). The TNB area has been extensively studied 
for years by the international scientific community due 
to its relevance in terms of primary production during 
the summer time (Saggiomo et al. 1998; Tremblay and 
Smith 2007; Smith et al. 2010; Mangoni et al. 2017). 
Phytoplankton blooms develop later in the year than in 
the Ross sea polynya, and they are dominated by diatoms 
(Saggiomo et al. 2017). Instead, the AMG area, despite 
being close to TNB, was investigated for the first time in 
a systematic manner during the CELEBeR project and 
therefore the data discussed in this work constitute the 
first available dataset.

Relationship between iron and coastal 
biogeochemistry in the Ross Sea

Physical and biological characteristics of the surface waters 
and the circulation patterns of both areas during the sam-
pling have been already reported and discussed in Bolinesi 
et al. (2020), Rivaro et al. (2020), and Zaccone et al. (2020). 
TNB and AMG presented different physical and biogeo-
chemical properties although neighboring coastal systems. 
The PCA highlighted a transition (Fig. 5A and B) leading to 
the separation of samples collected at TNB (that have low 
nutrients concentration, CT and high pH, temperature, and 
 O2 samples) from those collected at AMG. The distribu-
tion of the samples of TNB along PC2, on which fluores-
cence, Chl-a, Phaeo, and Phaeo/Chl-a ratio mainly weigh, 
highlights the higher contribution of biological activity in 
this area in defining the chemical properties. TNB was first 
sampled, and the sampling time was very short (13 days). 
As a consequence, the PCA results do not reflect the typical 
evolution of biogeochemical parameters accompanying the 
seasonal phytoplankton bloom from earlier in season (AMG) 
to later in season (TNB).

The range of dFe was lower than the particulate iron (pFe) 
measured in the same samples (from 0.41 to 8.70 nM) and, 
similarly to pFe, a coast-open sea trend was not found, con-
firming the spatial heterogeneity (Rivaro et al. 2020). The 
higher dFe concentration found in the subsurface waters 
compared to offshore waters can reflect a different input 
either from land or from ice melting. The combination of 
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salinity with δ18O allowed us to establish that sea ice melt-
ing was relevant in many stations except for stations 2, 6, 
7, 15, 16, 17, and 19 in TNB (Rivaro et al. 2020). On the 
contrary, it was not relevant for most of the stations in AMG 
area. These observations supported the hypothesis drawn 
by Bolinesi et al. (2020) on the role of the thickness and 
stability of the upper layer of the water column in determin-
ing the observed different distribution of phytoplankton in 
the two areas. The low correlation (Spearman correlation) 
between dFe and S and dFe and δ18O (p = 0.762, r =  − 0.069 
and p = 0.084, r =  − 0.360, respectively) seemed to suggest 
different sources of dFe for the surface waters. The high 
dFe concentration measured in stations 20 and 21 can have 
been released from sea- ice melting, whereas in station 2, 
characterized by a high salinity value, other sources such as 
atmospheric fall out or remineralization from organic mat-
ter in the upper mixed layer could have added Fe. TNB is 
defined as a coastal polynya, i.e., an area of sea that remains 
substantially ice-free throughout the year, due to the action 
of katabatic winds. Wind transport could therefore represent 
an additional source of iron for surface waters with.

Taxonomic variability in nitrogen (N), phosphorus 
(P), and silica (Si) drawdown ratios can have important 
biogeochemical implications. Si:N and N:P ratios were 
calculated plotting the  NO3 +  NO2 +  NH4 concentration 
versus the Si(OH)4 or  PO4

3− concentration. The slope 
of the Si:N disappearance ratio resulted in 2.1 and 1.1 
for TNB and AMG respectively. The slope of the N:P 
disappearance ratio resulted in 9.1 and 17.6 for TNB and 
AMG respectively. The TNB ratio is consistent with the 
values reported for diatoms dominated waters, whereas the 
AMG value suggests lower diatoms and higher haptophytes 
contributions to phytoplankton biomass. PCA score plot 
shows that the biogeochemical features of stations 28 and 
33 are more similar to samples from TNB than those from 
AMG. This is confirmed by the N:P ratio that resulted 
significantly lower (11.2) than that calculated for AMG and 
closer to the TNB ratio.

The algal assemblage composition together with the 
physiological strategy of the micronutrient uptake condi-
tion the Si:N ratio value. In fact, Phaeocystis sp. does not 
assimilate silicic acid, whereas diatoms require silicic acid 
for the production of biogenic silica frustules. Moreover, the 
Si:N uptake ratio is about 1 under Fe-replete conditions, but 
it increases to values above 2 under Fe-deplete conditions, 
because the nitrate uptake is reduced (Hutchins and Bruland 
1998). Thus, the observed Si:N ratio suggests that TNB was 
near to Fe-depletion during our sampling despite the high 
dFe concentration. On the contrary the AMG area seems 

Fe-replete. This hypothesis can be supported by the results 
of Bolinesi et al. (2020) who found a slightly higher Phaeo/
Chl-a ratio in TNB than in AMG (Bolinesi et al. 2020).

Implication of the iron speciation for iron 
bioavailability

One of the problems in the study of Fe speciation in natu-
ral waters is the identification of organic ligands. Several 
compounds have been included such as siderophores, pig-
ment-like compounds including the heme group, humic 
substances, and polysaccharides. However, their relative 
importance in the Fe speciation, biogeochemistry, and 
bioavailability has not been completely defined (Laglera 
et al. 2020). Electrochemistry is one of the method most 
often employed for metal speciation studies in seawater. 
The CLE-AdSV has been used to estimate the Fe-binding 
capacity of ligands. The concentration of ligands and the 
conditional stability constant of their Fe complexes depend 
on the chosen artificial ligand and on the composition of 
the sample matrix. Thus, we must consider that the data 
obtained with different artificial ligands could be different 
accordingly to the used artificial ligands. Moreover, the 
CLE-AdSV gives information on the Fe-binding capac-
ity of seawater at pH, temperature, and dFe concentration 
of the sample (Gerringa et al. 2021). Ligands concentra-
tion was always higher than the dFe concentration, and it 
displayed a coastal-offshore increasing gradient at TNB. 
The L/dFe ratio had values between 1 and 5 in almost 
the majority of the samples, outlining an intermediate 
condition between saturation and undersaturation of the 
ligands. Nevertheless, stations 2, 15, 31, and 37 had L/
dFe values of about 1 and low values of L′, implying that 
in these samples the Fe-binding sites are unavailable for 
Fe complexation. On the contrary, stations 3, 7, 22, 23, 
and 28 displayed L/dFe above 5 and the highest L′ values 
suggesting that all Fe-binding sites were unsaturated. The 
high L/dFe values are the consequences of the highest L 
concentration and of the lowest dFe concentration. In any 
case, the stability of the dFeL complexes is outlined by the 
high logK’Fe’L values (13.8 ± 0.6).

Generally, logK’Fe’L values (13.0–15.0) were higher 
than those obtained from the analysis of samples collected 
in the same area in previous surveys (12.1–13.6) (Rivaro 
et al. 2019). The highest logK’Fe’L were calculated for the 
coastward stations of TNB (stations 2, 6, and 15), suggest-
ing the presence of particularly stable complexes between 
Fe and natural ligands in sea water. According to the Fe-
binding affinity, the ligands can be divided into different 
classes: L1 includes stronger ligands, with logK’Fe’L = 12–13 
or higher, while L2 to L4 types gather weaker ligands, with 
logK’Fe’L = 10–12 or lower (Vraspir and Butler 2009; 
Ibisanmi et  al. 2011). From the values obtained in this 

Fig. 2  Horizontal distribution of A fluorescence (μg  L−1); B dis-
solved oxygen  (O2, mg  L−1); C pH; D total inorganic carbon (CT, 
µmol kg sw.−1); E nitrate  (NO2 +  NO3, µM); F silicate (Si(OH)4, µM)

◂
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Table 2  Total dissolved iron concentration and iron speciation data

Station Area dFe (nM) L (nM) logK’Fe’L SDd SDup L′ (nM) L/dFe Fe' (pM) FeL (%) logαFe’L

2 TNB 2.5 2.8 ± 0.1 15.0 ± 0.5 NA 0.38 0.3 1.1 0.01 99.9 16.4
3 TNB 0.8 5.4 ± 0.1 13.3 ± 0.1 0.13 0.10 4.6 6.9 0.01 99.9 15.1
6 TNB 0.8 1.1 ± 0.1 14.7 ± 0.4 NA 0.40 0.3 1.4 0.01 99.9 15.8
7 TNB 0.6 5.3 ± 0.1 13.3 ± 0.1 0.06 0.06 4.7 9.1 0.01 99.9 15.0
9 TNB 0.8 2.2 ± 0.1 13.5 ± 0.4 0.64 0.26 1.3 2.6 0.02 99.9 14.8
12 TNB 1.2 1.6 ± 0.1 14.5 ± 0.5 0.74 0.26 0.4 1.4 0.01 99.9 15.7
14 TNB 0.9 1.9 ± 0.1 13.8 ± 0.1 0.23 0.15 1.0 2.2 0.02 99.9 15.0
15 TNB 1.4 1.7 ± 0.1 15.0 ± 0.4 NA 0.65 0.3 1.2 0.01 99.9 16.3
16 TNB 0.9 3.9 ± 0.1 13.5 ± 0.1 0.14 0.10 3.0 4.3 0.01 99.9 15.1
17 TNB 1.3 2.4 ± 0.1 13.8 ± 0.1 0.17 0.12 1.1 1.8  < LOD 99.9 15.2
19 TNB 1.0 2.6 ± 0.1 13.6 ± 0.5 0.71 0.26 1.5 2.5 0.01 99.9 15.0
20 TNB 1.5 3.9 ± 0.1 13.8 ± 0.1 0.12 0.09 2.4 2.7 0.01 99.9 15.4
21 TNB 1.7 3.6 ± 0.1 13.7 ± 0.1 0.20 0.14 1.9 2.1 0.02 99.9 15.3
22 TNB 0.8 6.9 ± 0.1 13.2 ± 0.1 0.10 0.08 6.2 9.3 0.01 99.9 15.0
23 TNB 0.4 2.8 ± 0.1 13.3 ± 0.0 0.64 0.24 2.4 7.1 0.01 99.8 14.7
27 AMG 1.1 1.6 ± 0.1 14.5 ± 0.1 0.88 0.27 0.5 1.4 0.01 99.9 15.7
28 AMG 0.8 7.1 ± 0.2 13.4 ± 0.1 0.05 0.05 6.3 8.8 0.01 99.9 15.3
30 AMG 0.5 2.3 ± 0.2 13.4 ± 0.2 0.57 0.25 1.8 4.7 0.01 99.9 14.8
31 AMG 2.0 2.4 ± 0.1 14.1 ± 0.4 0.20 0.14 0.4 1.2 0.04 99.9 15.4
32 AMG 0.9 3.2 ± 0.1 13.5 ± 0.1 0.60 0.34 2.2 3.4 0.04 99.9 15.0
33 AMG 0.7 2.7 ± 0.2 13.0 ± 0.4 NA 0.41 2.0 3.7 0.01 99.8 14.5
34 AMG 0.6 2.2 ± 0.1 13.5 ± 0.2 0.34 0.18 1.7 4.0  < LOD 99.9 15.9
35 AMG 0.9 2.8 ± 0.1 13.4 ± 0.1 0.28 0.17 1.8 3.0 0.02 99.9 14.9
37 AMG 1.1 1.3 ± 0.1 13.4 ± 0.5 NA 0.57 0.2 1.1 0.01 99.9 16.1

Fig. 3  MS/MS spectra of defer-
oxamine mesylate (DFMO) and 
ferrioxamine E (FOE)
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study, it can be stated that the ligands present in our samples 
belong to class L1.

Similarly to what found by Gerringa et al. (2019) in the 
Ross sea polynya and the eastern Ross sea shelf area, no cor-
relation between both L and Chl-a and L and fluorescence 
was evidenced. On the contrary, the positive and significant 
correlation between L and Phaeo/Chl-a ratio (r = 0.512; 
p = 0.013) suggested that dFe-binding organic ligands could 
be released during grazing. In fact, an increase of Phaeo/
Chl-a ratio suggests an advanced bloom phase and/or and 
increasing of grazing, since phaeopigments are a decom-
position product of Chl-a. This observation is depicted in 
Fig. 6, where ligand concentrations, L/dFe ratio and Pheo/
Chl-a ratio are compared at three stations (15, 20, and 22) 
in the TNB area selected based on PCA results.

Grazing has recently shown to be important for the recy-
cling of dFe in Antarctic waters. Laglera et al. (2020) in the 
course of the Fe fertilization experiment hypothesized that 
during the grazing stage, sloppy feeding while copepod graz-
ing of cells and pellets was the major process of release of 
dFe and ligands mostly in the form of strong  FeL1 complexes 
(Laglera et al. 2020). Moreover, high phytoplankton activity 
may influence the organic matter (OM) availability and, in 
turn, the prokaryotic activity, which can release Fe-binding 
ligands (Hassler et al. 2011). Grazing processes can thus not 
only remineralize biogenic Fe, but also alter the chemical 
speciation of Fe in marine waters, greatly affecting phyto-
plankton species composition during phytoplankton bloom 
particularly in Fe-limited waters (Sato et al. 2007). Similarly 
to the Hassler et al. (2017) study, in a previous survey car-
ried out in TNB, we have found that ligand distribution did 
not co-vary with Chl-a concentration, but it negatively and 
significantly co-varied with prokaryotic biomass, suggesting 
a role of microbial activities in determining L distribution 
(Rivaro et al. 2019).

The metabolic activity of prokaryotes involved in the 
biogeochemical cycles was investigated in the framework 
of CELEBeR project activities (Zaccone et  al. 2020). 
Dissolved organic matter (DOM) was not included in the 
sampling strategy, and we have only few data that refers 
to dissolved organic carbon. On the contrary, key micro-
biological parameters (the proteasic, glucosidasic, and 
phosphatasic activities; the prokaryotic abundance; and 
biomass) were evaluated in relation to quantitative and 
qualitative characteristic of particulate organic matter. 
High variability of the microbial parameters was observed 
with the highest prokaryotic biomass in the coastward sta-
tions (Zaccone et al. 2020).

Many authors have hypothesized that the strongest 
ligands often found in natural seawater are siderophores 
exudated by prokaryotes (Vraspir and Butler 2009, 
Gledhill and Buck 2012; Laglera et  al. 2020). This 
hypothesis is consistent with the high prokaryotic 

biomass and with the dominance of diatoms in 
phytoplankton biomass found during the CELEBeR 
sampling. In fact, diatoms exploit particular and 
complex metabolic strategies to uptake Fe complexed 
to strong ligands (Gao et al. 2021). The uptake involves 
endocytosis of the siderophore type of complex within 
the cell, after reducing the complexed Fe, next to the 
chloroplast (Kazamia et  al. 2018). In particular, Fe 
starvation–induced protein 1 (ISIP1) was identified 
through reverse genetic, and considered necessary for the 
endocytosis and assimilation of the siderophore (Coale 
et al. 2019).

An effort has been done in order to deeply investigate the 
presence of siderophore-like ligands by HPLC–ESI–MS/
MS analyses. The analyses were carried out on the samples 
collected in TNB due to the higher biological effect on 
the Fe speciation parameters highlighted by PCA results 
than in AMG. We used DFMO and FOE as siderophore 
standards during the development of our method on the 
basis of the study by Mawji et al. (2008) who analyzed by 
HPLC–MS/MS subsurface samples of Atlantic waters and 
found hydroxamate-type siderophores. Nevertheless, we 
did not observe the loss of the fragments characteristic of 
DFMO and FOE in our MS/MS spectra. Therefore, we can 
exclude the presence of these specific siderophore struc-
tures in our samples. However, we observed a frequent loss 
of fragments having mass 19, 44, 46, 56, 64 similarly to 
that found by Zajdowicz et al. (2012) for an heterogeneous 
class of siderophores containing two citric acid subunits, 
with the central α-hydroxycarboxylic acid moiety of each 
citrate serving as an iron-complexing ligand (Budzikiewicz 
2005). We are not yet able to quantify the contribution of 
this class of substances to the pool of organic ligands, but 
at this stage we can only hypothesize their nature based on 
the comparison of conditional stability constants values 
and MS/MS results.

The chromatograms and MS/MS spectra did not show 
signals characteristic of extracellular polymeric substances 
(EPS). These are an important component of the DOM in 
the sea ice, playing several biological roles (Krembs et al. 
2002). They are mainly composed by carbohydrates and 
they have affinity for Fe, influencing its biogeochemical 
cycle, speciation, and bioavailability (Gledhill and Buck 
2012; Rivaro et al. 2021). Thus, EPS-rich meltwaters could 
enhance the concentration of bioavailable Fe in the surface 
waters supporting high levels of primary production. The 
results available in the literature obtained by CLE-AdCSV 
give different insights regarding the class of ligands to 
which EPSs belong, depending on the logK’Fe’L values 
obtained. For example, Hassler et al. (2011) assign them 
to class L2–L4, whereas Norman et al. (2015) consider them 
borderline between class L1 and L2. Since the ligands in 
our samples belong to the L1 class, with logK’Fe’L values 
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greater than 13, we can assume that the contribution of 
EPS to the ligand pool is not relevant. Furthermore, the 
sampling took place in mid-January, when the pack was 
already melted, and the DOM released into the surface 
waters. We can assume that the EPS being mostly 
composed of polysaccharides were rapidly consumed by 
microorganisms as part of the labile fraction of the DOM 
(Biersmith and Benner 1998). These findings agree with 
the absence of correlation found between L, dFe, and sea 
ice meltwater and with the calculated logK’Fe’L.

Conclusion

The distribution of dFe and its speciation in the subsurface 
waters sampled in coastal areas of the western Ross 
sea during austral summer 2017 was investigated. In 
particular, the study was done on the well-studied site 
of TNB polynya and on the neighboring area of AMG, 
which to date has not been studied in a systematic 
way. The chemometric approach to the analysis of the 
biogeochemical dataset outlined that TNB and AMG 

area were different in terms of chemical, physical, and 
biological parameters and confirmed the general higher 
role of the biological activity at TNB than at AMG, 
although close coastal systems.

The high dFe concentration found in both investigated 
areas reflected the Fe input either from land or from ice 
melting. The spatial heterogeneity and complexity in Fe 
distribution and speciation at a horizontal length scale of 
about 10 km found in a previous study has been confirmed. 
The Si:N ratio suggested that TNB was near to Fe depletion 
during our sampling despite the high-dFe concentration, 
whereas the AMG area seemed Fe replete.

The study of the organic speciation is a key factor in 
understanding the biogeochemical cycle of Fe in the shelf 
area of the western Ross sea, which is one most productive 
area of the Southern Ocean. CLE-AdSV results showed 
high L concentration and very high logK’Fe’L values, 
which suggested a high stability of the Fe complexes. The 
positive and significant correlation between L and Phaeo/
Chl-a ratio suggested that dFe-binding organic ligands 
could be released during grazing.

For the first time, a coupling between voltammetric and 
mass spectrometry data has been carried out in studying the 
Fe speciation in the western Ross sea. HPLC–ESI–MS/MS 
analyses helped us to better understand the nature of the 

Fig. 4  A Chromatogram of a seawater sample (black) and of the pro-
cedural blank (grey); B MS/MS spectra of some extracted ions

◂

Fig. 5  A Loading plot and B score plot obtained from the PCA analy-
sis of the environmental analytical dataset of the TNB and AMG 
areas. The following abridgements were used for the variables: dis-
solved oxygen  (O2), phosphate  (PO4.3−), nitrate  (NO2 +  NO3), silicate 

(Si(OH)4), total inorganic carbon (CT), total alkalinity (AT), chloro-
phyll-a (Chl-a), phaeopigments (Phaeo), dissolved iron (dFe), free 
dFe (Fe’), organic ligands (L), and free organic ligands (L’)
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highly stable L highlighting the presence of a heterogeneous 
class of siderophores in organic ligands pool. Unfortunately, 
due to the lack of siderophore standards, we could not 
quantify the contribution of this class of substances, but we 
could only hypothesize their nature based on the comparison 
of stability constants values and MS/MS results.

However, our data open a window to better understand the Fe 
biogeochemical cycle and speciation in the Antarctic seawater 
that could be useful to predict changes in Fe availability in 
the future. In fact, climate-driven changes in the productivity 
biomass of phytoplankton and microbial communities are 
virtually certain to impact Ross sea Fe biogeochemistry, by 
modifying the balance among biological uptake, chemical 
speciation, vertical export, and organic matter recycling.

Supplementary Information The online version contains supplemen-
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