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Abstract
Greywater is an important alternative water resource which could be treated and reused in buildings, reducing the freshwater 
demand in drought affected areas. For the successful implementation of this solution, it is important to ensure the microbial 
safety of treated greywater. This study examined the microbiological quality of treated greywater produced by an emergent 
nature-based technology (green roofs) and a chlorination process. Specifically, the effect of substrate, substrate depth, and 
vegetation on the removal of total coliforms, Escherichia coli, and enterococci in experimental green roofs treating greywater 
was examined for a period of about 12 months. In addition, the ability of chlorination to inactivate the abovementioned patho-
gen indicators was evaluated and their potential regrowth was examined. Results shown that green roofs filled with 10 cm of 
perlite reduce total coliform concentration by about 0.4 log units while green roofs filled with 20 cm of vermiculite reduce 
total coliform concentration by about 1.2 log units. In addition, the use of vegetation in green roofs improves the removal 
of pathogenic bacteria by about 0.5 log units in comparison with unvegetated systems. In all cases, the effluents of green 
roofs failed to satisfy the criteria for indoor reuse of treated greywater for non-potable uses such as toilet flushing without 
a disinfection process. The addition of 3 mg/L of chlorine in the effluent provided safe greywater microbiological quality 
for storage periods of less than 24 h, while longer periods resulted in the significant regrowth of pathogens. In contrast, a 
chlorination dose of 7 mg/L completely secured inactivation of pathogen indicators for periods of up to 3 days.
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Introduction

The treatment and utilization of greywater is a very interest-
ing solution for promoting sustainable water management 
in cities (Lu et al. 2019). A significant volume of domestic 
wastewaters (45–60%) could be treated and reused on-site, 
reducing both the volume of freshwater demand in house-
holds (Humeau et al. 2011) and the energy required for the 
treatment of domestic wastewaters in centralized wastewater 
treatment plants (Friedler and Hadari 2006). Several treat-
ment technologies have been tested in the past for greywater 

treatment including filtration (Katukiza et al. 2014), coagu-
lation, rotating biological contactors (Abdel-Kader 2013), 
microalgae (Oktor and Çelik 2019), membrane bioreac-
tors (MBRs), and wetlands. Among these, MBRs seem to 
achieve higher effluent quality (Chrispim and Nolasco 2017). 
However, their very high capital and operating costs, make 
the full scale application of MBRs in buildings challenging 
from an economic perspective (Fountoulakis et al. 2016). 
On the other hand, nature-based treatment systems (NBS), 
such as constructed wetlands, can achieve effluent quality 
similar to MBRs as far as physiochemical characteristics 
are concerned, while their operation costs are much lower. 
The disadvantage of these systems is that their installation 
requires significantly larger amounts of space, space that is 
not available in cities. Furthermore, constructed wetlands 
fail to satisfy the strict criteria for indoor reuse, demanding 
the addition of a disinfection unit (Arden and Ma 2018).

Recently, other types of NBS, which could be charac-
terized as “modified wetlands,” such as green walls and 
green roofs, have been examined with respect to greywater 
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treatment in an effort to minimize space requirements in 
buildings (Pradhan et al. 2019; Boano et al 2020). These 
types of NBS do not require extra space as they are installed 
on the unused outer surfaces of buildings. Previous findings 
have shown that green walls as well as green roofs could 
provide an effluent quality which meets the strict criteria for 
indoor reuse as regards physicochemical pollutants such as 
COD, BOD, turbidity, and suspended solids (Fowdar et al. 
2017; Prodanovic et al. 2019). The type of porous media, 
in particular, as well as the type of vegetation used, seem 
important parameters for their ability to remove pollutants. 
For example, Thomaidi et al. (2022) found that vertical flow 
green roofs filled with vermiculite provide better effluent 
quality (regarding organic matter and solids) in comparison 
with vertical flow green roofs filled with perlite. Another 
study in India (Masi et al. 2016) showed that the use of 
coconut fibres instead of sand significantly improved COD 
removal in green walls treating greywater. Pradhan et al. 
(2020) examined six different materials — namely perlite, 
coco coir, lightweight expanded clay (LECA), date seeds, 
spent coffee grounds, and sand in vertical NBS for greywater 
treatment. They concluded that the use of sand, coco coir, 
and spent coffee grounds led to an increase in the removal 
of organic matter, solids, and nutrients in comparison with 
the other media examined. Nguyen et al. (2021) monitored a 
horizontal subsurface flow green roof for the post-treatment 
of domestic wastewater after a septic tank and reported that 
the removal of organic matter and nitrogen increased with 
the use of Wedelia Trilobata as green roof vegetation in 
comparison with Axonopus Compressus. In the same study, 
the use of charcoal as bed media resulted in significantly 
lower COD concentration in the effluents in comparison 
with the use of sand. It should be mentioned that lightweight 
materials, in general, are preferable for use in green roofs, 
in comparison with well-studied typical bed media such as 
sand and gravel, to keep the green roof weight below the 
structural limit of the building.

Knowledge about the fate of pathogens in green walls, 
and in green roofs in particular, is limited (Pradhan et al 
2019). In general, several complex mechanisms related to 
porous media, vegetation, and hydraulic loading rate seem 
to affect pathogen removal in NBS (Wu et al. 2016). Ram-
prasad et al. (2017) examined the performance of a novel 
constructed wetland consisting of four rows of troughs 
filled with a mixture of sand, brickbat, and gravel for real 
greywater treatment and found a fecal coliform reduction of 
2–3 log units. In contrast, Prodanovic et al. (2020) reported 
an Escherichia coli reduction of less than 1 log unit in an 
experimental green wall treating synthetic greywater. The 
medium used in this study was a mixture of perlite and coco 
coir at a ratio of 1:2. The same research team again found an 
E. coli and a total coliform reduction of about 1 log unit for 
a similar green wall system (Bakheet et al 2020). Recently, 

Lakho et al. (2021) operated a full-scale green wall in Bel-
gium using a mixture of lava, organic soil and biochar (at a 
ratio of 2:1:1) as porous media and found a total coliform 
reduction of 2 log units.

In all cases, it is widely accepted that a disinfection unit 
must be installed in combination with a NBS for the safe 
reuse of treated greywater (Arden and Ma 2018). The disin-
fection technologies most used are chlorination, ozonation 
and ultraviolet radiation (UV). Among them, chlorination is 
the simplest and cheapest method for wastewater disinfec-
tion, making it ideal for the on-site treatment of greywa-
ter (Winward et al. 2008). Nevertheless, the major disad-
vantage of chlorination is the possible generation of toxic 
by-products such as chloramines, nitrosodimethylamine, 
and trihalomethane (Al-Gheethi et al. 2016). The quality 
of greywater as regards the presence of particles, organic 
compounds and nitrogen is important for an efficient chlo-
rination process. For example, Mohamed et al. (2015) sug-
gested doubled doses of chlorination for water with turbid-
ity values greater than 100 NTU. Similar, Tal et al. (2011) 
found that the filtration of raw greywater and the addition of 
higher chlorination doses improves the inactivation of bacte-
ria. Another important issue for safe greywater reuse is the 
potential regrowth of pathogenic bacteria during greywater 
storage. For this reason, it is suggested that the storage of 
the disinfected effluent for long periods of time is avoided 
(Boano et al. 2020). However, in practice, greywater could 
remain in storage tanks for periods longer than 2 days. The 
possible occurrence of organic compounds in the effluents 
not only increases the required chlorination doses, but also 
provides substrate for pathogenic bacteria regrowth (Win-
ward et al 2008). Moreover, the presence of disinfectants in 
greywater resulted in increasing chlorine decay rates mak-
ing it more difficult to control microbial regrowth (Tal et al. 
2011). For these reasons, it is important to know the human 
health risk for any greywater treatment and reuse process. 
To date, the available data about the ability of green roofs to 
remove pathogen indicators from greywater is very limited. 
In addition, there is lack of knowledge regarding the kinetics 
of chlorination of green roof-treated greywater and potential 
regrowth of pathogenic bacteria.

In this context, this work examined the fate of several 
pathogen indicators (total coliforms, Escherichia coli, and 
enterococci) in green roofs treating greywater and the effect 
of porous media and vegetation on their removal. In addi-
tion, different chlorination doses and contact times were 
tested to define the appropriate chlorination scheme for safe 
storage and reuse for toilet flushing. These pathogen indi-
cators were selected as they are the biological parameters 
defined in all existing guidelines and regulations for grey-
water reuse, worldwide (Arden and Ma 2018; Boano et al. 
2020). However, it should be mentioned that other bacteria 
such as Campylobacter jejuni, Pseudomonas aeruginosa, 
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and Staphylococcus aerus could be also very important for 
safe reuse as reported in several quantitative microbial risk 
analysis (Busgang et al. 2018; Shi et al. 2018).

Material and methods

Greywater

The recipe used for preparation of artificial light greywa-
ter was based on a well-known Australian protocol (Diaper 
et al 2008). Specifically, the ingredients added in 1000 L 
of tap water include shampoo (240 g), hand soap (240 g), 
toothpaste (21.7 g), moisturizing cream (6.7 g), deodorant 
(6.7 g), laundry (100 g), olive oil (4.7 g), urea (5 g), lactic 
acid (26.7), clay (33.3 g), and  K2PO4 (2.6 g). In addition, to 
ensure the presence of pathogens, 10 L of primary-treated 
effluent obtained from the local sewage treatment plant of 
the University of the Aegean was added to the synthetic 
mixture. The characteristics of artificial greywater used in 
this study are presented in Table 1. The values recorded 
for both chemical and microbiological parameters were in 
accordance with those previously reported for real greywater 
(Fountoulakis et al. 2016; Boano et al. 2020).

Operation of green roofs

Detailed characteristics of the green roofs used in the 
experiment are described in a previous article (Thomaidi 
et al. 2022). Briefly, 80 plastic pots were installed on the 
roof of a building at the University of the Aegean (Fig. 1), 
in Mytilene, Greece, receiving artificial greywater for a 
period of about one year (from summer 2020 until sum-
mer 2021). Two different substrates (perlite, vermiculite), 
two different depths (10 cm and 20 cm), and four different 
types of vegetation (Atriplex halimus, Geranium zonale, 
Polygala myrtifolia, and no vegetation) were examined (Fig-
ure S1) while five replicates were used for each treatment 

(2 substrates × 2 depths × 4 plants × 5 replicates = 80 pots). 
Each pot was loaded four times per day with 0.8 L of grey-
water corresponding to a hydraulic loading rate (HLR) of 
about 45 mm/day. It is mentioned that VFCWs could achieve 
higher removal efficiencies in comparison with horizontal 
flow CW (per  m2). For this reason, it was assumed that even 
shallow VFCWs may provide high-quality greywater efflu-
ents. In addition, an important technical issue for full scale 
applications is that the use of water saturated systems (such 
as horizontal flow CW) increases the green roof weight. This 
will require costly structural reinforcement for both existing 
and new buildings.

Chlorination & regrowth

In a first step, sodium hypochlorite solution (10%) was added 
at several doses ranging from 1 to 7 mg/L in the effluent of 
green roofs to determine the chlorine demand. Two different 
qualities of green roof effluents were tested, namely “high 
quality” (from green roofs filled with 20 cm of vermiculite) 
and “low quality” (from green roofs filled with 10 cm of per-
lite). Residual chlorine was measured after 0.25 h, 0.5 h, and 
1 h of contact time. The “high quality” effluent has a COD 
and an ammonium concentration of 10 mg/L and < 1 mg/L, 
respectively, while “low quality” effluent has a COD and 
an ammonium concentration of 142 mg/L and 1.2 mg/L, 
respectively.

In a second step, a “medium quality” green roof efflu-
ent containing 74 mg/L of COD and ammonium concen-
tration < 1 mg/L was chlorinated with 3 mg/L, 5 mg/L, 
and 7 mg/L of chlorine. To determine regrowth potential, 
residual chlorine and biological indicators (total coliforms, 
E. coli) were monitored for a period of 72 h. All chlorina-
tion experiments were conducted in triplicate in Erlenmeyer 
flasks covered with aluminum foil (dark conditions) at room 
temperature (20 °C).

Table 1  Chemical and 
microbiological characteristics 
of synthetic greywater used in 
the experiment and comparison 
with values reported in previous 
studies for real greywater

1 Fountoulakis et al. 2016;Boano et al. 2020

Parameter Greywater
Mean ± standard deviation (range)/
number of samples

Literature1 Range

pH 8.0 ± 0.3 (7.3–8.4)/19 6.4–10
EC (mS/cm) 0.9 ± 0.2 (0.7–1.2)/19 0.6–1.6
Turbidity (FNU) 53 ± 28 (25–132)/17 37–173
COD (mg/L) 226 ± 60 (140–338)/16 26–645
BOD (mg/L) 132 ± 36 (85–210)/16 20–756
Total Coliforms  (105 MPN/100 mL) 15.1 ± 33.0 (0.1–95)/10 0.8–119
E. coli  (105 MPN/100 mL) 3.4 ± 6.3 (0.02–15)/10 0.01–49
Enterococci  (105 MPN/100 mL) 1.9 ± 1.3 (0.1–3.1)/8 0.01–5.1
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Analytical methods

COD concentration of the samples was determined according 
to APHA (2005). The pH and the turbidity of raw and treated 
greywater was monitored with the use of a portable pH meter 
(C932, Consort) and turbidimeter (2100Q, Hach). Ammonium 
concentration and residual chlorine were measured spectro-
photometrically using standard test kit (Hach). Samples from 
the influent and the effluent of experimental green roofs were 
collected every month (from September 2020 until April 2021) 
and analyzed for total coliforms, and E. coli by using Colil-
ert-18 kit (IDEXX Laboratories Inc., USA). Briefly, greywater 
sample was poured into a Quanti-Tray, sealed in a Quanti-Tray 
sealer and placed in an incubator at 35 °C for 18 h. Accord-
ing to the manufacturer, wells with yellow color are positive 
for total coliforms and wells with blue fluorescence color are 
positive for E. coli. The most probable number (MPN) was 
determined from counted positive wells using the Quanti-
Tray MPN Table provided by the manufacturer. In a similar 
procedure, enterococci were recorded by using Enterolert kits 
(IDEXX Laboratories Inc., USA). The incubation period for 
enterococci was 24 h at 41 °C. Sampling for all microbial 
analysis was carried monthly.

Data analysis

The data were analyzed through two-way analysis of 
variance (ANOVA) to compare the effect of substrate 

type and substrate depth on effluent quality characteris-
tics. Differences between means were determined by the 
Tukey test (Significance level: p < 0.05). Then, one-way 
ANOVA was used to determine significant differences in 
pathogens concentration for different substrates, depths, 
or vegetation. To meet the assumptions of ANOVA, all 
 log10-transformed data were tested for normality and 
homogeneity of variance by Shapiro–Wilk and Lev-
ene’s test, respectively. All graphics and statistical tests 
were performed using OriginPro 2022 (Originlab, USA) 
software.

Results and discussion

Pollutants removal and plants growth

Details about the pollutant’s removal efficiency in experi-
mental green roofs are presented in a previous article 
(Thomaidi et al. 2022). Briefly, higher removal efficien-
cies were observed for COD, TSS, and turbidity in green 
roofs filled with 20 cm of vermiculite ranged from 84 to 
91%, 87 to 93%, and 85 to 93%, respectively. In contrast, 
the average removal of COD, TSS, and turbidity in green 
roofs filled with 10 cm of perlite was 39–45%, 44–53%, and 
39–52%, respectively. A summary of the effluent quality 
in experimental green roofs during the operation are pre-
sented in Table 2. In general, the use of greater substrate 

Fig. 1  Schematic presentation 
of experimental green roofs
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depth and finer porous media have significant positive effect 
on the quality of treated greywater.

After almost 1 year, all plants of A. halimus and G. zon-
ale were healthy without any visible symptoms of nutrient 
deficiency. In contrast, leaf discoloration and partial defo-
liation of P. myrtifolia plants was observed in some experi-
mental green roofs mainly during the winter period. The 
average plant height of the plants at the end of experiment 
was 71.8 ± 7.9 cm, 47.5 ± 4.2 cm, and 22.8 ± 6.5 cm, for A. 
halimus, P. myrtifolia and G. zonale, respectively. It is men-
tioned that the weeds grown in the pots were removed by 
hand every month.

Pathogen removal in green roofs

Figure 2 shows the average removal of total coliforms and 
enterococci in green roofs throughout the experimental 
period. Mean total coliform reduction in the effluents of 
green roofs ranged from 0.4 log units in systems filled with 
10 cm of perlite to 1.2 log units in systems filled with 20 cm 
of vermiculite. Similar, mean E. coli removal was found 
0.4 log units, 0.7 log units, and 1.7 log units in systems 
filled with 10 cm of perlite, 20 cm of perlite or 10 cm of 
vermiculite and 20 cm of vermiculite, respectively. These 
values are lower than those previously recorded for vertical 
flow systems. Specifically, Kotsia et al. (2020) examined 
the removal of total coliforms in vertical flow constructed 
wetlands (VFCWs) filled with washed sand and found an 
average removal of 2.2 log units. Similarly, Arden and Ma 
(2018), in a review article, reported a total coliform reduc-
tion of 2.8 log units in VFCWs. Boano et al. (2020) report 
a total coliform reduction in pilot scale VFCWs treating 
greywater of about 3 log units. In the same article, they sug-
gest that the main removal mechanisms of total coliform 
reduction are adsorption on substrate as well as the process 
of filtration. The filtration process has also been reported 
(Arias et al. 2001; Wu et al. 2016) as the main mechanism 
for the removal of several pathogen indicators (including 
total coliforms, fecal coliform, and fecal streptococci) in 

VFCWs treating domestic wastewater in the past. These 
suggestions explain the findings of this study too, as the 
substrate depths in the experimental green roofs were much 
lower (10–20 cm) than in typical VFCWs (50–80 cm). As a 
result, the adsorption and filtration process in green roofs is 
limited—resulting in lower removal rates. For these reasons, 
the mean total coliform concentrations in the effluents of 
green roofs filled with 20 cm of substrate are statistically 
significant (p < 0.05) lower in comparison with the effluents 
of green roofs filled with 10 cm of substrate (Table S1). Fur-
thermore, green roofs filled with vermiculite had effluents 
with a slightly lower mean total coliform concentration in 
comparison with green roofs filled with perlite, due to the 

Table 2  Quality of treated greywater in experimental green roofs

Parameter Substrate

Perlite Vermiculite

10 cm 20 cm 10 cm 20 cm

pH 8.1 ± 0.2 8.2 ± 0.3 8.2 ± 0.2 8.3 ± 0.3
EC (mS/cm) 0.89 ± 0.14 0.87 ± 0.14 0.88 ± 0.14 0.86 ± 0.14
COD (mg/L) 131 ± 42 78 ± 38 64 ± 32 25 ± 17
BOD (mg/L) 80 ± 33 48 ± 28 40 ± 27 14 ± 10
TSS (mg/L) 19.8 ± 9.0 11.8 ± 5.7 9.2 ± 5.0 3.7 ± 3.2
Turbidity (FNU) 27.8 ± 13.4 15.5 ± 6.6 12.7 ± 6.4 5.3 ± 3.6
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Fig. 2  The presence of total coliforms (a) and enterococci (b) in the 
inlet and the outlets of vegetated green roofs during the experiment 
(number of samples: 12). Minimum and maximum values are indi-
cated by the bottom and the top of the plot, respectively. Boxes repre-
sent median and lower and upper quartiles, while square points inside 
the box represent the mean values. P10: perlite 10  cm, P20: perlite 
20  cm, V10: vermiculite 10  cm, V20: vermiculite 20  cm. Different 
letters indicate significant (p < 0.05) differences based on one-way 
ANOVA
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presence of finer particles (vermiculite 0.5–3 mm, perlite 
1–5 mm), which enhance the filtration process. Prodanovic 
et al. (2018) examined E. coli removal in green walls filled 
with different mixtures of perlite and coir and concluded 
that physico-chemical processes are dominant in hydrauli-
cally faster mixes, while in slower mixes other mechanisms 
emerge, such as microbial degradation and predation. In this 
experiment, vermiculite was a hydraulically faster medium 
in comparison to perlite. As a result, enhanced total coliform 
removal could be also related to enhanced microbial degra-
dation and predation processes.

The average enterococci reduction in experimental green 
roofs (Fig. 2b) was about 0.5 log units, while maximum 
mean reduction was recorded in the effluents of green roofs 
filled with 20 cm of vermiculite (0.7 log units). The scien-
tific literature on the fate of enterococci in green roofs, as 
well as, in general, VFCWs is very limited. Winward et al. 
(2008) reported an enterococci removal of about 2 log units 
in a green roof water recycling system and a VFCW. The 
mechanisms related to enterococci removal in vertical flow 
systems are the same as the mechanisms related to total coli-
form removal. For this reason, the use of lower substrate 
depths and coarser particles resulted in a lower enterococci 
removal efficiency.

The effect of vegetation on the removal of pathogen indi-
cators is presented in Fig. 3. Mean total coliform concen-
tration in the effluents of green roofs filled with 20 cm of 
vermiculite and planted with A. halimus was 1.3 log units 
lower in comparison to the influent, and 0.7 log units lower 
in comparison to the effluents, of the same green roofs when 

unplanted. Similar effluent quality was also recorded for the 
other two plants examined (G. zonale and P. myrtifolia). 
In general, it is known that the presence of plants in CWs 
treating domestic wastewater has a positive effect on patho-
gen reduction (Kadlec and Wallace 2009; Wu et al. 2016). 
Kotsia et al. (2020) examined the treatment of greywater in 
VFCWs planted with three different ornamental plants and 
found that vegetated systems reduce total coliforms and E. 
coli concentrations by about 0.3–0.6 log units more than 
unvegetated systems. The positive effect of vegetation on 
pathogen removal is related to the effect of plants on the 
hydraulic characteristics of the medium (Kadlec and Wallace 
2009), as well as the increased surface area availability of 
plant roots (Kansiime and van Bruggen 2001), and the possi-
ble bactericidal activity of specific plants (Avelar et al 2014; 
Fountoulakis et al. 2017). For example, A. halimus is known 
for its extracts exhibiting antibacterial activity against sev-
eral Gram-positive and Gram-negative pathogens (Abdel-
Rahman et al. 2011). As a result, the exudates released by 
the plants could enhance the removal of pathogen indicators.

In any case, the effluent quality of all experimental green 
roofs failed to achieve the strict criteria for greywater reuse 
regarding microbiological characteristics. This observation 
is in accordance with previous results concerning the use of 
NBS (constructed wetlands, green roofs, green walls. etc.) 
for greywater treatment and reuse (Arden and Ma 2018; 
Boano et al. 2020). For this reason, an efficient disinfection 
unit must be added as post-treatment to meet reuse criteria.

Chlorination

Figure 4 presents the chlorination curves for two different 
qualities of green roof effluents. The “low-quality” efflu-
ent exhibits a break point at about 4 mg/L of dosed chlo-
rine concentration. In contrast, the “high-quality” effluent 
exhibits a not well-defined break point at around 1.5 mg/L 
dose. It is known that the presence of ammonia and/or 
nitrogen-containing organic compounds in wastewater 
results in the production of chloramines, increasing the 
combined chlorine residual. Further chlorine doses result 
in a decline of combined chlorine residual to the point at 
which chlorine demand is satisfied and additional chlo-
rine appears as free residual (breakpoint). The chlorine 
consumption after 30 min of contact time in both treat-
ments of this experiment was somewhat lower than pre-
viously reported values for raw greywater. For example, 
Winward et al. (2008) report a chlorine consumption of 
about 10 mg/L while March and Gual (2007) report values 
more than 20 mg/L. The treatment of greywater with the 
use of green roofs resulted in the significant removal of 
organic matter, solids, and ammonium-nitrogen, reducing 
the chlorine demand in comparison with untreated grey-
water. Similar observations were also reported by Friedler 
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Fig. 3  The effect of vegetation on total coliforms concentrations in 
the effluents of green roofs filled with 20 cm of vermiculite (number 
of samples: 12). Minimum and maximum values are indicated by the 
bottom and the top of the plot, respectively. Boxes represent median 
and lower and upper quartiles, while square points inside the box rep-
resent the mean values. Different letters indicate significant (p < 0.05) 
differences based on one-way ANOVA
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et al. (2011) in a previous work where they examined the 
chlorination of greywater treated by a rotating biological 
contactor and a sedimentation basin.

Figure 5 shows the inactivation of E. coli in the efflu-
ent of green roofs at three different chlorination doses 
(3, 5 and 7 mg/L). E. coli concentration decreased from 
22,000 ± 1251 MPN/100  mL before chlorination to 
69.7 ± 11.1 MPN/100 mL, 45.3 ± 8.2 MPN/100 mL and < 1 
MPN/100  mL after 0.5  h of chlorination with 3  mg/L, 
5 mg/L, and 7 mg/L of chlorine, respectively. The inactiva-
tion of E. coli continued for a period of about 24 h when 
the E. coli concentrations reach minimum values of 4.1 
MPN/100 mL, 2 MPN/100 mL, and < 1 MPN/100 mL in the 
treated greywater dosed with 3 mg/L, 5 mg/L, and 7 mg/L 
of chlorine, respectively. During the next two days, E. coli 
concentration increased at 1–2 orders of magnitude in the 
effluent chlorinated with 3 mg/L and 5 mg/L of chlorine. In 
contrast, the green roof effluent dosed with 7 mg/L of chlo-
rine remained free of E. coli even 3 days after chlorination.

Similar behavior was also observed for total coli-
form inactivation. Specifically, total coliform concentra-
tion decreased from 600,000 ± 4500 MPN/100  mL to 
200.5 ± 24.3 MPN/100  mL, 94.5 ± 38.7 MPN/100  mL 
and < 1 MPN/100  mL after 0.5  h of chlorination with 
3  mg/L, 5  mg/L and 7  mg/L of chlorine, respectively. 
Three days after chlorination total coliform concentration 
increased to values up to 1.8 ×  107 in the effluents dosed with 
3 mg/L of chlorine. On the other hand, the effluents dosed 
with 7 mg/L of chlorine had a total coliform concentration 
of about 100 MPN/100 ml.

Pathogen indicator inactivation is clearly related to the 
residual chlorine concentration in the effluents (Fig. 5a). The 
use of 7 mg/L of chlorine resulted in significantly higher 

residual chlorine concentration throughout the experiment, 
in comparison with other dosing schemes. In addition, the 
chlorine consumption rate was higher during the first min-
utes of chlorination (2–4 mg/L), while from 0.5 h to the 
end of the experiment the chlorine decay rate decreased sig-
nificantly. It seems that even after 24 h of chlorination the 
residual chlorine is enough to prevent regrowth of pathogen 
indicators in the storage tank of treated greywater. Specifi-
cally, the residual chlorine after 24 h of chlorination was 
found to be 0.15 mg/L, 0.37 mg/L, and 0.61 mg/L in flasks 
dosed with 3 mg/L, 5 mg/L, and 7 mg/L of chlorine, respec-
tively. On the other hand, the retention of treated greywater 
in tanks for periods longer than 24 h led to the regrowth of 
pathogens, increasing the risk to human health.

Friedler et al. (2011) examined the chlorination of rotat-
ing biological contactor-treated greywater and found that 
effluents with residual chlorine of 0.5 and 1.0 mg/L not only 
inactivated bacteria regrowth, but also resulted in further 
gradual inactivation for a period of 6 h, similar with this 
study. In addition, Rose et al. (1991) reported that coliforms 
increased to 1 and 2 log CFU/100 mL during the storage 
period of over 48 h, in accordance with our findings. In sum-
mary, the microbiological characteristics of green roof efflu-
ents obtained in this study after chlorination are presented 
and compared with worldwide guidelines given in Table 3. 
E. coli concentration during different chlorination doses 
and storage periods ranged from < 1 to 630 MPN/100 mL 
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while criteria for greywater reuse in toilets ranged from < 1 
MPN/100 mL in Australia to < 100 MPN/100 mL in Israel 
and the USA. The addition of 7 mg/L of chlorine could 
meet the strict criteria for indoor reuse even after 3 days 
of storage. In contrast, the use of lower chlorination doses 
requires very short storage periods for safe greywater reuse. 
It has been said that the reuse of greywater for toilet flushing 
minimizes the risk from possible presence of toxic chlorina-
tion by-products in the chlorinated effluents, as the treated 
greywater ends up at sewage treatment plants. There, these 
toxic compounds are treated by aerobic bacteria and other 
wastewater treatment processes (sedimentation, filtration, 
anaerobic digestion etc.) increasing the possibility of their 
elimination prior to disposal in the environment (Rostad 
et al. 2000; Chen et al. 2014).

Conclusions

The goal of this work was to examine the effect of green roof 
design on pathogen removal from greywater. According to 
the findings, the increase of substrate depth resulted in an 
increase in pathogen removal. The filtration process seems to 
be the dominant removal mechanism of pathogenic bacteria 
in all NBS. In addition, vegetated systems provided better 
effluent quality regarding pathogenic bacteria concentration 
in comparison with unvegetated systems probably due to 
the release of exudates. In all cases, low removal efficien-
cies of pathogen indicators were recorded ranged from 0.4 
to 1.2 log units. For this reason, chlorination is a necessary 
step for the safe reuse of treated greywater. The presence of 
higher amounts of organic matter in the effluents of green 
roofs resulted in a higher chlorine demand. The addition 
of chlorination doses ranging from 3 to 7 mg/L produced 
chlorinated effluents which met microbiological criteria for 
indoor reuse if the storage periods did not exceed 24 h. For 
longer storage periods a chlorination dose of 7 mg/L should 

be chosen to ensure safe greywater reuse for toilet flushing. 
Overall, the combination of a green roof with a simple post-
chlorination process could efficiently treat the greywater, 
providing an appropriate effluent quality for indoor non-
potable uses.
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