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Abstract
In Turkey, facilities for the use of biomass resources in energy production are increasing, and new conversion facilities are 
commissioned every year to provide environmentally friendly energy production. Therefore, reliable energy potential esti-
mates are needed. In this study, the animal manure-based-biogas potentials of Antalya, Isparta, and Burdur provinces in the 
Western Mediterranean Region of Turkey were calculated. Here, special information on cattle, small ruminants, and poultry, 
and animal age, number, and manure amount information were used in detail. In addition, carbon dioxide emissions, coal, 
electricity, and thermal energy, methane emission values with the Tier 1 and Tier 2 approaches were calculated and predicted 
by machine learning algorithms. To determine the model with the best results, machine learning algorithms support vector 
machine (SVM), multi-layer perceptron (MLP), and linear regression (LR) were used, and hyper-parameter optimization 
was performed. According to the results of biogas potential, CO2 emission, electricity production, and thermal energy esti-
mations SVM models are seen as the best models with R2 = 0.999. When the coal amount estimation is examined, the LR 
models produce better results than SVM and MLP with R2 = 0.997. In the estimation of CH4 using the Tier 1 approach, the 
MLP model can perform the best estimation with R2 = 0.977. In the CH4 modeling obtained using the Tier 2 approach, the 
LR models were superior to the other models with the performance value of R2 = 0.962.
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Introduction

In recent years, population growth and technological devel-
opments have led to an increase in global energy demand. 
Fossil fuels account for about 80% of the world’s current 
energy supply (Safieddin Ardebili 2020; Khoshgoftar 
Manesh et al. 2020). In recent years, there has been an 

increase in greenhouse gases as a result of the widespread 
use of fossil fuels. Greenhouse gases are known to cause 
significant changes in the global climate. It is also clear that 
fossil fuels will run out in the future (Alatzas et al. 2019; Le 
et al. 2020). Renewable energy is the fourth largest energy 
source after oil, coal, and natural gas; and its use is increas-
ing (Razmjoo et al. 2021; Aravani et al. 2022). Many devel-
oped countries are actively using fuels such as biogas and 
biochar and are becoming less dependent on fossil fuels 
(Chowdhury et al. 2020; Zamri et al. 2021; Siddiki et al. 
2021). The conversion of waste materials into biogas is a 
biological process. As a sustainable carrier, biogas usually 
consists of methane (CH4) (35–40%) and carbon dioxide 
(CO2) (60%). It also contains various gases such as ammo-
nia, hydrogen sulfide, hydrogen, oxygen, nitrogen, and car-
bon monoxide (Khalil et al. 2019; Pramanik et al. 2019; 
Zabed et al. 2020; Ramírez-Islas et al. 2020).
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Renewable energy and biomass from animal 
manure in Turkey

Turkey is geographically and climatically a suitable area 
for energy production from renewable sources such as 
wind, solar, and hydroelectricity. From a technical point 
of view, hydroelectric energy in Turkey has 1.5% of the 
world’s theoretical potential, as well as 17.6% of the Euro-
pean potential. As of the end of July 2022, there are 750 
hydroelectric power plants in the country. Turkey attaches 
great importance to energy production based on hydro-
electricity due to its geographical location and water 
resources. In terms of renewable energy, the largest share 
of the average electricity production is hydroelectric power 
plants (RTME and NR 2022). According to the Electric-
ity Transmission Company, the ranking of Turkey’s gross 
electricity production by primary energy sources as of 
2020 is as follows: 78,094 GWh hydroelectric, 70,931 
GWh natural gas, 67,873 GWh hard coal and imported 
coal, 45,806 GWh geothermal/wind/solar, 37,938 GWh 
lignite, and 5736 GWh renewable wastes and waste heat 
(Erdin and Ozkaya 2019). Different incentives are given to 
businesses that produce from different renewable energy 
sources to reduce carbon emissions and energy costs in 
Turkey. For 2022, 7.3 dollars/cent for wind and hydro-
electric, 10.5 dollars/cent for geothermal, and 13.3 dollars/
cent for biomass and solar energy incentives were provided 
(TETC 2021; EPDK 2022; MI and T 2022; RTME and 
NR 2022). Data on electricity generation based on renew-
able resources obtained from the Electricity Transmission 
Company are given in Fig. 1 (TETC 2021; Ocak and Acar 
2021; IEA 2022).

Turkey’s electricity demand is expected to reach 424 
TWh in 2023. It is aimed that the share of production 
from renewable energy sources will be at least 30% by 
2023. Turkey’s biomass waste potential is approximately 
8.6 Mt oil equivalent (MTEP), and the amount of biogas 
that can be produced is 1.5–2 MTEP (Melikoglu 2017; 
Rincon et al. 2019; Ocak and Acar 2021). In this context, 
the use of biomass as an alternative source to meet the 
increasing energy demand and reduce the dependence on 
foreign conventional sources deserves detailed analysis 
(Bakay and Ağbulut 2021; Yurtkuran 2021; Şenol et al. 
2021). It is noteworthy that Turkey has significant biomass 
potential as it is the world’s 7th largest agricultural bio-
mass producer. The International Energy Agency estimates 
that the total installed power of biomass power plants in 
Turkey will increase by 630 MW from 2020 to 2025 (Erdin 
and Ozkaya 2019; TETC 2021; Erat et al. 2021; IEA 2022; 
Gündoğan and Koçar 2022).

As of 2022, Turkey’s population is over 84.5 million. 
Depending on the diversity of climate, vegetation, and 

landforms, many animal husbandry species have devel-
oped in Turkey. Cattle, small ruminants, poultry, beekeep-
ing, silkworm breeding, and fishing are the main types 
of livestock (IOPRT 2021; World Bank 2021). In 2021, 
there are 18,240,000 cattle, 57,519,000 small ruminants, 
and 98,115,000 poultry in Turkey (TUIK 2022). Modern 
techniques have been developed for animal husbandry in 
populated cities. Small ruminants in the country are sheep, 
hair goats, and angora goats. Sheep breeding is generally 
found in the interior of Turkey. While hair goat breeding 
is carried out throughout Turkey, Angora goat breeding 
is carried out in the Mediterranean region. (Font-Palma 
2019; Şenol et al. 2021; Ilbas et al. 2022). From the point 
of view of the enterprise, the number of cattle breeding 
enterprises registered in the Turkvet Animal Registra-
tion System in Turkey is 1,295,632, and the number of 
sheep and goat breeding enterprises is 444,446 (World 
Bank 2021; RTMAF 2022). Livestock has a significant 
share in Turkey’s greenhouse gas emissions. Therefore, 
it is aimed to find innovative approaches and solutions to 
reduce greenhouse gas emissions from manures. Sustain-
able manure management systems should be implemented 
on farms that reduce the risk to the environment and allow 
the storage, transportation, and use of manure. Animal 
manure is a type of biomass and biogas can be produced. 
When using the obtained biogas, digested substrate or 
decay product residues can also be used as a valuable fer-
tilizer (Cheng et al. 2021; Karaaslan and Gezen 2022). It is 
estimated that Turkey’s natural gas need will reach 73,400 
Mm3 in 2026. Therefore, the country aims to reduce natu-
ral gas imports and increase biogas production. In case 

Fig. 1   The proportion of renewable energy sources in electricity gen-
eration for Turkey
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of effective use of agricultural and animal waste poten-
tial, natural gas can be saved and imports can be reduced 
significantly (Melikoglu and Menekse 2020; Gündoğan 
and Koçar 2022). The number of power plants producing 
electricity from biomass in Turkey is 199. As of 2022, 
the capacity of the 106 biogas power plants operating in 
Turkey is approximately 588 MW, contributing 1.21% of 
the installed power capacity.

Livestock production in the Western Mediterranean 
Region, Turkey

The Western Mediterranean Region includes the provinces 
of Antalya, Burdur, and Isparta, designated TR61 in IBBS 
Level 2. With an area of 36,797 km2, the region constitutes 
approximately 4.7% of Turkey’s area and 3.8% of its popu-
lation. The total population of Antalya, Isparta, and Bur-
dur is 3,134,694. While the annual population growth in 
Turkey was 14.7 per thousand in 2018; this value was 25.9 
per thousand in Antalya, 17.3 per thousand in Isparta, and 
19.3 per thousand in Burdur. According to 2018 data from 
Turkstat, 1.20% of the total animal products value was per-
formed by Antalya, 1.57% by Burdur, and 0.95% by Isparta 
province (RTMAF 2018; TUIK 2022). Animal husbandry 
in the region is generally in the form of small-scale family 
businesses and is carried out together with plant produc-
tion activities. This situation limits professionalization in 
animal production. Animal shelters feature closed and fixed 
attachment. The Mediterranean region accounts for 4% of 
the country’s sheep and goat population. In addition, the 
region ranks 9th among Level 2 regions in terms of sheep 
and goat population (WMDA 2022). In 2018 for Antalya, it 
was reported that the number of cattle was 85,833 (55.99% 
pure culture, 32.22% cultural hybrids, 6.57% native, 5.06% 
hybrid, 0.05% buffalo), and the number of small ruminants 
was 1,245,651 (39.65% sheep, 60.35% goat). In addition, the 
number of poultry was 530,582 (92.25%-layer hen, 0.87% 
duck and guinea fowl, 1.8% goose, 5.15% turkey). The live-
stock support for Antalya in 2018 was 69,491,039 Turkish 
lira. In addition, 445 cattle and 1190 sheep and goats were 
donated to Antalya within the scope of the young farmer 
project (TUIK 2022). Approximately 70% of the population 
of Burdur is engaged in agriculture and animal husbandry. 
Culture breed cattle constitute 98.4% of the cattle. There are 
23,000 registered farmers and 16,000 active livestock enter-
prises in the province. According to Turkstat data, there are 
14,810 cattle and 5902 small ruminant farms in Burdur. The 
livestock support for 2018 in Burdur was 67,019,939 Turkish 
lira. For 2018 in Burdur, the number of cattle was 222,843 
(89.69% pure culture, 8.84% culture cross, 0.46% native, 
and 0.85% crossbreed), and the number of small ruminants 
was 410,449 (45.07% goat, 54.92% sheep). The number of 

poultry was 205,813 in Burdur (4.46% turkey, 0.54% goose, 
0.2% duck and guinea fowl, 96.71% laying hen). In addi-
tion, 515 cattle and 1020 small ruminants were donated to 
Burdur within the scope of the young farmer project in 2018 
(TUIK 2022). In Isparta for 2018, the number of cattle was 
145,012 (65.80% pure culture, 15.79% culture cross, 15.17% 
native, 3% hybrid, and 0.21% buffalo), and the number of 
small ruminants was 491,550 (56.9% sheep, 43.10% goat), 
the number of poultry was 445,574 (3.42% turkey, 0.42% 
goose, 0.80% duck and guinea fowl, 95.34% laying hen). 
According to the data of the Turkish veterinary information 
system, there were 13,223 cattle and 4577 small ruminant 
enterprises in Isparta. Four hundred ninety cattle and 1020 
small ruminants were donated to Isparta within the scope of 
the young farmer project in 2018 (TUIK 2022).

Related studies in the literature

In the literature, there are studies on theoretical and experi-
mental biogas calculations for various countries and regions 
of the world. There are also studies involving artificial intel-
ligence in biogas calculations. Some of these recent studies 
are given here. In addition, studies on biogas in Turkey are 
also included at the end of this section. Nejafi et al. (Najafi 
and Faizollahzadeh Ardabili 2018) used ANFIS and ANN 
models to predict small-scale biogas production and stated 
that ANFIS gave better results. Avcıoğlu et al. (Avcıoğlu 
et al. 2019) calculated the energy potential of agricultural 
biomass residues in Turkey. It has been stated that the total 
agricultural residue in Turkey is 75,084 kt and the theo-
retical energy potential is 998,473 TJ. De Clercq et al. (De 
Clercq et al. 2019) created a machine learning model that 
can predict biogas output based on waste input to improve 
production in the industry. The machine learning model used 
consists of logistic regression, SVM, random forest, extreme 
gradient boosting, and k-near neighbor regression. Beltramo 
et al. (Beltramo et al. 2019) used an optimized ANN model 
to predict the biogas production rate of an agricultural biogas 
plant. Bao et al. (Bao et al. 2019) calculated China’s animal 
manure-based biogas potential. It has been estimated that 
China’s biogas potential was 61,000 Mm3 in 2015 and could 
be between 86,000 and 110,000 Mm3 in 2030. Melikoğlu 
and Menekşe (2020) estimated 2140 Mm3 biomethane 
amount from cattle and sheep manure for 2026 in Turkey. 
It is reported that in 2026, it can meet approximately 2.9% 
of the country’s natural gas needs. Stolarski et al. (Stolarski 
et al. 2020) examined the development of bioenergy tech-
nologies in some European countries. It has been determined 
that the greatest potential for agricultural biomass is in Ger-
many and Poland. It was stated that 92% of the biogas plants 
are in Germany. Oliveira et al. (Oliveira et al. 2020) exam-
ined the energy potential of manure and municipal waste in 
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Brazil. In the study, a mathematical model based on mul-
tiple LR was created to predict the electricity generation 
potential. Elmaz et al. (Elmaz et al. 2020) used the machine 
learning method to predict the results of biomass gasifica-
tion. In the study, polynomial regression, SVM, decision tree 
regression (DTR), and multilayer heuristics methods were 
used. MLP and DTR showed the best performance compared 
to other methods. Ulusoy et al. (Ulusoy et al. 2021) analyzed 
the biogas and energy production potential from chicken 
manure in Balıkesir, Turkey. The pilot plant processes 110 
kt of waste and produces 8.58 Mm3/year of biogas. With 
this biogas production, 17 GWh/year of electricity and 16 
GWh/year of thermal energy can be obtained. Seo et al. (Seo 
et al. 2021) applied ANN to predict the biogas output of 
dry anaerobic digestion of food waste. The model presented 
a derived R2 of 0.82 for validation data and 0.85 for test 
data, indicating a high linear correlation between datasets. 
Siddiki et al. (Siddiki et al. 2021) investigated the manure, 
biogas, and energy production of Bangladesh in 2018–2019. 
As a result, 27,923.72 Mm3/year of biogas will be produced 
from 486.77 Mt of manure. Ceylan et al. (Ceylan et al. 2021) 
developed a hybrid optimization model for determining the 
optimum installation location of a biogas power plant for 
Manisa, Turkey. The mathematical model of the process 
was determined by the neuro-regression approach. The 
traditional and hybrid models were compared, and it was 
concluded that the values of the hybrid model were more 
acceptable. Jeong et al. (Jeong et al. 2021) estimated biogas 
production from a municipal wastewater treatment plant in 
South Korea. The anaerobic digestion process was tried to 
be modeled using deep learning-based models. The highest 
success in terms of R2 value was found to be 0.76. Oliveira 
et al. (Oliveira et al. 2021) created a mathematical model for 
the estimation and optimization of the energy potential from 
animal manure and sewage in the Brazilian state of Minas 
Gerais. In the study, a nonlinear deterministic constructive 
algorithm was used. Senocak and Guner Goren (Senocak 
and Guner Goren 2022) estimated the agricultural and ani-
mal amount and energy potential expected to emerge in the 
coming years of various agricultural and animal-based bio-
mass resources of Acıpayam-Denizli, Turkey, using SVM 
and performing spatial analysis.

Ozcan et al. (Ozcan et al. 2015) determined the biomass 
potential of Turkey according to different sources. In the 
study, it was stated that the total biogas potential installed 
power is 9.50 GW, and the energy value of the total usable 
dry manure amount related to animal husbandry is 53.74 
TWh/year. Özer (Özer 2017) stated that the animal manure 
and agricultural residues and potential for 2015 for Arda-
han, Turkey is 81 Mm3 and 323 GWh of electricity can be 
produced with this potential. Karaca (Karaca 2018) reported 
that the amount of biogas from the manure of dairy cattle 
and meat chickens in Turkey is 1.6 billion m3 annually, and 

the thermal energy value is approximately 36.7 PJ. Akyürek 
and Coşkun (Akyürek and Coşkun 2019) determined the 
biogas potential from animal wastes in the Aegean Region 
of Turkey. It has been reported that approximately 4.6 Mt/
year of CO2 emissions can be reduced by biogas production. 
Ersoy and Uğurlu (2020) evaluated the biogas production 
and greenhouse gas reduction potential of Turkey’s livestock 
sector in 2015 with two different scenarios. According to 
the first scenario, the amount of biogas was determined as 
8.41 billion m3 and 4.18 billion m3 in the second scenario. 
It has been emphasized that 1.13% of greenhouse gas emis-
sions can be prevented through biogas production. Ocak and 
Acar (Ocak and Acar 2021) evaluated the energy produc-
tion potential of the Marmara region, Turkey. In the study, 
it was stated that it would be economically better to convert 
agricultural and animal waste first into biogas and then into 
electricity. Çalışkan and Tümen Özdil (2021) determined 
the biogas potential of animal origin for different regions of 
Turkey between 2007 and 2019. It has been stated that the 
total biogas potential between 2007 and 2019 is 128.338 
Mm3 and will correspond to 7.99% of electricity consump-
tion. Aksüt et al. (Aksüt et al. 2022) stated that the amount 
of biogas based on cattle, small ruminants, and poultry for 
Tokat, Turkey in 2021 is 49 Mm3 and its energy equivalent 
is 292.000 MWh. Çakal and Çelik (Çakal and Çelik 2022) 
determined the biogas potential and energy equivalent of 
Turkey’s agricultural wastes. In the study, it was determined 
that the total amount of biogas is 240,673,168 m3/year, and 
the biogas energy equivalent is 5463.19 TJ/year. Aksay and 
Tabak (Aksay and Tabak 2022) reported that the biogas 
potential of animal manure and agricultural wastes in Turkey 
is 17 billion m3. It has been stated that 38 GWh of electricity 
can be produced with this potential, and a total of 174 mil-
lion tons of CO2 emissions can be reduced.

It is predicted that biogas production based on manure 
may play an important role in the future of renewable energy 
in Turkey. Turkey has forward-looking goals to increase 
renewable energy production and reduce greenhouse gas 
emissions. In addition, investments in this area in Turkey 
are mostly in the establishment phase and are expected to 
continue increasing. With the growth in the software system 
in Turkey, it is foreseen that there will be 100,000 addi-
tional employment and an export potential of ten billion dol-
lars by 2025. The software industry, with its unique global 
dynamics, creates a qualified and high-income employment 
opportunity in the country. Turkey’s studies on the use of 
artificial intelligence methods continue (TÜSİAD 2022). For 
the use of livestock controllers, researchers, and policy plan-
ners, accurate estimation of energy conversions according 
to Turkey’s manure-based production potential are of great 
importance. With such estimation methods used in the study, 
the feasibility of animal manure-oriented biogas production 
in Turkey can be analyzed in detail, and its impact on energy 

22634 Environmental Science and Pollution Research (2023) 30:22631–22652



1 3

and the economy can give an idea to researchers and policy 
planners. Energy conversion calculations based on fertilizer 
potential for the coming years can contribute to the planning 
of Turkey’s future energy needs.

In this study, the provinces of Antalya, Isparta, and Bur-
dur, which are in the TR61 region of Turkey, were selected. 
This region is also named the Western Mediterranean and 
Lakes Region and is one of Turkey’s important livestock 
bases. The Western Mediterranean Region has very favora-
ble conditions for agriculture and animal production with 
its geographical location, fertile lands, suitable climate, 
adequate water resources, proximity to major markets, and 
competitive workforce. The fertile and wetland structure of 
the region provides product diversity in terms of animal pro-
duction. The region holds more than 10% of the country’s 
general production in cattle breeding, especially in wool and 
milk production related to hair goats. With its ecological 
structure, livestock can be made in the most economical 
way throughout the year and has many economic advan-
tages. These economic advantages can be summarized as 
low-cost shelter opportunities due to the favorable climate, 
the use of most fruit and vegetable industry by-products only 
by animals, the relatively cheap cost of feed, and the fact 
that animal manure is an important agricultural input for 
covered production and floriculture. Antalya is located on 
the Mediterranean coast and has great potential in terms of 
the tourism sector. On the other hand, the regions located 
in the highland part of the province are quite suitable for 
animal husbandry. Especially in the summer months, the 
population of the city increases, and the demand for animal 
products increases. Animal production gains importance in 
meeting this increase in demand. Along with agricultural 
plant production in Isparta, animal husbandry has become 
a developed branch of agriculture due to favorable climatic 
and environmental conditions. All kinds of cattle, small 
ruminants, and poultry farming are carried out in the prov-
ince. With the animal breeding studies implemented in the 
province in recent years, there have been remarkable devel-
opments both in the number of animals and in animal prod-
ucts. Various sheep species and hair goats are widely grown 
in the city, and animal husbandry is among the important 
livelihoods of the people of Isparta. The livelihood of the 
people of Burdur is agriculture and animal husbandry. For 
example, 40% of Burdur’s economy is based on milk produc-
tion (RTMAF 2018). The number of animals in the prov-
ince has been increasing over the years and has an important 
position in the country, especially in dairy cattle breeding. 
In the province, where animal husbandry is intense, there 
is a daily production of over 1000 tons of raw milk. Burdur 
Mehmet Akif Ersoy University has served as a regional uni-
versity in the field of animal husbandry and provides support 
to regional farmers in areas such as animal health, animal 
breeding, farm education, and livestock-based industry. In 

this sense, incentive mechanisms have also been created in 
the field of animal husbandry in the province, and new steps 
have been taken toward modern animal breeding (BAGEV 
2022; CoHE 2022; RTMCT 2022).

In this study, biogas amount, CO2 emission, coal, elec-
tricity, thermal energy, and CH4 values were modeled by 
using general and special information about cattle, small 
ruminants, and poultry, and animal age, number, and waste 
amount information. No detailed analysis has been found 
in such studies in which artificial intelligence techniques 
are used in the literature. In the theoretical biogas calcula-
tions for Turkey, artificial intelligence applications were not 
included, although detailed. Popular machine learning algo-
rithms in the literature were used for modeling in the study. 
The study is given in four parts. In the first part, statistical 
information about the biogas and the study area is given and 
a literature review is included. In the second part, the param-
eters used in the calculation of biogas and energy potentials 
and the proposed methods for estimation are explained in 
detail. In the third part, the findings of the experimental 
results of machine learning algorithms are compared under 
various scenarios. In the last part, the results are given in 
detail and suggestions have been made.

Material and method

Theoretical determination of animal manure, 
biogas, and energy potential

In the study, 2018 data from Turkstat were used for Antalya, 
Isparta, and Burdur. As it is known, the Covid-19 pandemic 
started in 2019, and therefore, data from 2018 were used in 
this study. The post-pandemic situation and its effect on live-
stock are the subjects of future studies. Information on the 
number of animals is given in Fig. 2. Each animal species 
was evaluated separately in its category. In the calculation of 
the manure amount, the data obtained from the farms of the 
relevant provinces were used for the live mass values accord-
ing to the animal species and breed for each age group. In 
determining the daily amount of fresh manure, the percent-
age of live weight values was used, since a value that can 
represent Turkey, in general, is not available. These values 
were taken as 6% for cattle, 5% for small ruminants, and 4% 
for poultry. Using these values, the daily fresh manure values 
were calculated separately for each province according to 
the age and type of cattle and small ruminants, and poultry 
separately, and the total amount of manure was determined. 
The amount of animal manure varies according to feeding, 
climatic conditions, and reproduction type. Availability 
coefficient (AC) according to animal species has been taken 
as 50% for cattle, 13% for small ruminants, and 99% for 
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poultry, respectively (Avcioǧlu and Türker 2012; Afazeli 
et al. 2014; Scarlat et al. 2015).

Details of the animal species are given in Tables 2, 3, 
and 4 (Dong et al. 2006). In these tables, VS, B0, MCF, 
MS (defined in Table 5) data used as parameters in CH4 
calculation are also given. These parameters were used 
in the Tier 2 approach. Table 1 is a summary of Tables 2, 
3, and 4 (Avcioǧlu and Türker 2012).

Figure 3 was used in the calculation of biogas production 
from manure (Scarlat et al. 2015; Abdeshahian et al. 2016; 
Khan et al. 2021; Şenol et al. 2021). Figure 3 also gives the 
standard coal, CO2 emission (Gao et al. 2019; Khalil et al. 
2019), and the estimated electricity conversion (Scarlat et al. 
2015; Benito et al. 2015; Khalil et al. 2019).

If animal manure is not collected and processed in a 
biogas production system, CH4 gas is naturally produced and 
released into the atmosphere. Agriculture and livestock pro-
duction has a significant impact on the formation of green-
house gas emissions, especially CH4, into the atmosphere 
(Riaño and García-González 2015).

Different methods are used to calculate CH4 emissions. 
Tier 1 is the simplest approach in which just the number of 
each animal type and the emissions per animal are multi-
plied. The more advanced approach is Tier 2, which is used 
in most developed countries. It is the product of several 
parameters per animal species. The assumed emission fac-
tors based on average annual temperature are given by the 
IPCC for each of the proposed livestock categories. Emis-
sion factors represent the range in manure volatile solids 
content and manure management application of each region 

Fig. 2   Distribution of the number of animals in the region

Table 1   Manure characteristics and biogas yields by animal breeds (Avcioǧlu and Türker 2012)

Animal Age range month 
(categorical)

Live mass
(kg)

Fresh manure amount Solid manure 
(SM)
(%)

Availability (AC) Biogas yield
l/kg

% mass kg/day Staying time in the barn (%)

Cattle x < 12
12 < x < 24
X < 24

200–900 5–6 10–20 5–25 Dairy 65
Beef 25

200–350

Small ruminant x < 6
6 < x < 12
12 < x < 24
X < 24

20–100 4–5 2 30 13 100–310

Poultry 2–10 3–5 0.08–0.1 10–35
50–90

99 310–620
550–650

22636 Environmental Science and Pollution Research (2023) 30:22631–22652



1 3

and were evaluated based on the annual temperature for each 
climatic region. The formula in Table 5 and the emission 
factors of the relevant regions in Table 10.11 of IPCC-2006 
were used to calculate the CH4 emission with the Tier 1 
approach. The formulas in Table 5 and the parameter values 
in Tables 2, 3, and 4 were used in the calculation with the 
Tier 2 approach (Dong et al. 2006; Vanderzaag et al. 2013; 
Baek et al. 2014; Noorollahi et al. 2015; Shin et al. 2016; 
Ngwabie et al. 2018; Chen et al. 2020; Herrera et al. 2021; 
Zubir et al. 2022; Basak et al. 2022).

Machine learning algorithms and performance 
evaluations

In this study, the characteristics and theoretical calcula-
tions of cattle, small ruminants, and poultry belonging to 
the provinces of Antalya, Isparta, and Burdur in 2018 were 
used. Modeling of biogas amount, CO2 emission, coal, 
electricity-thermal energy, and CH4 values was carried out 

by using general and specific information about animals, 
age, number, and manure of animals. To determine the 
model with the best results, machine learning algorithms 
SVM, MLP, and LR were used and hyper-parameter opti-
mization was performed. MLP can be adequately adapted 
to finite input–output mapping problems, does not require 
the consideration of the underlying probability density 
function, and presents the required decision function 
directly through the training process (Ghalandari et al. 
2021; Shankar and Perumal 2021). SVM is often preferred 
as a machine learning algorithm because of its high gener-
alization, ability to find globally optimal unique solutions, 
and emphasizing data in high-dimensional feature space 
(Vijay and Somayajula 2022). LR, on the other hand, was 
preferred because it has a simple structure and can outper-
form SVM and MLP in some problems (Javed et al. 2019). 
MLP, SVM, and LR were preferred in this study because 
of their popularity in the literature and for the reasons 
listed herewith.

Table 2   Parameters and values 
used for cattle

Animal Age range 
month (cat-
egorical)

Live mass (kg) VS B0 MCF(%) MS(%)

Dairy cattle (pure culture, female) x < 12 300 2.8 0.13 0.2 0.38
Dairy cattle (pure culture, male) x < 12 350
Dairy cattle (pure culture, heifer) 12 < x < 24 400
Dairy cattle (pure culture, cow) 24 < x 600
Dairy cattle (culture hybrid, female) x < 12 350
Dairy cattle (culture hybrid, male) x < 12 350
Dairy cattle (culture hybrid, heifer) 12 < x < 24 500
Dairy cattle (culture hybrid, cow) 24 < x 600
Dairy cattle (native, male) x < 12 200
Dairy cattle (native, female) x < 12 200
Dairy cattle (native, male) 12 < x < 24 250
Dairy cattle (native, cow) 24 < x 275
Dairy cattle (buffalo, heifer) 12 < x < 24 400
Dairy Cattle (Buffalo, cow) 24 < x 450
Pure culture cattle (female) x < 12 300 2.3 0.1 0.35 1
Pure culture cattle (calf) x < 12 350
Pure culture cattle (bullock) 12 < x < 24 500
Pure culture cattle (ox) 24 < x 850
Pure culture cattle (bull) 24 < x 900
Hybrid cattle (bullock) 12 < x < 24 600
Hybrid cattle (bull) 24 < x 800
Hybrid cattle (ox) 24 < x 900
Native cattle (bullock) 12 < x < 24 475
Native cattle (ox) 24 < x 475
Native cattle (bull) 24 < x 600
Buffalo (male) x < 12 250
Buffalo (female) x < 12 250
Buffalo (bullock) 12 < x < 24 400
Buffalo (ox) 24 < x 500
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The modeling mechanism of machine learning models 
for biogas amount, CO2 emission, coal, electricity-thermal 
energy, and CH4 values is shown in Fig. 4.

Figure 4 shows the model mechanism that will estimate 
the output values by using the general species information 
of animals, special species information of animals, animal 
age, animal live mass, number of animals, and the amount 
of manure according to the animal type, which constitutes 
the input parameters. Although each machine learning algo-
rithm has different structures, it is seen that the most optimal 
hyperparameters of these structures can be determined by 
grid search. The model given in Fig. 4 is a feedforward MLP 
model using neurons (cells), in which cells multiply the val-
ues they receive from the previous cell with a certain weight 
and transmit the sum they have obtained to the next cell. In 
this way, the desired estimation values can be obtained from 
the output layer.

Table 3   Parameters and values 
are used for small ruminants

Animal Age range 
month (cat-
egorical)

Live mass (kg) VS B0 MCF(%) MS(%)

Sheep (Merino, female-male, lamb) x < 6 25 0.32 0.13 0.015 1
Sheep (Merino, female-male, yearling) 06 < x < 12 45
Sheep (Merino, female-male, yearling) 12 < x < 24 65
Sheep (Merino, female sheep) 24 < x 80
Sheep (Merino, ram) 24 < x 100
Sheep (native, female-male, lamb) x < 6 20
Sheep (native, female-male, yearling) 6 < x < 12 35
Sheep (native, female-male, yearling) 12 < x < 24 55
Sheep (native, female) 24 < x 70
Sheep (native, ram) 24 < x 90
Goat (hair goat, female-male, yearling) x < 6 20 0.35
Goat (native, female-male, yearling) 6 < x < 12 35
Goat (native, female-male, yearling) 12 < x < 24 55
Goat (native, female) 24 < x 60
Goat (native, male) 24 < x 80

Table 4   Parameters and values used for poultry

Animal Live 
mass 
(kg)

VS B0 MCF (%) MS (%)

Turkey 10 0.02 0.24 0.015 1
Goose 4
Duck and Guinea fowl 2
Laying hen 2

Fig. 3   Biogas, coal, CO2 emis-
sions, and electrical energy con-
versions from animal manure

BP = M.SM.AC.EBSM

M

SMAC

QC = BP.E

CB= r.BP.qB.EB

Ebio = mbio.Energycont
ebio = Ebio

BP: Biogas potential (m3/year)

M: Total manure (kg/day.animal)

SM: Total solids ratio of animal manure (%)

AC: Availability coefficient (%)
EBSM: Estimated biogas of total solid manure (m3/kg)

QC: Standard coal quantity (kg)

E: Biogas-coal conversion coefficient (0.714 kg/m3)

CB: CO2 emission

r: Molecular ratio of the C atom (3.67)

qB : Calorific value of biogas ( 0.209 TJ/104 m3)

EB: Carbon emission factor (15.3 t/TJ)

Ebio: Unconverted raw energy from biogas (kWh/year)
mbio: Biogas produced per year (m3/year)

Energycont: Caloric value of biogas (kWh/m3)

ebio : Estimated electricity production (kWh/year)

η: Overall efficiency (30%)
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Matlab R2019a and PyCharm 2021.1 programs and 
scikit-learn 0.24 library were used for hyper-parameter opti-
mizations and training of algorithms. Parameters of machine 
learning algorithms can greatly affect model success. For 
this reason, while determining the most suitable model for 
the related problem, training should be carried out with algo-
rithms with appropriate optimum parameters. In this study, 
grid search was used to perform hyper-parameter optimiza-
tion of machine learning algorithms. The grid search method 
creates a model for each determined combination of hyper-
parameters and evaluates the performance so that the most 

optimal parameters of the relevant algorithm are determined 
(Pillai et al. 2019).

Support vector machine (SVM)

SVM is one of the most common machine learning algo-
rithms and is used for both classification and regression 
problems (Smola and Schölkopf 2004). The SVM algorithm 
is a method based on pre-training, and it tries to create a 
linear or nonlinear kernel called a hyperplane to separate 
the classes of the data or to make a regression-based value 

Table 5   Formulas for CH4 emission (Tier 1, Tier 2 approximations) (Dong et al. 2006; Vanderzaag et al. 2013; Baek et al. 2014; Noorollahi 
et al. 2015; Shin et al. 2016; Ngwabie et al. 2018; Chen et al. 2020; Herrera et al. 2021; Zubir et al. 2022; Basak et al. 2022)

CH4: Methane emissions, t CH4 yr-1 VS(T): Daily volatile solid excreted for livestock category 

T, kg dry matter animal-1 day-1

EF(T):Emission factor for the defined livestock population, 

kg CH4 head-1 yr-1

Bo(T): Maximum methane producing capacity for manure 

produced by livestock category T, m3 CH4 kg-1 of VS 

excreted

N(T) : Animal number(heads) 0.67: Conversion factor of m3 CH4 to kilograms CH4

MCF(S,k): Methane conversion factors for each manure 

management system (S) by climate region (k), %

MS(T, S,k): Fraction of livestock category (T)'s manure 

handled using manure management system (S) in climate 

region (k), dimensionless

4 =
( ( ) . ( ))

106
( )

( ) = ( ( ). 365) ( )
. 0.67.

,

100
,

. , ,

Fig. 4   The model mechanism 
for biogas amount, CO2 emis-
sion, coal, electricity-thermal 
energy, and CH4 values
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estimation. In the literature on the SVM algorithm, kernels 
such as linear, polynomial, and radial basis functions (RBF) 
are used, and support vectors that can express the data most 
optimally are tried to be determined (Pisner and Schnyer 
2020). v-SVM which is a different variant of SVM uses the 
nu parameter for controlling the number of support vectors 
for regression tasks.

Multi‑layer perceptron (MLP)

MLP is a supervised learning algorithm that learns target 
values by training on the data it receives as input. MLP uses 
the input layer, hidden layer, and output layer for classifica-
tion or regression. In the feedforward neural network struc-
ture, which is preferred in this study, the cells are arranged 
in layers, and the outputs of the cells in the layer can only be 
given as inputs to the next layer’s overweights (Goodfellow 
et al. 2016). The output value of the cells is calculated with 
activation functions such as sigmoid, hyperbolic tangent, 
and rectifier linear unit (ReLU) (Cui et al. 2017). For the 
training of the MLP model, algorithms such as scaled con-
jugate gradient, Levenberg–Marquardt, and Bayesian edit-
ing methods are available from backpropagation methods. 
In addition to these, L-BFGS-B, SGD (stochastic gradient 
descent) and adaptive moment estimation (Adam) methods 
have also achieved very good results in recent years. The 
SGD method provides gradient estimates using a specified 
number of samples from the data distribution. The Adam 
algorithm was created by increasing the momentum of the 
Rmsprop method (Goodfellow et al. 2016). L-BFGS-B is 
a gradient-based approach that has limited memory and is 
based on the trust region technique for solving large-scale 
optimization problems (Byrd et al. 1995).

Linear regression (LR)

LR allows the modeling of the output values by fitting a 
linear function to the input data. Regulation (regularization) 
is used in linear regression to solve the problem of multi-
collinearity and increase efficiency. Lasso regression (Least 
absolute shrinkage and selection operator), which is one of 
the frequently used regulation types, adds a penalty to the 
least-squares loss function by using the L1-norm penalty; 

Ridge regression, on the other hand, uses the L2-norm pen-
alty to reduce the multicollinearity problem in linear regres-
sion that arises in models with many parameters (Tibshirani 
1996). Ridge regression is seen in Eq. (1).

In Eq. (1), y is the output, X is the Vandermonde matrix, I 
is the identity matrix, and the ridge parameter λ ≥ 0 serves as 
the constant shifting of the diagonals of the moment matrix 
(Khalaf and Shukur 2005). Elastic net, on the other hand, is 
another regulation technique and overcomes the limitations 
of the Lasso method by using a penalty function (Zou and 
Hastie 2005).

Grid search parameters

In this study, for SVM, one of the hyper-parameters deter-
mined for grid search; {SVM, v-SVM} as algorithm type, 
{Linear, 2–3-4 degrees Polynomial, RBF} as kernel, {0.25, 
0.45, 0.65, 0.85, 1.0} as ε/ν parameters, and {100, 500, 
1000} values were used as the number of iterations. For 
MLP, {L-BFGS-B, Sgd, Adam, Scg, Br, Lm} were used 
as the learning algorithm, {4, 8, 12, 16} as the number of 
hidden layer neurons, and {100, 500, 1000} as the number 
of iterations. For LR; {Ridge Regression, Lasso Regression, 
Elastic net, No regularization} methods including regulari-
zation or its variant were used. Other parameters that are not 
included in the grid search and are considered fixed are; Tol-
erance or learning rate of 0.005 was used in all algorithms 
with a cost (C) value of 1 for SVM and an activation func-
tion of ReLU in MLP. The hyper-parameter values according 
to the models and algorithms are shown in Table 6.

Performance metrics

In this study, performance metrics are needed to deter-
mine how successfully the biogas amount, CO2 emission, 
coal, electricity-thermal energy, and CH4 values obtained 
by theoretical calculations can be modeled with machine 
learning algorithms. Various metrics are used in the litera-
ture to measure the performance values of models trained 
with machine learning. Mean square error (MSE), root mean 

(1)c =
(
XTX + �I

)−1
XTy

Table 6   Hyper-parameter values 
for models and algorithms

Model Algorithm Kernel type/neuron size ε/ν param-
eter

Iteration

SVM SVM, v-SVM Linear, 2nd-3rd-4th 
degree polynomial, 
RBF

0.25, 0.45, 
0.65, 
0.85, 1.0

100, 500, 1000

MLP L-BFGS-B, Sgd, Adam, Scg, Br, Lm 4, 8, 12, 16 - 100, 500, 1000
LR Ridge regression, Lasso regression, 

Elastic net, no regularization
- - -
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Table 7   Best results with 
hyper-parameter optimization 
for SVM and MLP in biogas 
amount modeling

Model Alg. 1 Alg. 2/neuron size ε/ν iter MSE RMSE MAE R2

SVM v-svm 2nd-degree polynomial 0.25 1000 2.16e + 11 4.59e + 05 1.61e + 05 0.997
500 4.33e + 11 6.63e + 05 2.12e + 05 0.994
100 8.66e + 11 9.43e + 05 3.48e + 05 0.987

0.45 1000 2.16e + 11 4.76e + 05 1.70e + 05 0.997
500 4.33e + 11 6.37e + 05 1.95e + 05 0.994
100 1.59e + 12 1.27e + 06 3.99e + 05 0.977

0.65 1000 1.44e + 11 3.99e + 05 1.53e + 05 0.998
500 2.89e + 11 5.44e + 05 1.95e + 05 0.996
100 2.74e + 12 1.65e + 06 4.84e + 05 0.962

0.85 1000 2.16e + 11 4.25e + 05 1.70e + 05 0.997
500 3.61e + 11 6.20e + 05 2.04e + 05 0.995
100 2.60e + 12 1.61e + 06 5.27e + 05 0.964

1.0 1000 7.21e + 10 3.06e + 05 1.19e + 05 0.999
500 2.89e + 11 5.35e + 05 1.78e + 05 0.996
100 2.89e + 12 1.70e + 06 5.18e + 05 0.959

4th-degree polynomial 0.25 1000 4.33e + 11 6.63e + 05 2.12e + 05 0.994
500 1.08e + 12 1.03e + 06 3.14e + 05 0.985
100 4.91e + 12 2.22e + 06 5.95e + 05 0.930

0.45 1000 7.21e + 10 3.06e + 05 1.44e + 05 0.999
500 5.77e + 11 7.73e + 05 2.80e + 05 0.992
100 5.77e + 11 7.64e + 05 3.23e + 05 0.992

0.65 1000 1.44e + 11 4.16e + 05 1.87e + 05 0.998
500 2.89e + 11 5.61e + 05 2.38e + 05 0.996
100 7.21e + 11 8.41e + 05 3.06e + 05 0.990

0.85 1000 7.21e + 10 3.23e + 05 1.70e + 05 0.999
500 7.21e + 10 2.72e + 05 1.53e + 05 0.999
100 2.31e + 12 1.53e + 06 4.76e + 05 0.967

1.0 1000 7.21e + 10 2.72e + 05 1.61e + 05 0.999
500 1.44e + 11 3.40e + 05 1.87e + 05 0.998
100 5.77e + 11 7.56e + 05 3.23e + 05 0.992

MLP L-BFGS-B 4 - 1000 2.16e + 11 4.25e + 05 1.70e + 05 0.997
500 2.45e + 12 1.56e + 06 3.06e + 05 0.965
100 3.64e + 13 6.03e + 06 1.11e + 06 0.484

8 1000 4.33e + 11 6.29e + 05 1.61e + 05 0.994
500 2.89e + 11 5.52e + 05 1.70e + 05 0.996
100 5.77e + 11 7.81e + 05 2.63e + 05 0.991

12 1000 2.89e + 11 5.35e + 05 1.70e + 05 0.996
500 2.89e + 12 1.70e + 06 3.57e + 05 0.959
100 1.44e + 11 3.65e + 05 2.04e + 05 0.998

16 1000 2.89e + 11 5.61e + 05 1.87e + 05 0.995
500 3.32e + 12 1.83e + 06 3.48e + 05 0.953
100 4.33e + 11 6.37e + 05 2.38e + 05 0.994

Table 8   Hyper-parameter 
optimization for LR in biogas 
amount

Model Alg. 1 Alg. 2 ε/ν iter MSE RMSE MAE R2

LR Ridge regression - - - 3.61e + 11 5.78e + 05 2.72e + 05 0.995
Lasso regression 4.33e + 11 6.71e + 05 2.55e + 05 0.994
Elastic net 5.05e + 11 6.97e + 05 2.80e + 05 0.993
No regularization 3.61e + 11 5.78e + 05 2.72e + 05 0.995
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square error (RMSE), mean absolute error (MAE), and coef-
ficient of determination (R2) were used in this study to deter-
mine the best model. MSE, RMSE, MAE, and R2 formulas 
are given in (Eqs. (2)–(5)), respectively.

(2)MSE =
1

n

∑n

i=1

(
Yi − Ŷi

)2

(3)RMSE =

√
1

n

∑n

i=1

(
Yi − Ŷi

)2

(4)MAE =
1

n

∑n

i=1

|||
Yi − Ŷi

|||

Table 9   Algorithms with 
optimal parameters

Algorithm Method Alg. 1 Alg. 2/neuron size ε/ν Iter

SVM-v1 SVM v-svm 2nd-degree polynomial 1.0 1000
SVM-v2 4th-degree polynomial 0.85 500
MLP-v1 MLP L-BFGS-B 4 hidden neuron - 1000
MLP-v2 12 hidden neuron 100
LR-v1 LR Ridge regression - - -
LR-v2 No regularization

Table 10   Modeling of biogas 
amount with algorithms with 
optimal parameters

Algorithm MSE RMSE MAE R2 Wilcoxon rank

h p

SVM-v1 7.21e + 10 3.06e + 05 1.19e + 05 0.999  +  0.850
SVM-v2 7.21e + 10 2.72e + 05 1.53e + 05 0.999  +  0.892
MLP-v1 2.16e + 11 4.25e + 05 1.70e + 05 0.997  +  0.910
MLP-v2 1.44e + 11 3.65e + 05 2.04e + 05 0.998  +  0.791
LR-v1 3.61e + 11 5.78e + 05 2.72e + 05 0.995  +  0.910
LR-v2 3.61e + 11 5.78e + 05 2.72e + 05 0.995  +  0.910

Fig. 5   Comparison of the algorithms with the most suitable parameters and the biogas amount modeling with the original values
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In Eqs. (2–4), Y is the target value, Ŷ  is the predicted 
value, and n is the number of samples. (5)R2

= 1 −

∑n

i=1

�
Yi − Ŷi

�2

∑n

i=1

�
Yi − Yi

�2

Table 11   Modeling of CO2 
emissions with algorithms with 
the most suitable parameters

Algorithm MSE RMSE MAE R2 Wilcoxon rank

h p

SVM-v1 9.94e + 04 3.59e + 02 1.40e + 02 0.999  +  0.850
SVM-v2 9.94e + 04 3.19e + 02 1.79e + 02 0.999  +  0.892
MLP-v1 3.28e + 06 1.79e + 03 4.19e + 02 0.967  +  0.904
MLP-v2 2.98e + 05 5.68e + 02 2.99e + 02 0.997  +  0.844
LR-v1 4.97e + 05 6.78e + 02 3.19e + 02 0.995  +  0.910
LR-v2 4.97e + 05 6.78e + 02 3.19e + 02 0.995  +  0.910

Fig. 6   Comparison of the algorithms with the most suitable parameters and CO2 emission models with the original values

Table 12   Coal amount 
modeling with algorithms with 
optimal parameters

Algorithm MSE RMSE MAE R2 Wilcoxon rank

h p

SVM-v1 1.47e + 05 3.93e + 02 1.94e + 02 0.996  +  0.774
SVM-v2 2.20e + 05 4.90e + 02 2.24e + 02 0.993  +  0.768
MLP-v1 4.40e + 05 6.72e + 02 1.94e + 02 0.987  +  0.994
MLP-v2 2.57e + 05 5.08e + 02 2.36e + 02 0.993  +  0.995
LR-v1 1.10e + 05 3.45e + 02 2.18e + 02 0.997  +  1.0
LR-v2 1.10e + 05 3.45e + 02 2.18e + 02 0.997  +  1.0
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In Eq. (5), Y represents the target value, Ŷ  is the predicted 
value, Y  is the mean of the target value, and n is the number 
of samples.

In this study, leave-one-out-cross-validation (LOOCV), 
which is used to separate training and test data, was used to 
obtain more statistically accurate values while measuring the 
performance of machine learning algorithms.

Results and discussion

In this study, SVM, MLP, and LR algorithms were used 
for the modeling of biogas, CO2 emission, coal, electric 
thermal energy, and CH4 amount. To determine the model 
with the best results and their parameters, hyper-parameter 

optimization was carried out with the grid search method. 
While MSE, RMSE, MAE, and R2 metrics were used to 
compare the success of the models, the Wilcoxon rank sum 
test was also used to compare the estimates and actual val-
ues. Table 7 shows the scores for the parameters that give the 
best performance as a result of the biogas amount modeling 
according to the grid search parameters with SVM.

It is seen that the SVM method gives the best perfor-
mance values with the v-svm algorithm, and the R2 value 
was obtained as 0.999 in the 4th and 2nd degrees polyno-
mial. In the MLP model, the L-BFGS-B method as a learn-
ing algorithm was able to reach higher R2 values and lower 
MSE, RMSE, and MAE values compared to other learning 
methods. The best scores in the MLP model were deter-
mined with the parameters that the R2 = 0.997 after 1000 
iterations of training using four hidden neurons with the 

Fig. 7   Comparison of the algorithms with the most suitable parameters and the coal amount models with the original values

Table 13   Electricity generation 
modeling with algorithms with 
optimal parameters

Algorithm MSE RMSE MAE R2 Wilcoxon rank

h p

SVM-v1 2.34e + 11 5.50e + 05 2.29e + 05 0.999  +  0.856
SVM-v2 2.34e + 11 4.89e + 05 2.75e + 05 0.999  +  0.892
MLP-v1 3.27e + 12 1.83e + 06 5.50e + 05 0.985  +  0.982
MLP-v2 1.87e + 12 1.35e + 06 4.59e + 05 0.992  +  0.797
LR-v1 1.17e + 12 1.04e + 06 4.89e + 05 0.995  +  0.910
LR-v2 1.17e + 12 1.04e + 06 4.89e + 05 0.995  +  0.910
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L-BFGS-B method, and the R2 = 0.998 after 100 iterations 
of training using 12 hidden neurons. Table 8 shows the 
performance scores of the modeling of the biogas amount 
according to the grid search parameters with LR.

It is seen that in Table 8, the LR model generally gave 
good results for different parameter combinations. The 
highest R2 values of 0.995 were obtained for ridge regres-
sion and no regularization.

In Tables 7 and 8, considering the best values of the 
algorithms, two-parameter combinations from each algo-
rithm were determined and used in other models. While 
determining the parameter combinations for MLP, two 
parameters with the same R2 values, one with the lowest 
RMSE value and the other with the lowest MAE value, 
were determined. The algorithms giving the best results 
and parameters are shown in Table 9.

Algorithms with the most suitable parameters for mod-
eling biogas amount and statistical test results are shown 
in Table 10. Wilcoxon rank sum test results have been 
indicated with h, and its value has been expressed with p. 
Acceptance of the null test in the 5% confidence interval 
has been indicated with a “ + ” sign and rejection with a 
“ − ” sign.

The graphic of biogas modeling is seen in Fig. 5. The 
thick line in Fig. 5 shows the theoretical values obtained 
from the formulation in Fig. 3 and the thin lines show the 
modeling results. The biogas unit on the vertical axis is m3/
year. Algorithms with the most suitable parameters deter-
mined after hyper-parameter optimization were used in 
modeling CO2 emissions, coal, electricity, thermal energy, 
and CH4 emissions. Algorithms with the most suitable 

Fig. 8   Comparison of the algorithms with the most suitable parameters and the electricity generation models with the original values

Table 14   Thermal energy 
modeling with algorithms with 
optimal parameters

Algorithm MSE RMSE MAE R2 Wilcoxon rank

h p

SVM-v1 3.37e + 13 6.60e + 06 2.75e + 06 0.999  +  0.856
SVM-v2 3.37e + 13 5.87e + 06 3.30e + 06 0.999  +  0.892
MLP-v1 1.01e + 14 1.01e + 07 3.67e + 06 0.997  +  0.856
MLP-v2 1.68e + 14 1.27e + 07 5.69e + 06 0.995  +  0.751
LR-v1 1.68e + 14 1.25e + 07 5.87e + 06 0.995  +  0.910
LR-v2 1.68e + 14 1.25e + 07 5.87e + 06 0.995  +  0.910
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parameters for CO2 emission modeling and statistical test 
results are shown in Table 11.

In Table 11, it is seen that the model and parameter values 
that give good results for biogas modeling can also success-
fully perform CO2 emission modeling. This shows that the 
hyper-parameter optimization has been carried out success-
fully, and the parameters for the related problem can be opti-
mized. The graph of the CO2 emission modeling is seen in 
Fig. 6. The thick line shows the theoretical values obtained 
from the formulation in Fig. 3 and the thin lines show the 
modeling results. The CO2 emission on the vertical axis is 
ton/year.

Algorithms with the most suitable parameters for coal amount 
modeling and statistical test results are shown in Table 12.

In the modeling of coal amount, the LR method gives 
the highest R2 values with 0.997. In addition, as a result 
of the Wilcoxon rank sum test, the LR method obtained 

the highest statistical value with p = 1.0. The SVM method 
came to the fore in biogas amount and CO2 emission 
modeling, and the LR method gave better results in coal 
amount modeling. The graph of the coal amount modeling 
is seen in Fig. 7. The thick line shows the theoretical val-
ues obtained from the formulation in Fig. 3 and the thin 
lines show the modeling results. The coal amount on the 
vertical axis is ton/year.

Algorithms with the most suitable parameters for elec-
tricity generation modeling and statistical test results are 
shown in Table 13.

It is seen in Table 13 that SVM-v1 and SVM-v2 models 
give the highest R2 value of 0.999 for electricity generation 
modeling. It can be seen from the h values in Table 8 that 
the statistical test results of the models in which the SVM 
method is used are also accepted. The graph of the electric-
ity generation modeling is seen in Fig. 8. The thick line 

Fig. 9   Comparison of the algorithms with the most suitable parameters and the thermal energy models with the original values

Table 15   CH4 emission (Tier 1) 
modeling with algorithms with 
optimal parameters

Algorithm MSE RMSE MAE R2 Wilcoxon rank

h p

SVM-v1 1.10e + 07 3.32e + 03 7.46e + 02  − 1.855  +  0.660
SVM-v2 5.52e + 07 7.43e + 03 1.33e + 03  − 13.254  +  0.540
MLP-v1 9.11e + 04 3.01e + 02 1.57e + 02 0.977  +  0.789
MLP-v2 2.65e + 05 5.16e + 02 2.51e + 02 0.932  +  0.743
LR-v1 1.90e + 05 4.38e + 02 2.77e + 02 0.950  +  0.647
LR-v2 1.94e + 05 4.40e + 02 2.79e + 02 0.950  +  0.647
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shows the theoretical values obtained from the formulation 
in Fig. 3 and the thin lines show the modeling results. The 
electricity generation on the vertical axis is kWh/year.

Algorithms with the most suitable parameters for ther-
mal energy modeling and statistical test results are shown 
in Table 14.

In Table  14, SVM-v1 and SVM-v2 models give the 
highest R2 value of 0.999 for thermal energy modeling. The 
graphic of the thermal energy modeling is seen in Fig. 9. 
The thick line shows the theoretical values obtained from the 
formulation in Fig. 3 and the thin lines show the modeling 
results. The thermal energy on the vertical axis is MJ/year.

Algorithms with the most suitable parameters for meth-
ane emission (Tier 1 approximation) modeling and statistical 
test results are shown in Table 15

The SVM method achieved high MSE, RMSE, and MAE 
values and is not suitable for methane (Tier 1 approximation) 
modeling. The MLP-v1 algorithm gave the best modeling 

result with an R2 value of 0.977. The graph of the meth-
ane emission modeling is shown in Fig. 10. The thick line 
shows the theoretical values obtained from the formulation 
in Table 5. Thin lines show the modeling results. The CH4 
emission on the vertical axis is ton CH4/year.

Algorithms with the most suitable parameters for CH4 
emission modeling (Tier 2 approximation) and statistical test 
results are shown in Table 16.

The SVM-v2 model achieved high MSE, RMSE, and 
MAE values and low R2 values. In addition, the statistical 
test result was rejected, and it is not suitable for the CH4 
emission modeling obtained using the Tier 2 approach. The 
best modeling result was obtained by LR-v1 and LR-v2 algo-
rithms with R2 values of 0.962. The graph of the CH4 emis-
sion modeling is seen in Fig. 11. The thick line shows the 
theoretical values obtained from the formulation in Table 5. 
Thin lines show the modeling results. CH4 emission on the 
vertical axis is ton CH4/year.

Fig. 10   Comparison of algorithms with optimal parameters and CH4 emission (Tier 1 approximation) models with original values

Table 16   CH4 emission (Tier 2) 
modeling with algorithms with 
optimal parameters

Algorithm MSE RMSE MAE R2 Wilcoxon rank

h p

SVM-v1 2.25e + 04 1.50e + 02 6.46e + 01 0.888  +  0.352
SVM-v2 1.23e + 07 3.51e + 03 6.08e + 02  − 59.760  −  0.022
MLP-v1 3.82e + 04 1.95e + 02 6.77e + 01 0.811  +  0.300
MLP-v2 1.14e + 04 1.07e + 02 5.23e + 01 0.944  +  0.473
LR-v1 7.65e + 03 8.73e + 01 5.59e + 01 0.962  +  0.530
LR-v2 7.65e + 03 8.73e + 01 5.59e + 01 0.962  +  0.530

22647Environmental Science and Pollution Research (2023) 30:22631–22652



1 3

According to the data from Turkstat (2018), there are 
a total of 3,883,307 animals belonging to different animal 
species (cattle, small ruminants, poultry) in the provinces 
of Antalya, Isparta, and Burdur. A total of 550,305 tons/
year of animal manure can be obtained from this ani-
mal’s existence. As a result of the theoretical calculation, 
130,929,541 m3/year of biogas can be produced from ani-
mal manure. Depending on biogas production; 93,484 tons/
year of coal, 235,673,174 kWh/year of electrical energy, and 
2,828,078,093 MJ/year of thermal energy can be provided. 
In addition, 153,653 tons/year of CO2 emissions will be pre-
vented. As a result of hyperparameter optimization with grid 
search, SVM-v1, SVM-v2, MLP-v1, MLP-v2, and LR-v1, 
LR-v2 models were found to be successful. Although all 
models generally produce good results in the estimation of 
biogas potential, SVM-v1 and SVM-v2 are seen as the best 
model with R2 = 0.999. For the estimation of CO2 emission, 
SVM models produced the best results with R2 = 0.999. 
When the coal amount estimation is examined, it is seen that 
the LR-v1 and LR-v2 models produce slightly better results 
than SVM and MLP with R2 = 0.997 values. In terms of 
electricity production and thermal energy estimations, SVM 
models produced the best results with R2 = 0.999 values. In 
the estimation of methane using the Tier 1 approach, SVM 
models achieved the worst result compared to other models, 
while the MLP-v1 model can perform the best estimation 
with R2 = 0.977. In the methane modeling using the Tier 2 
approach, the LR-v1 and LR-v2 models were superior to the 

other models, and these models reached the performance 
value of R2 = 0.962.

Conclusion

Turkey meets its energy needs from fossil fuels. It imports 
most of its energy from abroad. Facilities for the use of bio-
mass resources in energy production are increasing in Tur-
key. New conversion facilities are also commissioned to use 
every year for environmentally friendly and clean energy 
production. Therefore, reliable energy potential estimates are 
needed. Agriculture and animal husbandry are carried out 
in every region of Turkey. The geographical location of the 
country is effective in the abundance of agriculture and ani-
mal husbandry, and animal husbandry is among the impor-
tant sources of income, especially in rural areas. Livestock 
support packages consisting of many items are offered to 
animal enterprises. Some of these packages can be specified 
as feed support, milk support, and animal shelter support. 
Some of the most important problems of animal husbandry 
in Turkey are known animal breeding, animal health, and 
epidemic diseases.

This study focuses on biogas production from animal 
manure and its conversion to other energy sources to pro-
vide an efficient and reliable estimation of resource avail-
ability. The biogas potential and CO2 emission, coal, elec-
trical energy, thermal energy, and CH4 emission that may 
occur according to cattle, small ruminant, and poultry data 

Fig. 11   Comparison of CH4 emission models with the original values with algorithms with the most suitable parameters
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for 2018 in different categories and age groups of Antalya, 
Isparta, and Burdur predicted by machine learning algo-
rithms. SVM, MLP, and LR methods from machine learn-
ing algorithms were used for estimation. The reasons for the 
preference of these algorithms are that they are popular in 
the literature, can be applied to problem solutions belong-
ing to different fields, and are easy to understand. It is seen 
that machine learning algorithms are successful in modeling 
biogas, energy, and emission transformations. According to 
the results of the energy and emission modeling; the SVM-
v1 model produces R2 = 0.999 value for CO2 emission, LR 
models produce R2 = 0.997 value for coal amount, and SVM 
models produce R2 = 0.999 value for electricity production 
and thermal energy estimations. For methane emission mod-
eling with Tier 1 and Tier 2 approaches, MLP-v1 model pro-
duces R2 = 0.977 value, while LR models produce R2 = 0.962 
value, respectively. It is seen that the SVM-v1 model is more 
successful than other models in energy and emission conver-
sions, excluding methane emission, with performances in 
the range of R2 = 0.996–0.999. In the estimation of methane 
emissions, MLP-v1 and LR models were the models with 
the highest performance values.

There is no study in the literature on the biogas poten-
tial calculated according to different animal categories and 
age-related weight values in Turkey and the estimation 
of the energy and emission conversions of this potential. 
Coal, electrical energy, CO2 emissions, thermal energy, 
and CH4 conversions related to biogas were examined for 
the first time with machine learning algorithms, and six 
different prediction models were created and compared. 
Due to these features, the study carried out in a wide 
scope is very important for Turkey. Considering the use 
of biogas potential in the coming years, the share of renew-
able energy in total energy consumption in Turkey can be 
increased. This, in turn, may enable the country to reduce 
its energy imports. The models used in the study can be 
applied to different regions of Turkey for different or the 
same biomass sources. In future studies, energy and emis-
sion modeling will be carried out for the whole of Turkey, 
and the proposed models will also be used for modeling 
biogas production from organic residues, especially agri-
cultural residues. In addition, the selection of possible 
biogas power plants and the post-pandemic situation and 
its impact on livestock are the subjects of future studies.
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