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Abstract
To control the spread of COVID-19, Shijiazhuang implemented two lockdowns of different magnitudes in 2020 (lockdown I) 
and 2021 (lockdown II). We analyzed the changes in air quality index (AQI),  PM2.5,  O3, and VOCs during the two lockdowns 
and the same period in 2019 and quantified the effects of anthropogenic sources during the lockdowns. The results show 
that AQI decreased by 13.2% and 32.4%, and  PM2.5 concentrations decreased by 12.9% and 42.4% during lockdown I and 
lockdown II, respectively, due to the decrease in urban traffic mobility and industrial activity levels. However, the sudden 
and unreasonable emission reductions led to an increase in  O3 concentrations by 160.6% and 108.4%, respectively, during 
the lockdown period. To explore the causes of the  O3 surge, the major precursors  NOx and VOCs were studied separately, 
and the main VOCs species affecting ozone formation during the lockdown period and the source variation of VOCs were 
identified, and it is important to note that the relationship between diurnal variation characteristics of VOCs and cooking 
became apparent during the lockdown period. These findings suggest that regional air quality can be improved by limiting 
production, but attention should be paid to the surge of  O3 caused by unreasonable emission reductions, clarifying the control 
priorities for urban  O3 management.

Keywords COVID-19 · Lockdown · Air quality index · PM2.5 · O3 · VOCs

Introduction

Since COVID-19 was first reported in Wuhan, China, it has 
been spreading around the world for more than 2 years. Dif-
ferent countries have taken different measures to control the 

spread of the virus, and a complete lockdown measure is an 
effective way to comprehensively control the virus. At the 
same time, the COVID-19 lockdown has unexpectedly reduced 
pollutant emissions from anthropogenic sources and improved 
air quality. Under the lockdown measures such as restrictions 
on industrial activities, transport and travel (Lal et al. 2020), 
 NO2, NO, and CO concentrations in Lyon were reduced by 
67%, 78%, and 62%, respectively, compared to the normal situ-
ation (Sbai et al. 2021). In Delhi, the ban on almost all indus-
trial activities and mass transportation resulted in reductions 
in  PM10 and  PM2.5 which were as high as approximately 60% 
and 39%, respectively, under the nationwide lockdown meas-
ures in India, compared to the pre-lockdown phase (Mahato 
et al. 2020). Furthermore, compared to pre-pandemic levels, 
 NO2 concentration has been reduced by 25.5% due to non-
essential business closures in the USA (Berman and Ebisu 
2020). Wuhan, China, the first city in the world to be under 
strict lockdown, included actions such as quarantining, traffic 
restrictions, and factory closures (Cui et al. 2020), reducing 
 NO2,  PM10,  PM2.5, and  SO2 concentrations by 50.6%, 41.2%, 
33.1%, and 16.6%, respectively, compared to the pre-lockdown 
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period (Sulaymon et al., 2021). In Jiangsu Province, China, 
the mean change of  PM2.5 decreased by 18%, and  PM10 
decreased by 19% from pre-COVID to active COVID (Bhatti 
et al. 2022). The concentrations of major pollutants  SO2,  NOx, 
 PM2.5, and Volatile organic compounds (VOCs) in the Yangtze 
Delta region were reduced by up to 26%, 47%, 46%, and 57% 
respectively, during the city lockdown period (Li et al. 2020). 
 NOx emissions were reduced by 36% over China, compared 
to the emissions before the outbreak (Feng et al. 2020), and 
the National Aeronautics and Space Administration (NASA) 
has published satellite images of the massive reduction in  NO2 
over China due to the economic slowdown and reduced human 
activities (NASA 2020).

Although the concentrations of  NO2, NO,  PM10,  PM2.5, 
and  SO2 decreased due to the implementation of epidemic 
control measures,  O3 concentrations increased during the 
lockdown. Compared to the same period in 2017–2019, the 
daily  O3 mean concentrations increased at urban stations by 
24% in Nice, 14% in Rome, 27% in Turin, 2.4% in Valencia, 
and 36% in Wuhan during the lockdown in 2020 (Sicard 
et al. 2020). Similarly,  O3 contents in the industrialized 
Gujarat state in western India increased by 16–48%, com-
pared to the pre-lockdown (Selvam et al. 2020). This phe-
nomenon is mainly due to stable HCHO concentrations in 
urban areas, which provides sufficient fuel for tropospheric 
 O3 generation, especially when there is not enough NO to 
consume  O3 through the titration effect (Pei et al. 2020).

Shijiazhuang, the capital city of Hebei province, is suf-
fering from severe air pollution with a ranking of 167th in 
air quality among 168 cities in China in 2020 (MEP 2021a). 
It is also one of the cities in China to have imposed two 
lockdowns since the outbreak of COVID-19. The different 
control measures during the two lockdown periods provide a 
valuable opportunity to explore the effect of different meas-
ures on air quality. This paper analyzes the trends of the air 
quality index (AQI) and the characteristics of the changes 
in  PM2.5 and  O3, the most concerned atmospheric pollut-
ants in China, during the two lockdowns. It then focuses on 
the causes of  O3 growth in the lockdown, identifying the 
key species of  O3 formation and changes in the sources of 
VOCs in the two lockdowns in Shijiazhuang in terms of  NOx 
and VOCs, the main precursors of  O3. This is important to 
explore the impact of the ban on air quality and to infer the 
extent to which regional emission reductions will improve 
air quality.

Methodology

Study area

Shijiazhuang (SJZ), the third-largest city in the Beijing-
Tianjin-Hebei area, is located at 113°30′–115°20′E and 

37°27′–38°47′N with an area of 14,464  km2, as shown in 
Fig. 1. SJZ consists of 22 districts or counties with a popu-
lation of 11,023,586 as of November 1, 2020. Petroleum 
processing, chemical raw material and chemical product 
manufacturing, pharmaceutical manufacturing, electricity, 
and construction are the main industries in SJZ (Liu et al. 
2018). At the same time, it is also the transportation center 
of Hebei Province.

For the last 2 years, COVID-19 is raging around the 
world. In China, Wuhan was the epicenter of the epidemic 
in 2020. Following a nationwide lockdown, SJZ was less 
affected by COVID-19, with 29 confirmed cases through-
out 2020 (http:// www. nhc. gov. cn/). From 25 January to 9 
February 2020, SJZ implemented the first-level response 
to a major public health emergency, which is defined as 
lockdown I. The lockdown I period includes the Chinese 
Spring Festival and Lantern Festival. However, on 5 
January 2021, SJZ suddenly became the epicenter of the 
epidemic, with 862 confirmed cases in less than a month 
(http:// www. nhc. gov. cn/). SJZ entered a state of war on 
January 8 and lifted that state on 29 January. Therefore, 
the period from 9 to 28 January was defined as lockdown 
II. During lockdown II, dusty weather was observed from 
12 to 16 January, air quality data for these 4 days were 
removed from this study to truly explore the contribution 
of the lockdown measures to air quality changes.

Fig. 1  Location of SJZ
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Data source

Hourly concentrations of  PM2.5 (μg/m3) and  NOx (μg/m3), 
8-h moving average concentrations of  O3 (μg/m3), and 
hourly values of the AQI were obtained from China Envi-
ronmental Monitoring Station.

Satellite-derived data including tropospheric formalde-
hyde (HCHO) and tropospheric  NO2 column density were 
obtained from the Tropospheric Monitoring Instrument 
(TROPOMI) level-2 retrievals. TROPOMI is a satellite 
instrument on the Copernicus Sentinel-5 Precursor (S5P) 
satellite launched by the European Space Agency on 13 
October 2017 to monitor air pollution. TROPOMI data was 
provided on ESA’s Sentinels Scientific Data Hub website.

VOC sampling

The monitoring site is located in the Shijiazhuang Ninth 
High School (38.03°N, 114.28°E), which is part of a mixed 
educational, residential, and commercial area in the urban 
area. Online VOC measurement was conducted using Air-
mOzone Analysis System (ASS) consisting of the Airmo-
VOC C2-C6 analyzer and AirmoVOC C6-C12 analyzer 
developed by Chromatotec®. The AirmOzone system uses 
a flame ionization detector (FID) and monitors a total of 71 
VOC species in this study, including 24 alkanes, 12 alkenes, 
1 alkyne, 16 aromatics, and 18 halocarbons. The system con-
sists of an internal automatic calibration (AirmoCal) and an 
external manual calibration. The internal automatic calibra-
tion frequency is once a day and the external calibration 
frequency using VOCs standard gas is once a week, thus 
ensuring a stable and efficient continuous monitoring of the 
instrument.

Potential source contribution function

The potential source contribution function (PSCF) is a con-
ditional probability function (Hui et al. 2018), which was 
applied in this study to locate potential sources of pollution. 
Using global data provided by the National Center for Envi-
ronmental Forecasting, the backward trajectories of  PM2.5 in 
SJZ during the two lockdowns were calculated in this study 
with a 24-h backward trajectory height of 100 m.

PSCF can be used to locate the potential source area of 
the observation points, which is defined as  PSCFij = mij/nij. 
Where nij represents all trajectories in the airflow through 
the cell grid in the study area, mij represents the number 
of pollution trajectories through the grid. In this work, the 
geographic area covered by the trajectories was divided into 
an array of 0.1° × 0.1° grid cells, and the  PM2.5 reference 
value was set at 75 μg/m3. The higher PSCF values indicate 
that the area corresponding to the grid is a potential source 
area for high concentrations of pollution at the observation 

site and that the trajectories through this area are a transport 
pathway that has a significant impact on the observation site.

Since grid cells always have the same PSCF value, it is 
difficult to distinguish between slightly higher and far higher 
thresholds (Li et al. 2017). To reduce the effect of small 
values of nij, PSCF values are generally multiplied by an 
arbitrary weighting function Wij to better reflect the uncer-
tainty of these small values (Polissar 1999). Wij is defined 
in Eq. (1).

Positive matrix factorization

Positive matrix factorization (PMF) receptor model version 
5.0 is developed by the US EPA and used for source analysis 
of VOCs in SJZ in this study. The PMF model is based on 
the fundamental principle of mass conservation to identify 
and apportion source contributions from a given data matrix 
using Eq. (2) (Assan et al. 2018; Guan et al. 2020; Paatero 
and Tapper 1994).

where Xij represents the VOC concentration matrix with i 
number of samples and j number of measured VOCs, which 
are resolved by the PMF to provide p number of possible 
source factors with the source profile f of each source and 
mass g contributed by each factor to each sample, leaving 
the residuals e for each sample (Sarkar et al. 2017). To deter-
mine the solution, the minimum value Q is calculated from 
Eq. (3) (Paatero and Tapper 1994):

where Q is the object function and a critical parameter for 
PMF, m and n are sample and species numbers. The uncer-
tainties (Unc) were calculated following the US EPA recom-
mended method as follows: (1) if the concentration values 
were below or equal to the MDL, their uncertainty was cal-
culated using the following equation: Unc = 5/6 × MDL; (2) 
if the concentration values were greater than the MDL, the 
calculation used was: Unc = [(Error fraction × concentra-
tion)2 + (MDL)2]1/2 (Polissar et al. 1998; Reff et al. 2007).

The PMF model was run ranging from 4 to 10 factor num-
bers to determine the best solution for this study, consistent 
with the chemical environment in the lockdown of SJZ. The 
six-factor solution was considered to be the best solution for 

(1)Wij =

⎧
⎪⎨⎪⎩

1.00 nij > 80

0.75 80 ≥ nij > 20

0.42 20 ≥ nij > 10

0.05 nij ≤ 10

(2)Xij =

p∑
k=1

gikfkj + eij

(3)Q =

m�
i=1

n�
k=1

�
xij −

∑p

k=1
gikfkj

uij

�
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this dataset based on the constraints imposed by the Q/Qexp 
theoretical ratio, the physical likelihood of each factor, and the 
rotational ambiguity of the solution.

Air quality index

The AQI is a comprehensive pollutant evaluation index that 
allows for a comprehensive assessment of air quality. Accord-
ing to the Technical Regulation on Ambient Air Quality Index 
of China, AQI levels are divided into six classes, as shown 
in Table 1. The AQI is calculated as the maximum value of 
the air quality sub-index for all air pollutants. Table 2 shows 
the corresponding air pollution sub-index levels and the cor-
responding air pollutant concentrations. Six major air pollut-
ants  (SO2,  NO2,  PM10, CO,  O3, and  PM2.5) are selected; their 
concentrations are grouped into six different categories based 
on concentration breakpoints. In Table 2, 24-h refers to 24-h 
average, and 8-h refers to 8-h average. IAQI values can be 
calculated from Eq. (4) by linear interpolation of the reference 
scale values given in Table 2:

(4)IAQIp =

PIhigh − PIlow

BPhigh − BPlow

×

(
Cp − BPlow

)
+ Ilow

where IAQIp refers to the air pollution sub-index for pollut-
ant p; Cp represents the integer concentration of pollutant p; 
BPhigh represents the breaking point greater than or equal to 
Cp; BPlow represents the breaking point less than or equal to 
Cp; PIhigh refers to the air pollution sub-index correspond-
ing to BPhigh; and PIlow refers to the air pollution sub-index 
corresponding to BPlow. Finally, the AQI is calculated as the 
maximum value of the air pollution sub-indices for all air 
pollutants, and the air pollutant with the maximum value is 
identified as the primary pollutant.

Results and discussion

Characteristics of the changes in air quality and AQI

Figure 2 shows the changes in AQI and the proportion 
of each level during the two lockdowns and from 10 to 
25 January 2019 (defined as the same period in 2019). 
Compared to the same period in 2019, the air pollution 
levels under the COVID-19 lockdowns decreased sig-
nificantly, with a 13.2% decrease in AQI for lockdown 
I and a 32.4% decrease for lockdown II. In terms of the 
changes in AQI levels, there were 4 days of serious pollu-
tion and 1 day of heavy pollution during the same period 
in 2019, no serious pollution in either lockdown, 6 days 
of heavy pollution in lockdown I, and 2 days of heavy 
pollution in lockdown II. In terms of the number of mild 
and moderate pollution days, the three periods were simi-
lar. There were no excellent days in the same period in 
2019, and lockdown I and lockdown II had 1 and 2 addi-
tional days, respectively. Overall, the improvement in air 
quality under the lockdown was mainly reflected in the 
decrease in the number of serious pollution days and the 

Table 1  Air quality index and 
levels

AQI value Level

0 ~ 50 Excellent
51 ~ 100 Good
101 ~ 150 Mild pollution
151 ~ 200 Medium pollution
201 ~ 300 Heavy pollution
>300 Serious pollution

Table 2  Air quality sub-index levels and their corresponding air pollutant concentrations

a The 1-h-average concentrations of  SO2,  NO2, and CO are just used for real-time reports; the daily concentrations are acquired by 24-h average
b The 1-h average concentration of  SO2 will not be included in the calculation of the air quality sub-index, if it is greater than 800 μg/m3, and the 
air quality sub-index of  SO2 is reported as 24-h average
c The 8-h average concentration of  O3 will not be included in the calculation of air quality sub-index, if it is greater than 800 μg/m3, and the air 
quality sub-index of  O3 is reported as 1-h average

Air quality 
sub-index

Air pollutant concentrations(μg/m3)

SO2 24-h SO2 1-ha NO2 24-h NO2 1-ha PM10 24-h CO 24-h CO 1-ha O3 1-h O3 8-h PM2.5 24-h

0 0 0 0 0 0 0 0 0 0 0
50 50 150 40 100 50 2000 5000 160 100 35
100 150 500 80 200 150 4000 10,000 200 160 75
150 475 650 180 700 250 14,000 35,000 300 215 115
200 800 800 280 1200 350 24,000 60,000 400 265 150
300 1600 b 565 2340 420 36,000 90,000 800 800 250
400 2100 b 750 3090 500 48,000 120,000 1000 c 350
500 2620 b 940 3840 600 60,000 150,000 1200 c 500
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increase in the number of excellent days. Comparing the 
two lockdowns, lockdown II was more stringent and had 
better air quality.

Through the calculation of IAQIp, the daily primary 
pollutants in the same period of 2019 were  PM2.5 with a 
100% contribution; lockdown I was  PM2.5 with a 100% 
contribution; and lockdown II was  PM2.5 and  PM10 with 
47% and 53% contributions, respectively.  PM2.5 was the 
primary pollutant in SJZ, and the effect of the lockdown 
on the change of  PM2.5 concentration will be analyzed in 
detail below. Meanwhile,  O3, the main pollutant in SJZ in 
summer, gradually increased during three periods, as the 
 PM2.5 concentration decreased. Therefore, the changes of 
 O3 concentration during the lockdown period will also be 
discussed below.

Characteristics of the changes in  PM2.5 
concentrations

In terms of individual pollutants,  PM2.5 has been the primary 
pollutant in the Beijing-Tianjin-Hebei region. In 2020, the 
proportion of non-attainment days with  PM2.5 as the primary 
pollutant reached 48% (MEP 2021b). Figure 3 (a) shows the 
trends of  PM2.5 hourly concentrations at different AQI levels 
for three periods. On heavy and serious pollution days, the 
average  PM2.5 concentration for the same period in 2019 
was 286.6 μg/m3, which decreased by 37.3% to 179.6 μg/
m3 during lockdown I and by 42.7% to 164.3 μg/m3 dur-
ing lockdown II. On mild and medium pollution days, the 
average  PM2.5 concentrations were relatively similar for the 
three periods, at 97.3, 109.1, and 106.1 μg/m3. Compared 
to the same period in 2019, on good and excellent days, 
the average  PM2.5 concentrations in the three periods were 
43.8, 53.5 and 34.7 μg/m3, respectively; a decrease of 20.8% 
for lockdown II. As shown in Fig. 3 (b), the average  PM2.5 
concentrations decreased by 12.9% and 42.4% for the whole 
lockdown I and lockdown II periods, respectively, compared 
with the same period in 2019. In addition,  PM2.5 concentra-
tions decreased by 33.8% during lockdown II, compared to 
lockdown I. It can be concluded that the decrease in  PM2.5 
concentrations in the lockdown occurred mainly on days of 
heavy and severe pollution, that is, the level of heavy and 
serious pollution decreased.

The significant reduction in  PM2.5 concentrations was 
largely due to the implementation of the lockdown meas-
ures. During lockdown I, the policy required people to avoid 
going outside unnecessarily and allowed one person per 
household per day to go out to work or shop with a trans-
port permit. However, during lockdown II, due to the SJZ 
outbreak, the policy required all people to implement home 
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quarantine, except for medical personnel and those ensur-
ing basic city operations. The difference in policy between 
lockdown I and lockdown II directly resulted in a significant 
change in urban traffic mobility. In this study, the intensity of 
intra-city travel was introduced to characterize urban traffic 
mobility. The intra-city travel intensities during lockdown I 
and lockdown II were 1.9 and 1.4, respectively, both signifi-
cantly lower than 4.0 during the same period in 2019 (http:// 
qianxi. baidu. com). The value during lockdown II was 26.3% 
lower compared to lockdown I, which proved that lockdown 
II had fewer traffic sources under the stricter lockdown pol-
icy. At the same time, the lockdown policy led to a signifi-
cant decrease in the level of industrial activity. Compared to 
the same period in 2019, industrial electricity consumption 
decreased by 18.8% in lockdown I and 40.0% in lockdown 
II (SBS 2021). With a 26.2% decrease in industrial electric-
ity use in lockdown II compared to lockdown I, industrial 
emissions during lockdown II can be estimated to be 26.2% 
lower than during lockdown I (Li et al. 2021). Moreover, the 
decrease in  PM2.5 concentrations during lockdown II was 
associated with a reduction in firework displays. Lockdown 
I spanned the Chinese Spring Festival and Lantern Festival, 
which are two fireworks festivals in China. Fireworks shows 
have a significant impact on  PM2.5 concentrations, reach-
ing 50% of  PM2.5 during the Chinese Spring Festival (Kong 
et al. 2015; Zhang et al. 2017).

The lockdown policy can only reduce the emissions of 
local sources but not the contribution of regional transport 
sources. To clarify the contribution of regional transmis-
sion sources to  PM2.5, we applied the PSCF model, and 
the results are shown in Fig. 4. With the city of SJZ as the 
center of the circle, three regions are divided into a radius 
of 50 km according to the administrative area of SJZ. The 
area within a radius of 50 km represents the contribution of 
local sources; the area between 50 and 100 km represents 
short- and medium-range transport sources; while the other 
areas correspond to long-range regional transport sources 
(> 100 km).

From Fig. 4 (a), during the same period in 2019, the 
highest PSCF values of 0.6–0.7 were found in areas within 
50 km, which are industrial areas located in the south and 
southwest of SJZ. The short and medium distance transmis-
sions between 50 and 100 km were mainly in the western and 
northeastern areas of SJZ, originating from the eastern part 
of Yangquan, the southern part of Baoding and the northern 
part of Xingtai, which were  PM2.5 potential source areas, 
with PSCF values mostly between 0.2 and 0.4. When the dis-
tance exceeds 100 km,  PM2.5 was more likely to come from 
the northern part of Baoding and the northwestern part of 
Yangquan, with PSCF values between 0.1 and 0.3. As shown 
in Fig. 4 (b), the high PSCF values were widely distributed 
within 50 km, indicating that the potential sources of  PM2.5 
during lockdown I were mainly local, especially in the city 
center, with PSCF values > 0.8. Also, the likelihood of  PM2.5 
from non-industrial areas increased significantly compared 
to the same period in 2019, indicating a significant increase 
in pollution from residential emissions during the lockdown. 
Short- and medium-range transmissions within 50–100 km 
decreased significantly, with only small transmissions from 
Yangquan, Xingtai and Baoding, with PSCF values mostly 
between 0.4 and 0.7. Long-range transmissions over 100 km 
no longer exist. During lockdown II, SJZ was closed, but the 
activity level in the surrounding areas was normal. As seen 
in Fig. 4 (c), the distribution of local sources within 50 km 
of SJZ was significantly reduced, indicating a low contribu-
tion of local sources to  PM2.5. The higher PSCF values were 
only distributed near the urban center, with values between 
0.5 and 0.8. The transmissions over 50 km were mainly from 
the east, including the transmissions from the eastern part of 
SJZ and Hengshui, with PSCF values reaching 0.7.

As can be seen from the discussion above, traffic mobil-
ity decreased by 52.5% and industrial activity decreased 
by 18.8% during lockdown I, compared to the same period 
in 2019, while both traffic emissions and industrial emis-
sions decreased even more during lockdown II. Compared 
to lockdown I, urban traffic mobility decreased by 26.3%, 

Fig. 4  The potential source contribution function of  PM2.5 during  (a) the same period in 2019, (b) lockdown I, and (c) lockdown II in SJZ
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industrial activity decreased by 26.2%, and fireworks emis-
sions were completely reduced in lockdown II, resulting in 
a 33.8% decrease in  PM2.5. This suggests that the stricter the 
lockdown and the lower the level of anthropogenic source 
activity, the greater the improvement in  PM2.5.

Characteristics of the changes in  O3 concentrations

From Fig. 5 (a), the average  O3 concentrations on heavy and 
serious pollution days during these three periods were 8.6, 
48.9, and 26.3 μg/m3, which increased nearly fivefold and 
twofold during the two lockdowns, respectively. On mild 
and medium pollution days, the average  O3 concentration for 
the same period in 2019 was 16.5 μg/m3, increasing 195.2% 
to 48.7 μg/m3 during lockdown I and 116.4% to 35.7 μg/
m3 during lockdown II. On good and excellent days, the 
average  O3 concentrations for the three periods were 31.8, 
49.4, and 45.8 μg/m3, respectively, with two lockdown peri-
ods increased by 55.3% and 44.0%, respectively. Compared 
with the same period in 2019, the average  O3 concentration 
increased by 160.6% for the whole lockdown I and 108.4% 
for lockdown II (Fig. 5(b)), with the increases in  O3 mainly 
concentrated on heavy and serious polluted days. There are 
two main reasons for the dramatic increase in  O3 in lock-
downs. First,  PM2.5 concentrations decreased by 27.2% 
on average, which led to a decrease in the absorption effi-
ciency of hydrogen peroxide radical (•HO2) for  PM2.5 and an 
increase in peroxyl radical-mediated  O3 production (Wang 
et al. 2020). Second, in Fig. 5 (b), the average NO concentra-
tion for both lockdowns (3.6 μg/m3) was more than 10 times 
lower compared to the same period in 2019 (43.7 μg/m3), 
and insufficient NO titration during the lockdowns leads to 
the accumulation of  O3 (Pei et al. 2020).

To explain the different growths in  O3 in the two lock-
downs, we studied the changes in ozone-producing precur-
sors of  NOx  (NOx = NO +  NO2) and VOCs, respectively. Due 
to the occurrence of secondary pollution, from Fig. 5 (b), the 
mean  NOx concentration (37.0 μg/m3) was slightly higher in 
lockdown II than in lockdown I (26.1 μg/m3), and the mean 
NO and  NO2 concentrations were 2.6 μg/m3and 24.6 μg/
m3, respectively, in lockdown I and 24.6 μg/m3 and 30.7 μg/
m3, respectively, in lockdown II. Combining tropospheric 
 NO2 column density data from TROPOMI satellite (Fig. 6 
(a) and (b)), it can be found that local  NO2 column density 
still decreased during lockdown II compared with lockdown 
I, especially in the southern part of SJZ where there are 
industrial areas, and the reduction of  NOx by lockdown was 
positive.

On the other hand, the mean concentrations of TVOCs 
were 42.1 and 37.3 ppbv for lockdown I and lockdown II, 
respectively. We calculated the ozone formation potentials 
(OFP) during the two lockdowns using the latest indigenous 
MIR values separately (Zhang et al. 2021), and eight of the 
top ten species with the largest OFP during the two lock-
downs overlapped, as shown in Fig. 6 (e). With almost con-
stant total concentrations for these eight species, the OFP 
of lockdown II decreased by 11.8%, mainly due to a 46.5% 
decrease in ethylene concentration. Among the above spe-
cies, ethylene was the most concentrated species in lockdown 
I, reaching 6.45 ppbv, while in lockdown II the concentra-
tion decreased to 3.45 ppbv. Ethylene is a typical gasoline 
vehicle emission (Pei et al. 2022; Zhang et al. 2013), and 
the decrease in its concentration reaffirms the reduction in 
traffic sources in lockdown II. Propane increased by 45.6% 
in lockdown II, making it the most abundant species with 
an increase in OFP of 0.43 ppbv. Trans-2-butene increased 
more than threefold, corresponding to an increase in OFP 

Fig. 5  (a) Temporal variation (different colors correspond to the AQI level colors in Fig. 2) and (b) average concentration of  O3, NO,  NO2, and 
 NOx for three periods in SJZ
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of 2.96 ppbv and was one of the main contributors to the 
increase in OFP in lockdown II. Both propane and trans-
2-butene are important species of volatile fuels (Lau et al. 
2010), and propane is the main emission associated with 
liquefied petroleum gas (LPG) (Vega et al. 2000; Xuan et al. 
2021). Also, tropospheric formaldehyde (HCHO) column 
density data were obtained, as shown in Fig. 6 (c) and (d). 
As the most abundant aldehyde in the atmosphere, HCHO 
is the most dominant volatile organic compound and pol-
lutant in the troposphere (Peng et al. 2016), and its column 
concentration variation is positively correlated with energy 
production and vehicle emissions (Fan et al. 2021), which 
can be used to assess changes in human activity level. As 
can be seen in Fig. 6 (c) and (d), the decrease in HCHO col-
umn densities was more pronounced in the northern, eastern, 
and western regions of SJZ during lockdown II compared 
to lockdown I.

The lower  O3 concentration in lockdown II may be due 
to a combination of a stronger NO titration reaction and a 

lower TVOC concentration. But which one dominates? The 
 O3/NOx ratio can be used to qualitatively determine the sen-
sitivity of  O3 generation, and a ratio of 15 can be used as 
a threshold for  O3 generation sensitivity conversion (Ton-
nesen and Dennis 2000). The  O3/NOx ratios for both lock-
downs and the same period in 2019 were much less than 15, 
and therefore the SJZ was judged to be a control area for 
VOCs. This is the same as the result of the previous study 
(Zhang 2020). Therefore, the difference in  O3 concentrations 
between the two lockdowns in SJZ was mainly due to the 
different involvement of VOCs.

VOC profiles during the two lockdowns

From the above discussion, it can be found that VOCs are the 
key precursor of  O3 generation in SJZ, and its change in the 
lockdown period can provide ideas for the regional manage-
ment of  O3. As shown in Fig. 7, alkanes were the most con-
tributing species in both lockdowns, with their share further 

Fig. 6  The satellite image of 
HCHO and  NO2 in SJZ urban 
area: (a)  NO2 and (c) HCHO 
during lockdown I, (b)  NO2 and 
(d) HCHO during lockdown II 
and (e) concentrations and OFP 
of overlapping species in the top 
ten species ranked by OFP in 
both lockdowns
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increasing by 37.8% in lockdown II, mainly concentrated in 
light alkanes (C < 6) associated with evaporation emissions 
of LPG and gasoline (Pei et al. 2022), consistent with the 
increase in propane described above. In addition, the diurnal 
variation in alkane concentrations was more severe in lock-
down II (14.4 ~ 32.4 ppbv) than in lockdown I (16.2 ~ 19.3 
ppbv), suggesting that alkane sources were characterized by 
heterogeneous temporal variation. Acetylene and aromatics 
were associated with coal combustion emissions (Barletta 
et al. 2005; Shi et al. 2015), whose concentrations increased 
by 13.6% and doubled, respectively, mainly associated with 
heating during lockdowns. The decrease in VOCs in lock-
down II compared to lockdown I was mainly due to an 83.1% 
reduction in the contribution of halocarbons, which were 
mainly from industrial processes (Hui et al. 2018).

The VOCs species also produced different daily varia-
tion characteristics during the two lockdowns (Fig. 7 (b) and 
(c)). In lockdown I, all substances showed a clear single-
peak distribution with a peak at 9:00 and a trough at 17:00. 
In contrast, all substances in lockdown II, except alkanes, 
satisfied a bimodal distribution with two peak times at 9:00 
and 21:00 and a trough at 16:00. According to Cheng et al., 
the types of VOCs detected in Chinese household cooking 
were alkanes (63.8% ± 4.5%), alkenes (21.9% ± 5.3%) and 
aromatics (14.3% ± 4.8%) (Cheng et al. 2016), and Chinese 
home cooking is the most common cooking cuisine in SJZ. 
Combined with the actual quarantine of people at home dur-
ing lockdowns, the growth process of alkenes, alkynes, and 
aromatics overlapped with cooking time, and the contribu-
tion of cooking to VOCs may become apparent.

During the lockdown, the sources of VOCs may also 
change as human activity was greatly restricted. We have 
analyzed 25 species to identify the contribution of six emis-
sion sources to VOCs using PMF (Fig. 8).

In lockdown I, Factor 1 explains the highest contribution 
of 70.5% for benzene and 53.5% for propane. Benzene is the 
most abundant VOC species for biomass combustion (Wang 
et al. 2009), and propane is also one of the major compo-
nents of non-methane hydrocarbon emissions from biomass 
stoves in China (Liu et al. 2008; Tsai et al. 2003). Therefore, 
Factor 1 is identified as biomass burning.

Factor 2 is identified as a traffic source with a contribution 
of 27.8%, characterized by high contributions from ethane 
(52.0%) and ethylene (41.7%), which are typical of petrol 
vehicle emissions. It is worth noting that 30.6% of isoprene 
is also explained by this factor, and its emissions related to 
urban transport have been reported previously (Hellén et al. 
2012; Sarkar et al. 2017).

Factor 3 is dominated by n-undecane (61.0%), acetylene 
(58.8%), and some aromatics. Acetylene and aromatics are 
important indicator species for fossil fuel (Barletta et al. 
2005; Shi et al. 2015), therefore, Factor 3 is set as the coal-
fired source.

Factor 4 was identified as a biogenic source because it 
explains more isoprene total mass than any other factor 
(38.8%).

Factor 5 was determined to be a fuel volatilization source, 
characterized by a high proportion of C4-C11 n-alkane. 
Evaporative emissions from China 5 and China 6 gaso-
line vehicles include C1-C12 alkanes, and C4-C5 alkanes 

Fig. 7  Changes of VOC spe-
cies in (a) percentage for both 
lockdowns and daily  concentra-
tions in (b) lockdown I and (c) 
lockdown II
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account for the largest part from China 5 gasoline vehicles’ 
evaporative emissions (Liu et al. 2022), isopentane (42.3%) 
and n-pentane (41.8%), which are tracers of oil and gas 
volatilization.

Factor 6 was distinguished by n-heptane (43.8%), n-unde-
cane (38.1%), and toluene (36.9%). Heavy alkanes and aro-
matics are the dominant VOCs in emissions of the print-
ing industry, and toluene is the most abundant species of 
the total VOCs emitted from paint applications (Vega et al. 
2000; Yuan et al. 2010). Factor 6 was therefore judged to be 
a solvent source.

In lockdown II, Factor 1 is mainly explained by alkanes 
and aromatics, including ethane (74.9%), propane (24.6%), 

toluene (6.4%), and styrene (21.4%), which fit the coal com-
bustion VOC profile and was considered to be the source of 
coal combustion.

Factor 2 is mainly composed of ethylene (38.9%), acety-
lene (45.8%), n-butane (47.7%), isobutane (45.7%), benzene 
(5.3%), and p-diethyl benzene (41.3%). Ethylene and ethyne 
are important species emitted from biomass open burning 
(Fang et al. 2017) and have a similar composition to Factor 
1 in lockdown I, so Factor 2 is identified as biomass burning.

For Factor 3, high contributing species include n-hexene, 
n-butane, isobutane, n-pentane and isopentane, which have 
a similar structural composition to Factor 5 in lockdown I 
and are identified as fuel volatile sources.

Fig. 8  PMF results for two lockdowns
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Factor 4 was identified as a traffic source, with high loads 
of ethylene (36.9%), acetylene (25.7%), benzene (31.4%), 
and toluene (38.1%), typical of petrol vehicle emissions (Pei 
et al. 2022; Zhang et al. 2013).

Factor 5 was interpreted as biogenic due to the contribu-
tion of 54.4% isoprene.

Factor 6 explains mainly the heavy alkanes, including 
82.3% n-heptane, 27.9% n-nonane, and 26.1% n-dodecane, 
which are major species in printing emissions (Yuan et al. 
2010). Therefore, Factor 6 was identified as a solvent source.

The proportion of the sources of VOCs in the two lock-
downs is shown in Fig. 7. The ranking of source contri-
butions in lockdown I is traffic source (32.6%) > coal com-
bustion source (23.4%) > biogenic source (14.8%) > fuel 
evaporation source (12.0%) = biomass burning source 
(12.0%) > solvent source (5.2%); in lockdown II it is coal 
combustion source (35.5%) > biogenic source (22.8%) > fuel 
evaporation source (15.3%) > traffic source (9.9%) > solvent 
source (8.7%) > biomass burning (7.8%). The reduction of 
traffic contribution is the main reason for the decrease of 
VOC concentration in lockdown II, which is consistent with 
the above conclusion of ethylene reduction. Compared with 
the two lockdowns, when the restrictions of other sources 
of VOCs reach a certain limit, reducing the emission from 
traffic sources is an effective way to reduce the concentra-
tion of VOCs.

Conclusion

Since the COVID-19 lockdown significantly limits human 
activities and was to some extent highly similar to regional 
abatement activities, the two lockdowns in SJZ provide 
important insights for improving regional air quality.

The restrictions on human activities caused by the two 
lockdowns were mainly mirrored in the reduction of urban 
traffic mobility by 52.5% and 65.0%, respectively, and 
the reduction of industrial activities by 18.8% and 40.0%, 
respectively. These restrictions indirectly improved the 
regional air quality, as reflected by reductions of 13.2% and 
32.4% in AQI, and 12.9% and 42.4% in  PM2.5 concentra-
tions, respectively. Comparing these two lockdowns, it can 
be concluded that the stricter the lockdown, the greater the 
air quality improvement, with the decrease in AQI and  PM2.5 
occurring mainly on heavy and serious polluted days and 
good and excellent days. Meanwhile, the PSCF results show 
that the  PM2.5 contribution from local sources dominated, 
which implies that the focus of improving regional air qual-
ity is on the control of local sources.

However, due to unreasonable emission reductions dur-
ing the lockdown,  O3 concentrations spiked during the two 
lockdowns, increasing by 160.6% and 108.4%, respectively. 
First, the decrease in  PM2.5 concentrations increased the 

production of  O3 mediated by peroxyl radicals. Second, the 
average concentrations of NO decreased more than tenfold, 
which led to a significant reduction in the titration consump-
tion of  O3. The difference in  O3 increase between the two 
lockdowns was mainly due to an 11.8% decrease in OFP for 
the major VOC species in lockdown II, especially a 3 ppbv 
decrease in ethylene concentrations associated with traffic 
sources. The results of the PMF model again confirmed 
that the concentration of TVOCs decreased in lockdown II 
due to a decrease in the contribution of traffic sources. The 
characteristics and sources of VOCs showed that in lock-
down II alkanes increased by 37.8%, especially light alkanes 
(C < 6) associated with LPG, and gasoline evaporative emis-
sions, acetylene, and aromatic hydrocarbons related to coal 
combustion emissions increased by 13.6% and doubled, 
respectively, while the contribution of halocarbons from 
industrial processes decreased by 83.1%. In addition, the 
diurnal variation characteristics of VOCs in lockdown II, 
except for alkanes, overlap with the time of household cook-
ing in China. All characteristics were consistent with those 
of lockdown II, where stringent household policies increased 
emissions from cooking and coal-fired heating.

The COVID-19 lockdown results suggest that regional 
air quality can be improved by limiting human activities, 
but a blind reduction of  PM2.5 and  NOx may significantly 
increase  O3 concentrations. Since SJZ is in the VOC control 
area, future policy should strengthen the control of VOCs, 
especially for traffic sources. In addition, cooking emissions 
also need attention.
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