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Abstract
Acetaminophen (APAP) overdose can produce hepatotoxicity and consequently liver damage. This study investigated the 
hepatoprotective impacts of nicorandil on hepatic damage induced by APAP. Nicorandil was administered orally (100 mg/
kg) for seven days before APAP challenge (500 mg/kg, ip). Pretreatment with nicorandil reduced serum levels of aminotrans-
ferases, bilirubin, GGT and LDH, and increased serum level of albumin. Moreover, nicorandil inhibited the increase in liver 
MDA levels and reversed the decline in GSH content and SOD activity. Besides, it notably alleviated APAP-induced necrosis 
observed in histopathological findings. Additionally, nicorandil alleviated APAP-induced NO overproduction and iNOS 
expression; however, the protein expression of eNOS was significantly increased. Moreover, nicorandil markedly reduced 
hepatic TNF-α and NF-κB levels, in addition to decreasing the protein expression of MPO in hepatic tissues. Furthermore, 
flow cytometry (annexin V-FITC/PI) displayed a significant decline in late apoptotic and necrotic cells, and an increase 
in viable cells in nicorandil group. Also, nicorandil caused a significant boost in hepatic antiapoptotic marker bcl-2 level. 
The presented data proposed that the protective effect of nicorandil might be attributed to its antioxidant, its impact on NO 
homeostasis, and its anti-inflammatory properties. Therefore, nicorandil may be a promising candidate for protection from 
liver injury induced by APAP.
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Introduction

Despite the fact that liver is the chief organ responsible for 
detoxification, exposure to some drugs, infections by bac-
teria or viruses, environmental xenobiotics, and antican-
cer agents may cause liver harm and result in many liver 
diseases (Stephens et al. 2014). Other than any organ, the 
liver is more susceptible to injury due to its vital role in 

metabolism and its capability of concentration and biotrans-
formation of xenobiotics (Kumar et al. 2015).

Acetaminophen (APAP), also called paracetamol, is an 
antipyretic and analgesic that is commonly used for chil-
dren and adults in treatment of headache, fever, and different 
types of pain (Adam et al. 2016). Although APAP is avail-
able without a prescription, and is considered safe in thera-
peutic doses, overdose can result in hepatotoxicity which is 
fatal in both humans and experimental animals (McGill et al. 
2012). APAP toxicity is a grave issue; APAP intoxication is 
ranked second in the world’s most common causes of liver 
transplantation (Agrawal and Khazaeni 2022).

Oxidative stress is an important feature in APAP model 
that aggravates hepatic damage. After oral administration of 
APAP, it is metabolized via CYP450 and produces a hepa-
totoxic reactive metabolite N-acetyl-p benzoquinoneimine 
(NAPQI) (Bromer and Black 2003). NAPQI is detoxified by 
reacting with glutathione (GSH) which is consumed conse-
quently. This reaction produced alterations in mitochondrial 
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permeability transition, followed by formation of superox-
ide anion radical which reacts with nitric oxide radical to 
produce peroxynitrite (ONOO¯) which in turn results in 
nitration of tyrosine protein. Additionally, peroxynitrite can 
decompose to hydroxyl radical which affects cell membrane 
integrity and triggers generation of lipid peroxides (Du et al. 
2016). Accordingly, impaired mitochondrial respiration 
and oxidative stress are elicited, which are accompanied 
by colossal hepatocyte cell death, apoptosis, and induc-
tion of massive inflammatory response. Actually, elevated 
concentrations of pro-inflammatory cytokines, infiltrating 
neutrophils, and monocytes in either serum or liver are usu-
ally detected in patients with hepatic failure (Coen 2015). 
High percentage of patients who are exposed to liver toxicity 
develop elevation in aspartate amino transferase (AST) and 
alanine amino transferase (ALT) serum levels within 24 h 
of ingestion (Nagi and Mansour 2000).

Nicorandil, a nitrated nicotinamide ester, is used in 
prevention and management of ischemic heart diseases in 
experimental models (Imagawa et al. 1998) and humans 
(Zhao et al. 2014). The ascribed pharmacological actions 
were due to nitric oxide (NO) donor activity and the eleva-
tion in K+ conductance in cardiac muscles (Taira 1987). 
Additionally, previous studies reported the ability of nico-
randil to restore the balance between inducible nitric oxide 
synthase (iNOS) and endothelial nitric oxide synthase 
(eNOS) in models of folic acid-induced nephrotoxicity and 
bleomycin-induced lung fibrosis (Ezzat et al. 2021; Ksei-
bati et al. 2020). Previous studies reported that nicorandil 
scavenges free radicals in STZ diabetic model (Mano et al. 
2000). Moreover, it confers protection against apoptosis 
prompted by oxidative strain in cardiac muscles (Nagata 
et al. 2003) and enhances the mitochondrial dysfunction 
in rats with heart failure (Ahmed and El-Maraghy 2013). 
Lastly, it has been reported that nicorandil could ameliorate 
high fat diet-induced hepatic steatosis (Elshazly 2015).

This study was designated to investigate the hepatoprotec-
tive impacts of nicorandil on liver damage induced by APAP 
in mice and to outline the mechanisms implied, focusing on 
the role of nitric oxide.

Materials and methods

Chemicals

Perfalgan® infusion solution (Bristol-Myers Squibb, Aus-
tralia) was used as a pharmaceutical source of APAP, while 
nicorandil was purchased as tablets (Adancor®, Merck, 
Egypt) and was suspended in carboxymethyl cellulose 
(CMC) (0.5%). All chemicals were purchased from reliable 
sources and were of highest analytical grade.

Animals

Male Swiss albino mice weighing (28 g ± 2) were obtained 
from MERC, Mansoura University, Egypt. Mice were 
housed 5/cage and were retained at constant settings 
throughout the experiment and at room temperature 25 
ºC ± 2 in a 12-h light–dark cycle. Water as well as regu-
lar diet were offered ad libitum. The study was carried 
out in accordance to the guidelines of Faculty of Phar-
macy Ethical Committee guidelines (approval number: 
2017–94/2018–16).

Experimental design

Forty animals were randomly chosen and divided into four 
groups, n = 10.

Group (1): Control group, mice received only CMC 
(0.5%, po).
Group (2): APAP group, mice were injected with APAP 
once (500 mg/kg, ip) (Lim et al. 2010).
Group (3): Nicorandil group, mice received nicorandil 
alone (100 mg/kg, po) for seven days; the dose was 
selected based on previously reported studies (El-
Kashef 2018a; Matsui et al. 2015).
Group (4): APAP/Nicorandil group, mice received nico-
randil (100 mg/kg, po) for seven days and then injected 
with APAP (500 mg/kg, ip) on the seventh day.

Samples collection

Twenty-four hours after APAP injection, animals were 
anesthetized and blood samples were withdrawn via retro-
orbital sinus, centrifuged, and kept for the estimation of 
liver function biomarkers. Livers from all groups were 
rinsed in ice-cold normal saline. One part was homog-
enized in (10% w/v) 20 mM Tris–HCl (containing 1 mM 
EDTA, pH 7.4) to be used for the estimation of oxidative, 
inflammatory, and antiapoptotic biomarkers. The second 
part was used for flow cytometry assay and the last part 
was immersed in buffered formalin solution for 24 h and 
embedded in paraffin, then sliced using a microtome, for 
histopathological examination.

Assessment of liver function

In serum samples, AST (Cat no. 1001160), ALT (Cat 
no. 1001170) albumin (Cat no. 1001020), alkaline phos-
phatase (ALP, Cat no. 1001130), total bilirubin (Cat no. 
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1001046), and gamma-glutamyl transferase (GGT, Cat no. 
1001185) were assessed by standard spectrophotometric 
procedures using commercial kits (SPINREACT, Spain).

Measurement of oxidative stress markers

In tris-liver homogenates, the oxidative stress biomarkers 
were estimated. Malondialdehyde (MDA) was assayed fol-
lowing the protocol described by Gerard-Monnier et al., 
(Gerard-Monnier et al. 1998) where N-methyl-2-phenylin-
dole reacts with MDA in acidic pH to give a stable dye 
at 586 nm. GSH was determined by the reduction reac-
tion between the thiol group of GSH and 5,5'-dithiobis(2-
nitrobenzoic acid) (DTNB) to produce a yellow product that 
is measured spectrophotometrically (Moron et al. 1979). 
SOD activity was estimated in accordance to Marklund 
et al., (Marklund 1985). SOD activity was evaluated by cal-
culating SOD-induced inhibition of pyrogallol autoxidation. 
The rise in absorbance rate at 420 nm was monitored. One 
unit of enzyme activity was elucidated as 50% inhibition of 
pyrogallol autooxidation under the assay conditions.

Measurement of total NO concentration

Total hepatic NO was measured in liver homogenate. 
Nitrates were reduced by vanadium (III) chloride (VCl3); 
total nitrites were estimated using Griess reagent forming a 
chromophore that can be measured spectrophotometrically 
at 540 nm (Miranda et al. 2001).

Measurement of lactate dehydrogenase

Serum lactate dehydrogenase (LDH) was assayed using 
an assay kit (Human Gesellschaft für Biochemica und 
Diagnstca mbH, Germany, Cat no. 12214) following the 
instruction manuals.

Determination of inflammatory markers in liver 
homogenates

Hepatic levels of nuclear factor-kappa B (NF-κB) (Cusabio, 
USA, Cat no. CSB-E08789m) and tumor necrosis factor-
alpha (TNF-α) (Assaypro, USA, Cat no. EMT2010-1) were 
measured using quantitative sandwich ELISA technique. 
The optical density was recorded at 450 nm.

Histochemical determination of myeloperoxidase 
in liver sections

Myeloperoxidase (MPO) was estimated by histochemical 
method, where 3,3’ –diamino benzidine (DAB) and hydro-
gen peroxide were used for determination of MPO according 
to the manufacturer’s guidelines (Biodiagnostic Co., Giza, 

Egypt, Cat no. MP2611). The degree of MPO staining inten-
sity was scored as negative, weak, moderate, and strong, 
each of these ordinal ranks was assigned a number from 0 
to 3, respectively (Sharawy et al. 2018).

Estimation of antiapoptotic marker bcl‑2 in liver 
homogenates

The antiapoptotic marker B-Cell Leukemia-2 (bcl-2) (MyBi-
oSource, USA, Cat no. MBS2881897) was estimated using 
quantitative sandwich ELISA technique. The microplate 
reader was set to 450 nm.

Histopathological examinations 
and immunohistochemistry staining of inducible 
nitric oxide synthase and endothelial nitric oxide 
synthase

Liver sections were stained with H&E, examined microscop-
ically and scored for necrosis by a pathologist. Lesions in 
10 fields were selected haphazardly from each slide for each 
rat and averaged. The lesions were scored in a blinded way 
(score scale: 0 = normal; 1 ≤ 25%; 2 = 26–50%; 3 = 50–75%; 
4 = 75–100%) (Khafaga et al. 2021, 2019).

For inducible nitric oxide synthase (iNOS) and endothe-
lial nitric oxide synthase (eNOS) immunohistochemical 
staining, the serial sections were deparaffinized, hydrated, 
and immersed in an antigen retrieval (EDTA solution, 
PH 8). The sections were subsequently treated with 0.3% 
hydrogen peroxide and protein block; afterwards, they were 
incubated with rabbit polyclonal of anti-iNOS antibody 
(Cat no. ab15323, Abcam, UK; 1:200 dilution) or eNOS 
polyclonal antibody (Cat no. PA3-031A, Thermo Fischer 
Scientific, UK; 1:250 dilution). The slides were three times 
rinsed with PBS, incubated with anti-rabbit IgG secondary 
antibodies (EnVision + System HRP; Dako) at room tem-
perature for 30 min. The slides were then visualized with 
di-aminobenzidine kits (Liquid DAB + Substrate Chromo-
gen System; Dako), and lastly counterstained with Mayer’s 
hematoxylin. As a negative control technique, the primary 
antibody was substituted by normal mouse serum. The label-
ling index of iNOS and eNOS was expressed as the average 
percentage of positive area expression in about 5 to 8 high 
power fields. Assessment of immunostaining was carried 
out by determining the percentage of positive areas using 
image J analysis software. Briefly, the image is converted to 
grey scale and on threshold basis the ratio of positive area to 
total area was determined. The percentage was calculated as 
following: positive areas divided by total area then multiply 
by 100 (positive area / total area × 100) (El-Kashef 2018b). 
(El-Far et al. 2020).
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Flow cytometry for assessment of apoptosis 
and necrosis

The DNA-binding dye propidium iodide (PI) and fluores-
cent tagged annexin V were used to assess necrosis and 
the degree of apoptosis respectively. Assay was done using 
(Annexin V-FITCFL1/ PI-PEFL2 (Cat no. 51-65874X, Cat 
no. 51-66211E, respectively), BD Pharmingen™, BD Bio-
sciences, USA) according to the enclosed manual guidelines.

Statistical analyses

Data is expressed as mean ± standard error of the mean 
(S.E.M.), and n = 10. Different groups were compared using 
one-way analysis of variance (ANOVA) and Tukey–Kramer 
test for multiple comparisons. Differences were considered 
significant at p < 0.05. Statistical analysis was performed by 
GraphPad Prism software version 5 for windows (GraphPad 
Software Inc., San Diego, California, USA).

Results

Effect of APAP and/or nicorandil on liver functions

APAP induced a marked elevation in serum ALT, AST, 
ALP, bilirubin, and GGT (12.8, 2.5, 2.1, 4.1, and 2.5-fold 
change, respectively), concomitant with a profound decrease 
in serum levels of albumin by 12% when compared to con-
trol mice. Nicorandil significantly reduced APAP-induced 
alterations in serum biochemical parameters compared to 
APAP-treated mice by 93.7%, 63.3%, 60.1%, 52%, and 
52.3%, respectively (Table 1). Whereas, nicorandil alone 
treated mice showed no alteration in liver function biomark-
ers compared to the normal mice as shown in the table, so 
further results regarding nicorandil alone group were dis-
missed for simplification.

Effect of APAP and nicorandil on total hepatic 
NO content

APAP produced a significant elevation in hepatic NO content 
(130.3 ± 4.05) compared to the normal group (54.9 ± 4.4). 

Table 1   Effect of acetaminophen (500 mg/kg) and nicorandil (100 mg/kg) on liver functions

Mice were pretreated with nicorandil (100 mg/kg) for seven days then intoxicated with a single injection of APAP (500 mg/kg)
Data expressed as means ± SEM (n = 10)
*, #  denotes significant difference at p < 0.05 as compared to control group and APAP-treated group respectively (one-way ANOVA and Tukey–Kramer 
multiple comparisons test)
ALP, alkaline phosphatase (ALP); ALT, alanine aminotransferase; APAP, acetaminophen; AST, aspartate aminotransferase; GGT​, gamma glutamyl trans-
ferase; SEM standard error of mean

ALT (U/L) AST (U/L) ALP (U/L) Bilirubin (mg/dl) GGT (U/L) Albumin (g/dl)

Control 86.4 ± 4.99 363.0 ± 22.22 115.2 ± 12 0.12 ± 0.01 1.20 ± 0.18 5.0 ± 0.05
APAP 1114.4 ± 107.85* 940.0 ± 109.67* 243.55 ± 39.20* 0.50 ± 0.04* 3.02 ± 0.31* 4.40 ± 0.13*

APAP/
Nicorandil

70.0 ± 4.80# 344.8 ± 28.60# 97.0 ± 7.11# 0.24 ± 0.01*# 1.44 ± 0.26# 4.50 ± 0.11#

Nicorandil 68.2 ± 6.9# 329.2 ± 43.3# 100.0 ± 2.49# 0.14 ± 0.01# 1.10 ± 0.11# 5.15 ± 0.06#$

Fig. 1   Effect of acetaminophen and nicorandil on hepatic NO content 
in mice. Mice were pretreated with nicorandil (100 mg/kg) for seven 
days then intoxicated with a single injection of APAP (500 mg/kg). *, 
# significantly different from control and APAP-treated groups respec-
tively (p < 0.05) using one-way ANOVA followed by the Tukey–
Kramer multiple comparisons test. APAP, acetaminophen; NO, nitric 
oxide
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Nicorandil effectively restored NO (59 ± 5.1) to the normal 
levels (Fig. 1).

Effect of APAP and nicorandil on serum LDH levels

Injection of APAP significantly elevated serum LDH activ-
ity (6425.6 ± 359.3) in comparison with the control group 
(4377.6 ± 201.01). APAP/Nicorandil group revealed a 

marked reduction in serum LDH activity (5707.2 ± 261.7) 
in comparison with APAP-treated group (Fig. 2).

Effect of APAP and nicorandil on hepatic antioxidant 
status

Injection of APAP (500 mg/kg) significantly increased 
hepatic MDA levels (3.6-fold change) with significant 
decrease in levels of GSH (by 58.1%) as well as SOD (by 
15.6%) compared to the normal group. Nicorandil efficiently 
reversed APAP-induced alterations (reduced MDA by 62.8% 
besides increasing GSH by 62.1% and SOD by 16%) com-
pared to APAP group (Table 2).

Effect of APAP and nicorandil on anti‑inflammatory 
markers

APAP-treated group produced a profound rise in hepatic 
TNF-α and NF-κB levels (15.2 ± 0.4 and 3.3 ± 0.2) compared 
to the control group (4.4 ± 0.16 and 1.1 ± 0.05). Mice treated 
with nicorandil revealed a significant decline in hepatic 
TNF-α and NF-κB levels (7.6 ± 0.2 and 2.02 ± 0.04) in com-
parison with APAP group (Fig. 3I A and 3I B, respectively).

Microscopic sections from hepatic tissues stained with 
MPO showed minimal number of stained cells in the control 
group (Fig. 3II A); however, sections from APAP- group 
showed significant increase in number of stained cells 
(Fig. 3II B). Nicorandil group exhibited mild expression 
of MPO (Fig. 3II C). The immunostaining scores in nico-
randil group were nearly similar to that of the control group 
(Fig. 3II D).

Effect of APAP and nicorandil on antiapoptotic 
marker bcl‑2

Intoxication with APAP significantly reduced bcl-2 level 
(5.4 ± 0.3) compared to the control group (19.1 ± 0.7). 
Mice treated with nicorandil exhibited a marked increase 
in hepatic bcl-2 level (11.5 ± 0.8) compared to the APAP-
treated group (Fig. 4).

Fig. 2   Effect of acetaminophen and nicorandil on serum LDH level 
in mice. Mice were pretreated with nicorandil (100 mg/kg) for seven 
days then intoxicated with a single injection of APAP (500 mg/kg). *, 
# significantly different from control and APAP-treated groups respec-
tively (p < 0.05) using one-way ANOVA followed by the Tukey–
Kramer multiple comparisons test. APAP, acetaminophen; LDH, lac-
tate dehydrogenase

Table 2   Effect of APAP 
(500 mg/kg) and/or nicorandil 
(100 mg/kg) on hepatic 
antioxidant status in mice

Mice were pretreated with nicorandil (100 mg/kg) for seven days then intoxicated with a single injection of 
APAP (500 mg/kg)
Data expressed as means ± SEM (n = 10)
*, #  denotes significant difference at p < 0.05 as compared to control group and APAP-treated group respec-
tively (one-way ANOVA and Tukey–Kramer multiple comparisons test)
APAP, acetaminophen; GSH, reduced glutathione; MDA, malondialdehyde; SOD, superoxide dismutase

MDA (nmol/mg tissue) GSH (nmol/mg tissue) SOD (U/mg tissue)

Control 4.30 ± 0.05 0.1180 ± 0.002 53.50 ± 0.44
APAP 15.50 ± 1.00* 0.0494 ± 0.004* 45.14 ± 3.75*

APAP/Nicorandil 5.76 ± 0.54# 0.1304 ± 0.004# 53.75 ± 0.88#
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Effect of APAP and nicorandil on histopathological 
analysis

Sections from control group showed normal histology of 
hepatic cords, central veins (CV), and sinusoids (S) (Fig. 5a, 
b). Liver sections from APAP-intoxicated group showed 
confluent areas of coagulative necrosis with large cytoplas-
mic vacuolation of hepatocytes, congestion, and occluded 
sinusoids (Fig. 5c, d). However, sections from mice treated 
with nicorandil showed few minutes vacuoles of hepatocytes 
with opened sinusoids and congestion (Fig. 5e, f). Semi-
quantitative scoring of hepatic lesions is shown in Fig. 5g.

Effect of APAP and nicorandil on iNOS expression

Microscopic pictures of immunostained hepatic sections 
against iNOS from control group showed mild positive 
brown staining of endothelium (Fig. 6a, b). Sections from 
APAP group revealed marked positive brown cytoplasmic 

staining of hepatocytes in areas of coagulative necrosis 
in addition to endothelium (Fig.  6c, d). Section from 
nicorandil-treated group exhibited mild positive brown 
cytoplasmic staining of few hepatocytes in addition to 
endothelium (Fig. 6e, f). Percentage of positive areas is 
shown in Fig. 6g.

Effect of APAP and nicorandil on eNOS expression

Liver sections from control group showed mild positive 
brown staining of eNOS in endothelium (Fig. 7a, b). Con-
versely, sections from mice in APAP-intoxicated group 
showed marked positive brown cytoplasmic staining of 
hepatocytes in areas of coagulative necrosis in addition to 
endothelium (Fig. 7c, d). Treatment with nicorandil showed 
mild positive brown cytoplasmic staining of few hepatocytes 
in addition to endothelium (Fig. 7e, f). Percentage of positive 
areas is shown in Fig. 7g.

Fig. 3   Effect of acetaminophen 
and nicorandil on inflam-
matory markers. I: Effect of 
acetaminophen and nicorandil 
on hepatic levels of TNF-α 
and NF-κB in mice. Mice were 
pretreated with nicorandil 
(100 mg/kg) for seven days 
then intoxicated with a single 
injection of APAP (500 mg/kg). 
TNF-α level (A) and hepatic 
NF-κB level in mice (B) were 
assessed. II: Effect of acetami-
nophen and nicorandil on MPO 
immunostaining A: The control 
group; B: The APAP group; C: 
The nicorandil-treated group 
and D: % of positive cells. Each 
value represents the mean of 4 
mice ± S.E.M. *, # significantly 
different from control and 
APAP-treated groups respec-
tively (p < 0.05) using one-
way ANOVA followed by the 
Tukey–Kramer multiple com-
parisons test. APAP, acetami-
nophen; TNF- α, tumor necrosis 
factor- α; NF-κB, nuclear factor- 
κB; MPO, myeloperoxidase

14258 Environmental Science and Pollution Research (2023) 30:14253–14264



1 3

Effect of APAP and nicorandil on flow cytometry 
(annexin V‑FITC/PI)

Figure 8 clarified the effect of APAP and nicorandil on 
apoptosis and necrosis as well. The percent of necrotic 
cells and late apoptotic cells was markedly elevated, and 
number of viable cells were significantly reduced in APAP 
group (Fig. 8B) when compared to control group (Fig. 8A). 
Upon nicorandil administration (Fig. 8C), the percentage 
of necrotic cells and late apoptotic cells was markedly 
decreased, and the number of viable cells was significantly 
elevated when compared to APAP group.

Discussion

Drug-induced liver toxicity is considered a principal cause 
of acute liver damage. APAP is regarded as one of the most 
widely reported medications that can cause acute liver dam-
age, specifically when consumed in large toxic doses (Iorga 

et al. 2017). This work was designed to study the possible 
impacts of nicorandil on APAP–induced acute liver damage.

APAP overdose causes destruction of hepatocytes that 
is evidenced by the elevation in transaminase and phos-
phatases that cause cellular leakage and loss of functional 
integrity (Uchida et al. 2017). Additionally, APAP caused 
centrilobular hepatic necrosis as seen in histopathological 
examination which is in line with previous study (Hinson 
et al. 2010). Nicorandil ameliorated the biochemical param-
eters in accordance with previous studies (Elshazly 2015; 
Yamazaki et al. 2011). Moreover, nicorandil managed to 
alleviate APAP-induced necrosis seen in histopathological 
examination. The possibly involved mechanisms in nico-
randil hepatoprotective effects were explored.

The excessive metabolism of APAP by the hepatic 
CYP450 results in depletion of GSH pool that increases 
the formation of protein adducts, causing oxidative stress 
that fosters systemic inflammatory response, apoptosis, 
and necrosis (Coen 2015; Ray et al. 1996; Xie et al. 2016). 
Excessive production of reactive oxygen species (ROS) 
causes lipid peroxidation and decrements cellular redox 
homeostasis (Xie et  al. 2016). In this study, nicorandil 
showed antioxidant effect rooted on restoring GSH and 
scavenging free radicals in mitochondria. Increasing GSH 
levels by nicorandil helped in quenching NAPQI which 
eventually reduced the mitochondrial permeability transi-
tion (Saito et al. 2010). Additionally, nicorandil increased 
SOD activity and decreased MDA; these results are in line 
with the previously reported study of (Mano et al. 2000). 
The effect of nicorandil as antioxidant could be explained 
by its ability to inhibit free radical production through acting 
as a direct scavenger of hydroxyl radicals; these effects were 
previously reported in both human and canine leukocytes 
(Ozturk et al. 2017).

In liver, NO is mainly synthesized by eNOS and iNOS 
enzymes and it plays a crucial role in the physiology and 
pathophysiology of the liver (Iwakiri and Kim 2015). NO 
produced by iNOS could react with super oxide anion and 
form peroxynitrite (ONOO¯) which is cytotoxic to the liver 
in the absence of GSH (Jaeschke and Bajt 2006). Interest-
ingly, nicorandil showed a significant decrease in NO release 
that could be due to diminution in iNOS protein expression. 
These results are in line with the reported inhibitory action 
of nicorandil on iNOS (Tashiro et al. 2015). Nicorandil also 
increased eNOS protein expression, an effect that could aug-
ment the decline in NO release. These results are in harmony 
with previously reported studies which showed the protec-
tive effects of nicorandil in increasing eNOS in a model of 
lung fibrosis and a model of acute kidney injury (Ezzat et al. 
2021; Kseibati et al. 2020). It has been proposed that nico-
randil elevates NO production from endothelium by activat-
ing eNOS, therefore preventing endothelial cell death. How-
ever, upregulation of iNOS, in response to inflammation, 

Fig. 4   Effect of acetaminophen and nicorandil on hepatic bcl2 levels 
in mice. Mice were pretreated with nicorandil (100 mg/kg) for seven 
days then intoxicated with a single injection of APAP (500 mg/kg). 
Hepatic bcl2 levels were assessed. *, # significantly different from 
control and APAP-treated groups respectively (p < 0.05) using one-
way ANOVA followed by the Tukey–Kramer multiple comparisons 
test. APAP, acetaminophen; bcl-2, Cell Leukemia-2
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produces 100e1000-fold more NO than eNOS which has 
detrimental effects (Ozturk et al. 2017). So indirectly, nico-
randil could inhibit the production of ONOO¯ and nitrotyros-
ine by suppressing the formation of hepatic NO and enrich-
ing SOD activity in the liver post APAP injection (James 
et al. 2003). These antioxidant effects of nicorandil could be 

also related to its action on K+ channels. Sato el al. reported 
that nicorandil cardioprotective actions were mediated by 
activation of ATP-sensitive K+ channels in the mitochon-
dria (mitoKATP) (Sato et al. 2000). Previous notion showed 
that MitoKATP is the same type that is present in primary 
hepatocytes and thus using a selective MitoKATP opener can 

Fig. 5   Effect of APAP and nicorandil on histopathological analy-
sis (H&E × 100). (a & b) The control group showed normal histol-
ogy of hepatic cords, central veins (CV), and sinusoids (S). (c & d) 
The APAP group showed confluent areas of coagulative necrosis 
(arrows) with large cytoplasmic vacuolation of hepatocytes (arrow-
heads), congestion (red arrow), and occluded sinusoids. (e & f) The 
nicorandil-treated group showed few minutes vacuoles of hepatocytes 

(arrowheads) with opened sinusoids, congestion (red arrow). a, c & e 
(low magnification X: 100 bar 100) and b, d & f (high magnification 
X: 400  bar 50). (g) Histopathological scores (necrosis, vacuolation, 
and congestion). *, # denotes significant difference at p < 0.05 as com-
pared to control group and APAP-treated group respectively (one-
way ANOVA and Tukey–Kramer multiple comparisons test) (n = 6). 
APAP, acetaminophen

Fig. 6   Effect of APAP and/or nicorandil on iNOS expression (IHC). 
(a & b) The control group showed mild positive brown staining of 
endothelium (arrowheads). (c & d) The APAP group showed marked 
marked positive brown cytoplasmic staining of hepatocytes (arrow) 
in areas of coagulative necrosis in addition to endothelium (arrow-
heads). (e & f) The nicorandil-treated group showed mild positive 
brown cytoplasmic staining of few hepatocytes (arrow) in addition to 

endothelium (arrowheads). IHC counterstained with Mayer's hema-
toxylin. a, c & e (low magnification X: 100 bar 100) and (b, d & f) 
high magnification X: 400 bar 50. (g) Percentage of iNOS immuno-
positive cells. *, # denotes significant difference at p < 0.05 as com-
pared to control group and APAP-treated group respectively (one-
way ANOVA and Tukey–Kramer multiple comparisons test) (n = 6). 
APAP, acetaminophen; iNOS, inducible nitric oxide synthase
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enhance liver regeneration after partial hepatectomy. Addi-
tionally, MitoKATP openers were proved to reverse oxida-
tive stress and cellular damage found in case of ischemia 
(Nakagawa et al. 2012; Ramírez et al. 2016). Furthermore, 
a study reported that activating MitoKATP channels could 
suppress inflammatory cytokines production which could 
be attributed to inhibition of mitochondrial ROS production. 
This effect offers cardiac protection in a model of ischemia/
reperfusion (Ebrahimi et al. 2014).

In APAP-induced liver damage, infiltrating neutrophils 
are considered a potent source of oxidative stress. They pro-
duce superoxide anion by NADPH oxidase resulting in the 
formation of hydrogen peroxide. MPO, which is considered 
a marker of inflammation and neutrophil infiltration, uses 
the produced hydrogen peroxide to generate potent oxidant 
hypochlorite which can cause direct cytotoxicity (Abdel-
rahman and Abdel-Rahman 2019; Adams et al. 2010; Du 
et al. 2016). In APAP model, oxidative stress triggers many 
intracellular signaling pathways resulting in the increase in 
pro-inflammatory cytokine production contributing to the 
pathogenesis of acute liver damage.

Elevation in LDH combined with elevation of ALT are 
considered markers of hepatocyte injury (Kotoh et al. 2008). 
Moreover, the major transcriptional factor NF-κB regulates 
the pro-inflammatory pathway; it stimulates cytotoxic fac-
tors such as iNOS and pro-inflammatory cytokines such as 
TNF-α, which is a prominent initiator in APAP-induced liver 
damage (Schwabe and Brenner 2006; Xie et al. 2016). Our 
results showed that APAP significantly increased levels of 

LDH, NF-κB and TNF-α, and the protein expression of MPO 
in hepatic tissues. These findings are supported by earlier 
studies which reported that APAP induced inflammation in 
hepatic tissues (Xie et al. 2016; Zhao et al. 2020). However, 
pre-treatment with nicorandil significantly decreased these 
inflammatory markers supporting our notion that nicorandil 
has anti-inflammatory properties; these observations agreed 
with previously reported studies (Ahmed and El-Maraghy 
2013; El-Kashef 2018b; Elshazly 2015).

Apoptosis has a critical role in APAP-induced hepato-
cytes toxicity (Kon et al. 2007). In our study, annexin 
V/PI staining showed an increase in late apoptotic and 
necrotic cells in APAP group. These findings are in tune 
with previously reported data on the effect of APAP on 
human hepatoma cells and lymphocytes which suggests 
that APAP-induced cell death can be caused primarily 
by apoptosis, late stages of apoptosis, and subsequently 
secondary necrosis (Boulares et al. 2002). Furthermore, 
the anti-apoptotic protein bcl-2 negatively controls the 
mitochondrial release of pro-apoptotic proteins. Also, it 
has been associated not only with apoptosis but also with 
programmed form of necrotic death (Nikoletopoulou et al. 
2013). The anti-apoptotic effect of nicorandil is exhibited 
in the present study; it thrived to lower the number of 
late apoptotic cells (shown by annexin V/PI stain) and to 
increase viable cells, besides its ability to elevate bcl-2 
protein level. These findings agreed with the previous 
literature of Nishikawa et al. (Nishikawa et al. 2006). 
Correspondingly, nicorandil inhibitory action against 

Fig. 7   Effect of APAP and/or nicorandil on eNOS expression (IHC). 
(a & b) The control group showed marked positive brown cytoplas-
mic staining of hepatocytes (arrow) in areas of coagulative necrosis 
in addition to endothelium (arrowheads). (c & d) The APAP group 
showed mild positive brown staining of endothelium (arrowheads). (e 
& f) The nicorandil-treated group showed mild positive brown cyto-
plasmic staining of few hepatocytes (arrow) in addition to endothe-

lium (arrowheads). IHC counterstained with Mayer's hematoxylin. a, 
c & e (low magnification X: 100 bar 100) and b, d & f (high magnifi-
cation X: 400 bar 50). (g) Percentage of eNOS immunopositive cells. 
*, # denotes significant difference at p < 0.05 as compared to control 
group and APAP-treated group respectively (one-way ANOVA and 
Tukey–Kramer multiple comparisons test) (n = 6). APAP, acetami-
nophen; eNOS, endothelial nitric oxide synthase
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apoptosis has been reported to be mediated via activation 
of mitoKATP. This effect can suppress nuclear breakdown 
and inhibit apoptotic events thus maintaining the integ-
rity of mitochondria and cellular functions (Nagata et al. 
2003). Thus, nicorandil effects on repressing mitochon-
drial apoptotic signaling cascade might be due to its dual 
mechanism through opening of mitoKATP and/or through 
its nitrate-like effect (Sasaki et al. 2000).

Conclusion

Nicorandil could be a putative prophylactic drug against 
APAP-induced acute liver damage. Nicorandil regulates 
NO homoeostasis and possesses antioxidant effect that 
causes reduction in inflammatory and apoptotic responses. 

The curative treated effect of nicorandil against APAP-
induced liver injury has not been investigated in this study, 
which is considered a limitation for this research. Addi-
tionally, further in vitro studies are needed to estimate the 
inhibitory dose 50 (IC50) of nicorandil on NOS. Similarly, 
clinical studies will be needed to approve the use of nico-
randil as a hepatoprotective agent.
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