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Abstract
COVID-19, caused by SARS-CoV-2, is a positive-strand RNA belonging to Coronaviridae family, along with MERS and 
SARS. Since its first report in 2019 in Wuhan, China, it has affected over 530 million people and led to 6.3 million deaths 
worldwide until June 2022. Despite eleven vaccines being used worldwide already, new variants are of concern. Therefore, 
the governing bodies are re-evaluating the strategies for achieving universal vaccination. Initially, the WHO expected that 
vaccines showing around 50–80% efficacy would develop in 1–2 years. However, US-FDA announced emergency approval of 
the two m-RNA vaccines within 11 months of vaccine development, which enabled early vaccination for healthcare workers 
in many countries. Later, in January 2021, 63 vaccine candidates were under human clinical trials and 172 under preclini-
cal development. Currently, the number of such clinical studies is still increasing. In this review, we have summarized the 
updates on the clinical status of the COVID-19 and the available treatments. Additionally, COVID-19 had created negative 
impacts on world’s economy; affected agriculture, industries, and tourism service sectors; and majorly affected low-income 
countries. The review discusses the clinical outcomes, latest statistics, socio-economic impacts of pandemic and treatment 
approaches against SARS-CoV-2, and strategies against the new variant of concern. The review will help understand the 
current status of vaccines and other therapies while also providing insights about upcoming vaccines and therapies for 
COVID-19 management.
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NIAID  National Institute of Allergy and Infec-
tious Diseases

GAVI  Global Alliance for Vaccines and 
Immunisation

Introduction

The ongoing SARS-CoV-2 pandemic caused havoc to 
public health infrastructure, with no approved therapy, 
affecting millions around the globe. The outbreak was first 
reported on the 31st of December 2019 to the WHO (Zhao 
et al. 2021). The coronavirus was designated as “2019-
nCoV” by the WHO on 12th of January 2020 and then 
termed SARS-CoV-2. In January 2020, the WHO declared 
it a public health emergency, and in March 2020, it was 
declared a global pandemic as the number of infections 
continued to spread (Majumder and Minko 2021). Global 
efforts were made first to break this transmission chain by 
imposing strict lockdowns, which also helped reduce the 
burden on healthcare infrastructure. The multiple agents 
of broad therapeutic benefit and symptomatic relief were 
used initially to manage severe infection cases and com-
promised patients. While the lockdowns and early treat-
ment approaches were in place, a vast majority were still 
susceptible to infection. Lack of preparedness and poor 
healthcare infrastructure in low-income countries caused 
a socio-economic disbalance, leaving huge population 
stranded. Vaccination on a mass level and in a controlled 
manner was the best option to  protect the population 
against the ill effects of severe infection. Therefore, a 
search for vaccination strategies began. Established and 
novel strategies were scrutinized with early sequencing 
reports of the COVID-19. Among this was the emergency 
use authorizations (EUAs) of lipid nanoparticle-assisted 
m-RNA-based vaccines  by US-FDA, including Pfizer 
and Elasomeran,m-RNA 1273/Spikevax/Moderna vac-
cines (Mathieu et al. 2021). Other players aimed at con-
ventional technology containing live/inactivated viruses 
including AstraZeneca (UK), Covilo/BBIBP-CorV/Sin-
opharm (China), Ad26.COV.S/Janssen/Jcovden (USA), 
and Bharat biotech (India) (Mohapatra and Mishra 2021). 
Novel and efficient strategies are being explored, and some 
are already seeking emergency approval. Despite prompt 
action by authorities, attaining mass immunization was 
limited by bottlenecks in manufacturing, supply chain, 
and regulatory approvals. The early COVID-19 vaccines 
required ultracold storage conditions, which was another 
hurdle and setback to global vaccination. While supply 
chain disruptions, failures to meet the expected delivery 
timelines, or vaccine nationalism were preventing the 
global supply of vaccines (Forman et al. 2021; Karthika 
et al. 2021). Access to credible information, highlighting 

limitations and persuasive opinions, is crucial to overcome 
the above mentioned concerns. This review highlights the 
potential research direction and summarizes clinical out-
comes to advance understanding and business potential.

The global vaccine market is expected to grow at 
10.7% compound annual growth rate and reach $109.87 
by 2027. In a new year resolution, the WHO had made 
strategies to achieve global COVID-19 vaccination of 70% 
of the world’s population by mid-2022. This will increase 
the immunity globally among the individual’s employing 
equity, quality, integration, and inclusivity as the main 
principles. As of March 2022, the goal was shifted to a 
new deadline: fall of 2022 as only 57 countries have been 
vaccinated until May 2022 and most of them were high-
income countries (Nurith 2022a).

The major steps to reduce the severity of disease 
include vaccination of all the older adults and health work-
ers, vaccination of full adult age group in each country, 
extensive vaccination of adolescents to reduce the disease 
burden with risk of emerging variants, and reducing viral 
transmission (WHO 2022). The advent of mutations in 
SARS-CoV-2 such as the alpha variant (B.1.1.7) showed 
increased transmissibility and infectivity. In contrast, other 
variants, such as beta (B1.351) and gamma (P.1) were less 
sensitive towards neutralization by infection-induced anti-
bodies and vaccines. The delta variant contains mutations 
in the spike protein different from the prior variants and 
has a higher share of mortality (Lopez Bernal et al. 2021).

With new emerging variants shaking the healthcare infra-
structure, scientists are pushing the limits too (Ikegame 
et al. 2021). Global alliances like Global Alliance for Vac-
cines and Immunisation (GAVI) are promoting public–pri-
vate partnerships to supply aid to low-income countries. In 
June, GAVI and other partners launched a global alliance 
COVAX to ensure that people in all corners of the world get 
access to the vaccines regardless of their wealth. On June 4 
2021, GAVI launched COVAX-AMC, which is an advanced 
market commitment. It is an innovative financing alliance 
to support low- and middle-income countries. Like GAVI, 
Wellcome Trust also improves health by funding research 
and building global partnerships (Bhatia 2021).

With the uncontrolled scenario of emerging variants 
and no specific approved treatment against the SARS-
CoV-2, demand for an effective treatment approach has 
been the priority. This review discusses the current thera-
peutic approaches against SARS-CoV-2 and summarizes 
the clinical status of different vaccines for COVID-19 
infection. The review highlights the potential problems 
associated with the manufacturing, efficacy, and safety 
concerns of existing therapeutic approaches. This includes 
the need for an ultracold chain and supply of vaccines 
to middle- and low-income countries, suggesting non-
invasive methods of administration and addressing the 
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scalability concerns with workable solutions to achieve 
ambitious goal set by the WHO.

Modes of transmission of SARS‑CoV‑2

The principle mode of transmission of infection caused by 
SARS-CoV-2 is majorly by exposure to the respiratory flu-
ids containing the infectious virus. The initial sign of the 
COVID-19 infection mainly includes shortness of breath, 
coughing, and fever (Karia et al. 2020), but in later stages, 
it could cause pneumonia, damage the kidney, and then 
cause unexpected death. During the start of pandemic, it 
was declared that the virus is zoonotic and animal to human 
transmission had occurred. Later, several reported suggested 
that bats were the reservoir for the virus, and various other 
animals were also linked to COVID-19 origin (MacKenzie 
and Smith 2020). However, the correct origin has been estab-
lished yet. Many reports shows that the exposure to the infec-
tious virus occurs majorly by inhaling very fine respiratory 
droplets, deposition of infectious respiratory droplets onto 
the mucus membrane in the nose, mouth, or even eye; and 
touching inanimate surfaces contaminated with the virus. The 
potential modes of virus transmission are summarized below. 

 i. Horizontal transmission: It includes direct contact 
transmission and droplet transmission.

• Direct contact transmission: The direct contact trans-
mission occurs during the direct contact with the 
virus-contaminated surfaces or objects. Fomites are 
suspected to be the major source of infection. Also, 
the healthcare workers handling the SARS-CoV-2-in-
fected patients bear major risk of being infected and 
spreading the disease.

• Droplet transmission: Droplet formation and 
its transmission through air is the major and most 
common route of transmission of infectious virus. 
The infection easily spread by coughing and sneez-
ing from an infected patient (Karia et al. 2020). It 
involves inhalation of the “droplet nuclei” or aero-
sols generally smaller than 5 µm and at a distance of 
1–2 m away from the infected person (Wang et al. 
2021a). As the droplets transmit from warm to moist 
environments, they evaporate, forming residual par-
ticles which are referred to as aerosols or droplet 
nucleus. These aerosols could contain active patho-
gen up to 6 days with 50% relative humidity and at 
20 ◦C (Kirubananthan et al. 2021).

 ii. Gastro-intestinal tract transmission: GIT may be 
another potent source of virus transmission, including 
the fecal-oral transmission from the excreta of infected 

patients. Some studies have reported SARS-CoV-2-pos-
itive family cluster, an asymptomatic case where the 
anal swabs taken show persistently positive for COVID-
19. The fecal-oral transmission has been reported due 
to the existence of viral RNA in the fecal specimen 
(Wang et al. 2021b). Prolonged RNA shedding has been 
observed in excreta of some recovered cases. This may 
be attributed to faster respiratory clearance of virus in 
about 2 weeks while slower clearance from GIT, which 
can take over 4 weeks (Hindson 2020).

 iii. Vertical transmission: Pregnant women are found to be 
more susceptible to the viral infections due to anatomic 
and immunologic alterations. The impact of virus on 
placenta and potential vertical transmission is possi-
bly related to high maternal-fetal inflammatory state 
(Wang et al. 2021b).

 iv. Ocular transmission: Ocular surface may be an entry 
point for the SARS-CoV-2 virus and also serves as a 
reservoir for the virus. In some patients with moderate 
to severe COVID-19, tear fluid collected using conjunc-
tival swab was found positive for SARS-CoV-2 RNA 
(Kitazawa et al. 2021). However, the link between SARS-
CoV-2 ocular entery and infection onset in not clearly 
understood. Certain experiments showed that tears and 
eye secretions drain into the respiratory tract or are swal-
lowed into the digestive system (Qu et al. 2021).

 v. Fomite transmission: Fomites include inanimate 
objects including plastics, copper, stainless steel sur-
faces, gloves, and sponges. These surrounding surfaces 
may get contaminated upon droplet emission from the 
infected individuals. Viral viability of these fomites 
depends on environmental conditions and viral load 
(Lewis 2021a). Sustainable environment plays a major 
role in reducing the risk of factors associated with pre-
venting the pandemic. Reports show that the polluted 
cities should not exceed 48 days per year of high level 
of air pollution (Coccia 2022a). The reduction in quality 
of air and other factors associated could accelerate the 
damage to the public health and promote transmission 
of COVID-19. Environmental policies should aim at the 
main source of air pollution and improve the ventilation 
in order to reduce the dispersion of particulate matter.

Risk factors accelerating the diffusion 
of virus into the environment

There are several factors involved in the virus’s transmis-
sion including the air-borne, fecal–oral, fomite transmis-
sion, and other environmental factors associated with the 
spread of SARS-CoV-2 virus (Azuma et al. 2020). However, 
some findings have shown that environmental factors like 
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humidity, temperature, and climate change also affects the 
virus transmission.

a. Temperature and humidity

Low temperatures and low humid conditions have found 
to increase the COVID-19 infections (Ma et al. 2020). The 
viability of SARS-CoV-2 also depends upon the humidity 
and temperature. It was found that increasing temperature 
will decrease the viability of SARS-CoV-2. Most of the 
viruses, including influenza virus, human coronavirus, mea-
sles virus, and rubella virus, remains infective in low humid 
conditions (20–30%). Data from 166 countries report that 
upon 1°C increase in temperature and 1% increase in relative 
humidity showed 3.08% and 0.85% decrease in daily cases 
(Wu et al. 2020).

b. Sunlight

Studies have shown that UV-radiation inactivates the 
SARS-CoV-2 in the bulk culture medium. The SARS-CoV-2 
aerosol from the artificial saliva was used in this study and 
found that sunlight inactivates the virus by damaging the 
genetic material (Biryukov et al. 2021).

 iii. Climate change

Climatic change has become a global public health con-
cern due to the impact on viral respiratory infections. Over 
the past century, the average global temperature has been 
found to increase by 0.8 ◦C . The ambient temperature, 
humidity, precipitation, and other climatic conditions are 
associated with the reproduction, survival and abundance 
of vectors, and immune responses (Zhan et al. 2020; Coccia 
2021a).

Socio‑economic, environmental, and health 
implications of the pandemic

The COVID-19 pandemic had created not only a global health 
crisis but triggered a socio-economic crisis. Early measures 
to contain the spread of COVID-19 included strict move-
ment controls on short notice, longer quarantine for travel-
ers, and circuit breakers. As a result, some implications were 
neglected, giving major blows to small-scale business in a 
short while. The second-degree impact is being felt through-
out the service and manufacturing sectors, which is further 
leading to global chaos. Reduction in industrial output was felt 
positively in terms of pollution and improving urban sustain-
ability (Akter et al. 2021). However, a new great challenge is 
the management of enormously large amount of infectious 
medical waste generated from COVID-19 infections.

It was reported that before the pandemic hit, the aver-
age quantity of biomedical waste produced was 0.5 kg/bed/
day, which increased to 3.4 kg/bed/day during the pandemic 
(Mondal et al. 2022). Improper handling and disposal of 
contaminated waste could cause the unintentional spread 
of the infectious virus. Encouraging home isolation and 
home recovery programs helped tremendously in reduc-
ing the patient load on healthcare system, while cutting the 
biomedical waste generation from hospitals. Other meas-
ures include autoclaves or mobile incinerators to neutralize 
excessive biomedical waste. Moreover, globally high ineq-
uitable distribution of vaccines persisted. The strict storage 
conditions and vaccine hesitancy led to wastage of vaccines. 
In high-income countries, over 2.3 billion doses have been 
administered and bought over 7 billion doses, while in low-
income countries, 15% of the population has been adminis-
tered with the vaccine (Lazarus et al. 2022b). The strict con-
ditions that all doses in a vial must be used within few days 
after opening a vial, led to wastage in case of insufficient or 
no immediate demands. Further, vaccine integrity during the 
supply chain is a major concern due to non-compliance in 
maintaining cold chain storage conditions, which cause huge 
vaccine waste. GAVI alliance had recommended a maximum 
25% wastage rate in the first year, 15% reduction in vaccine 
waste by third year. So, regulatory authorities and vaccine 
developers should work to upgrade supply chain and wave 
off patent protection so that vaccines are accessible to even 
the low-income countries.

Although COVID-19 pandemic created a negative impact 
globally, yet the improvement in quality of air and water 
are the major silver linings. Certain satellite images show 
20–30% reduction in major environment pollutants (Mofijur 
et al. 2021).  NO2 and NO gases are produced as a result of 
burning fossil fuels and coals. As per WHO, these gases 
are typical air contaminants that corrode lungs, respiratory 
problems and aggravate asthma. According to European 
Space Agency, the average level of  NO2 had reduced by 40% 
between March and April 2020. In some countries, particu-
late matter emission has also reduced during the pandemic. 
Particularly the particulate matter of diameter 2.5 � m or less 
had found to cause severe health problems and also a threat 
to environment (Irfan et al. 2021).

Although the source of infection is environmental, 
cases of black and yellow fungus associated with COVID-
19 infection have been reported (Song et al. 2020). This 
could be due to the airborne spores of fungi that enter the 
body through inhalation or through open wounds. Healthy 
people generally clear these spores from their bodies, but 
immunocompromised individuals or patients associated with 
comorbidities are the prime targets for nosocomial infec-
tions (Singh et al. 2022). Some studies also mention that 
(Quinn and Bell 2022) people who have recovered from the 
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infection are likely to have negative impacts on their quality 
of life, reduction in functional abilities, and a shortened life 
expectancy. The need for the hour demands new health poli-
cies and strategies to address such long-term sufferings, and 
its long and deadly tail should never be ignored.

COVID‑19 therapeutic approaches

Conventional drug discovery was based on the hit and trial 
approach, which gives extremely low throughout. Repur-
posing existing drugs is one such strategy to overcome the 
setback (Luo et al. 2021). Despite promising therapeutic 
benefits by drugs including Remdesivir, Chloroquine, and 
Lopinavir, increased cases with serious side effects are being 
reported. The early vaccine development against SARS-
CoV-2 included live attenuated or inactivated virus vaccine, 
nucleic acid-based, viral vector, protein subunit, and virus-
like particle (Vivekanandhan et al. 2021). Other curative 
approaches being employed to manage the infection include 
immunotherapy, use of steroids, and convalescent plasma 
therapy, which are described below.

Antiviral drugs

With no specific antiviral treatment available and less effi-
cient conventional drug discovery approach, repurposing the 
existing drugs might be a better choice to tackle the ongoing 
pandemic (Luo et al. 2021). Uncontrolled pandemic scenario 
demands coherent drug discovery efforts and approaches, so 
the regulatory bodies like US-FDA reassess the therapeutic 
benefit of existing drugs, including Remdesivir, a broad-spec-
trum antiviral drug acting on RNA-dependent RNA poly-
merase. Remdesivir was used against the animal and human 
coronaviruses. It demonstrated potent anti-SARS-CoV-2 
activity in patients with mild to moderate COVID-19 symp-
toms (Mei and Tan 2021). Approved viral protease inhibitors, 
including Lopinavir and Ritonavir, were found to improve 
the clinical symptoms of COVID-19-infected patients but 

showed no benefit in hospitalized adult patients. Favipira-
vir inhibits viral replication by controlling RNA polymerase 
and has shown antiviral activity against a spectrum of RNA 
viruses like Ebola and influenza H1N1 (Machhi et al. 2021). 
Chloroquine, a broad-spectrum antiviral drug, was found to 
inhibit the spread of SARS-CoV-2 in vitro by blocking cell 
fusion, but it did not inhibit SARS-CoV-2 infection in the 
lungs (Purohit et al. 2020). A list of antiviral drugs, their 
target and mechanism of action is summarized in Table 1.

Corticosteroids

Corticosteroids are involved in various physiological pro-
cesses, including inflammatory regulation, immunological 
response, stress, carbohydrate, and protein metabolism. 
Thus, corticosteroids are important in managing auto-
immune, inflammatory disorders, and allergies (Annane 
2021). In SARS-CoV-2 infection, the viral escape of cel-
lular immune response and cytokine storm is an important 
pathophysiology. The invasion of inflammatory cells and 
dysregulation of cytokine usually results in lung inflam-
mation, respiratory failure, multi-organ failure, and ulti-
mately death. Corticosteroids have been shown to exhibit 
anti-fibrotic and anti-inflammatory effects. It also helps in 
reducing pulmonary inflammation in severe cases (Lin et al. 
2021). By targeting host immune response and inflammatory 
cascade, corticosteroids can benefit patients with COVID-19 
(Lin et al. 2021).

The guidelines recommend steroids in severe infection 
cases and on mechanical ventilation (2020). The prin-
cipal corticosteroids used in most trials are dexametha-
sone and methylprednisolone because of their high lung 
bioavailability. Dexamethasone is a synthetic glucocor-
ticoid previously used to treat allergic reactions, asthma, 
and other autoimmune disorders. It crosses the host cell 
membrane and then binds to the glucocorticoid recep-
tor, initiating a series of immune cell responses, which 
suppresses proinflammatory cytokines, including IL-1, 
IL-2, IL-6, IL-8, and TNF. Compared to dexamethasone, 

Table 1  List of antiviral drugs in treating various viral infections

ACE-2 angiotensin-converting enzyme

Drugs Target Mechanism Applications Ref

Remdesivir Viral proteases Interference with RNA polymerase 
reduces synthesis of viral RNA

Ebola virus disease Beigel et al. (2020)

Favipiravir RNA-dependent 
RNA polymerase

Inhibition of RNA polymerase and 
replicase

Viral infections Ghasemnejad-Berenji and Pashapour 
(2021)

Lopinavir, Ritonavir Viral protease Inhibition of viral protease HIV infection Verdugo-Paiva et al. (2020)
Chloroquine ACE-2 ACE-2 glycosylation is affected Malaria Tong et al. (2020)
Umifenovir S-spike glycoprotein Inhibition of trimerization of the 

SARS-CoV-2 S protein
Influenza Vankadari (2020); Kumar et al. (2021) 
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methylprednisolone shows a quick onset of action after 
parenteral administration and lesser risk of long-term 
side effects like hypokalemia, fluid retention, dysgly-
cemia, and hypercortisolism (Noreen et al. 2021). Side 
effects produced by dexamethasone include fluid reten-
tion, hormonal imbalance, and disturbed sleep pattern, 
while blurred vision and hemorrhage are also reported 
but rarely (Noreen et al. 2021).

The risks associated with using corticosteroids in 
COVID-infected patients include long-term complica-
tions, higher risk of secondary infections. Whereas, 
the excessive levels of corticosteroids cause metabolic 
imbalance and fluid retention leading to heart failure 
(Raju et al. 2021). Another big issue related to corticos-
teroids is the prolongation of viral excretion from the 
body. Thus, use of corticosteroids in SARS-CoV-2 infec-
tion has been restricted (Umakanthan et al. 2021).

Convalescent plasma therapy

Convalescent plasma therapy is an efficient passive immu-
nization technique to boost the patient’s immune system. It 
relies on a high titer of neutralizing antibodies present in 
the plasma of recovered patients. In previous studies based 
on MERS and SARS, it has been found that the neutral-
izing antibody binds to the spike proteins, which could 
limit the viral entry (Dhawan et al. 2022). At the early 
pandemic stage, convalescent plasma therapy is made into 
the headlines as a prospective treatment for hospitalized or 
high-risk patients. The antiviral antibodies from recovered 
individuals are isolated and injected into patients to imme-
diately boost their immune system (Duan et al. 2020). 
According to US-FDA guidelines, people testing negative 
and waning clinical symptoms can donate blood after at 
least 28 days. Around the world, researchers were engaged 
in transfusing antibody-rich serum into patients struggling 
with severe illness (Purohit et al. 2020). The risks associ-
ated with convalescent plasma are HIV, hepatitis B and C, 
anaphylactic reactions, allergic reactions, and transfusion-
related circulatory overload (Ferrari et al. 2021). On Feb-
ruary 4 2021, US-FDA had revised the use of convalescent 
plasma. They limited the authorization to the high-titer 
convalescent plasma for hospitalized COVID-19 patients 
in the early disease course and to those patients who can-
not produce adequate antibody response (FDA 2021).

Immunotherapy

Since no specific treatment has been approved for the SARS-
CoV-2 infection, the first-line cure is a supportive treatment. 
This includes antibiotics for secondary bacterial infections, 
oxygen therapies, and mechanical ventilation for patients 

with respiratory failure, whereby immunotherapy modu-
lates a patient’s immune system to fight against the illness 
(Esmaeilzadeh and Elahi 2021). Immunotherapy includes 
the use of monoclonal antibodies and antibody-cocktails. 
In some patients, disease progression is associated with 
cytokine secretion (Magro 2020), causing lung damage, 
inflammation, and other acute respiratory distress syn-
drome (ARDS). Studies have shown the use of tocilizumab 
(humanized recombinant antibody for IL-6) in arthritis and 
cytokine storms, thereby reducing mortality rates. Barici-
tinib, a JAK1/2-selective kinase inhibitor, is used in rheu-
matoid arthritis treatment and severe cases of COVID-19, 
preventing progression to ARDS (Ai et al. 2022). Four anti-
SARS-CoV-2 monoclonal antibody products have received 
EUA from US-FDA for non-hospitalized patients, including 
sotrovimab, bamlanivimab, etesevimab, and “imdevimab 
and casirivimab” (REGEN-COV) (https:// www. covid 19tre 
atmen tguid elines. nih. gov/ thera pies/ anti- sars- cov-2- antib ody- 
produ cts/ anti- sars- cov-2- monoc lonal- antib odies/; Monzavi 
et al. 2021). Thus, developing such novel immunotherapies 
can target viral infection and improve the clinical outcomes.

Monoclonal antibodies

Monoclonal antibodies are proteins mimicking the ability of 
an immune system to fight harmful viruses. The monoclonal 
antibodies bind to spike protein receptor-binding domain 
(RBD) to neutralize the virus (ACTIV-3/TICO LY-CoV555 
Study Group et al. 2021). The individuals recovered from 
COVID-19 infection produce antibodies against SARS-
CoV-2, which persists for 5–7 months post-infection (Dan 
et al. 2021). Monoclonal antibodies are identical copies 
of an antibody that targets a specific antigen. So far, only 
seven antibodies have been approved for EUAs, including 
bamlanivimab, casirivimab, etesevimab, imdevimab, tixa-
gevimab, sotrovimab, and cilgavimab (Hwang et al. 2022).

Sotrovimab is a derivative of S309 monoclonal antibody. 
It was found to cross neutralize SARS-CoV-2 by inducing 
S-trimer cross-linking aggregation of virions or steric hin-
drance. Also, S309 showed antibody-dependent cell cytotox-
icity and cellular phagocytosis effector function contributing 
to virus neutralization in mouse models (Hwang et al. 2022). 
Tocilizumab is both a membrane-bound and soluble IL-6 
receptor inhibitor. Administration of tocilizumab in the early 
stage of SARS-CoV-2 infection was found to correlate with 
the lower mortality rates among critically ill patients (Wei 
et al. 2021). Itolizumab, anti-CD-6 monoclonal antibodies, 
prevents cytokines storm by targeting CD antigens (Saavedra 
et al. 2020). Bamlanivimab and etesevimab are neutralizing 
monoclonal antibodies that target RBD of S-protein. In con-
trast, imdevimab and casirivimab are recombinant monoclo-
nal antibodies that binds to the non-overlapping epitope of 
RBD of S protein (Taylor et al. 2021).
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Infliximab or adalimumab, anti-TNF antibodies, may 
reduce mortality rates in affected patients. There are four 
clinical trials on infliximab (NCT04425538, NCT04344249, 
NCT04734678, NCT04593940) and one on adalimumab 
(NCT04705844) seeking evaluation for their therapeutic 
potential in COVID-19. The EUAs by US-FDA does not 
authorize monoclonal antibody for critically ill COVID-19 
patients needing oxygen support or patients with co-morbid-
ity. Table S1 includes a list of monoclonal antibodies in the 
pipeline against COVID-19 infection.

Recent studies discuss the sensitivity of the approved 
monoclonal antibodies against recently identified omicron 
variant (Takashita et al. 2022). It has been identified that 6 
out of 9 tested monoclonal antibodies, including casiriv-
imab, tixagevimab, bamlanivimab, etesevimab, regdan-
vimab, and imdevimab, were found to be inactive against 
the omicron. Omicron was fully resistant to etesevimab, 
bamlanivimab, and imdevimab. Cocktail of bamlanivimab 
and etesevimab failed to inhibit entry mediated by omicron, 
but sotrovimab was active against omicron (Hoffmann et al. 
2022).

Antibody cocktails

Antibody cocktails are an effective approach for the preven-
tion and treatment of the COVID-19 infection. The antibody 
cocktail is a blend of monoclonal antibodies targeting the 
spike protein of SARS-CoV-2 that could reduce the viral 
load, preventing the progression of the disease and accel-
erate the recovery of patients. This therapy is most suited 
in case of high risk patients and patients with comorbid 
conditions.

Sue et al. describe the generation of monoclonal antibod-
ies using hybridoma screening (Su et al. 2021). It neutral-
ized SARS-CoV-2 by targeting the RBD. The cryo-electron 
microscopy revealed the atomic details of the structural 
epitopes of the chimeric antibody used as cocktail therapy. 
A cocktail of chimeric antibodies may increase the thera-
peutic efficacy and decrease the potential of virus escape 
mutants, which could be an additional benefit in the case of 
emerging variants.

REGN-COV2 is a novel cocktail of human Abs Casiriv-
imab (REGN10933) and Imdevimab (REGN10987) tar-
geting S-protein. REGN-CoV2 was found to reduce the 
virus load in upper and lower airways when administered 
prophylactically (Tuccori et al. 2020). Ongoing trials for 
REGN-COV2 (NCT04425629) randomized, phase I–III 
adaptive, double-blind, placebo-controlled conducted on 
non-hospitalized patients with COVID-19 infection showed 
a reduced risk of hospitalization and death by 70% (Hwang 
et al. 2022).

Combination of tixagevimab and cilgavimab, which 
are recombinant human anti-SARS-CoV-2 monoclonal 

antibodies, binds to the non-overlapping epitopes of spike 
protein. Another combination, bamlanivimab and etese-
vimab, has also been approved by US-FDA for its emergency 
use on February 9 2021 (US FDA 2021). The research are 
evolving with emerging variants, due to mutations in the 
spike proteins, the prime targets for the antibody cocktail. 
Antibody cocktails can be used in mild to moderate cases of 
the COVID-19 infection; however, it showed reduced effi-
cacy against the omicron variant as compared to the delta 
variant (Yu et al. 2022).

COVID‑19 vaccines

Vaccines are biological preparations comprising an entire 
organism, nucleic acid, proteins, peptides, or sub-units that 
stimulates antibody production upon administration and trig-
gers immunity against the pathogens. The already available 
antibodies as a cause of vaccination, attacks the organism at 
a much faster rate in case of reinfection with the same dis-
ease. In addition, vaccines works through “memory” cre-
ated in memory cells. The major concerns with the use of 
vaccines include the limited efficacy, individual variation in 
immune response, operational, religious, social, and ethical 
beliefs (Giubilini et al. 2021).

Various types of vaccines were developed, including 
the whole virus vaccine (live attenuated or inactivated vac-
cine), recombinant protein vaccine (VLP or protein subunit), 
nucleic acid vaccines, and viral vector vaccines as shown 
in Fig. 1. As people worldwide receive the COVID-19 vac-
cines, the reports of risk of temporary side effects, includ-
ing fever, headache, and pain at the injection site, kicked 
in. However, the risk of severe side effects outweighs the 
protection offered against the deadly SARS-CoV-2. Table 2 
includes vaccines authorized by the WHO for their emer-
gency use, and Table 3 includes a list of vaccines under 
review by the WHO.

Whole virus vaccines

The whole virus vaccine includes attenuated or inactivated 
form that can still grow and replicate in body to trigger 
immunity, but unable to cause illness. The conventional 
whole virus vaccines (Table S2, Table S6) include live 
attenuated, inactivated vaccines that elicit immune responses 
by targeting many viral proteins. The inactivated vaccines 
contain a virus, of which the genetic material is destroyed 
by the application of chemicals, heat, or radiation (Angeli 
et al. 2021).

Live‑attenuated vaccines Codagenix is a live-attenuated 
viral vaccine administered intra-nasally. It is used as a 
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single or multi-dose regimen given 21 days apart, generat-
ing both cell-mediated and humoral responses (Shen et al. 
2020; Chavda et al. 2021). The-live attenuated vaccines use 
a weak virus that does not cause infection but can still grow 
and replicate. The live-attenuated vaccines are produced 
by the passage of disease-causing viruses produced in the 
cultured cells, weakened and reduced virulence. Such vac-
cines produce humoral and cell-mediated immune responses 
which mimic the natural infection. These vaccines are rarely 
used for immunocompromised patients because of the poten-
tial to cause infection. This limitation of virulence reversal 
can be overcome by altering the viral genome and selecting 
the non-pathogenic strains incapable of causing the disease 
(Machhi et al. 2021).

Inactivated vaccines The inactivated vaccines use a non-live 
pathogen, ensuring better safety than live vaccines. The inac-
tivated vaccines cannot induce the cellular responses and 
thus require additional adjuvants to stimulate the immune 
responses (Kyriakidis et al. 2021). Developing such vaccines 
requires the inactivation of the virus by chemical or radia-
tion. This leads to the destruction of the virus’s genetic mate-
rial while keeping the antigenicity. In general, all inactivated 
vaccines possess a higher safety profile than live vaccines 

and are considered less reactogenic (Sanders et al. 2015; 
Iversen and Bavari 2021).

A phase 3 clinical trial, double-blind, placebo-controlled 
vaccine is used in two doses, 14 days apart. Currently, around 
10 candidates are being tested in clinical trials, including 
CoronaVac, developed by Sinovac and Covilo/BBIBP-CorV/
Sinopharm, which are approved for conditional marketing (Al 
Khames Aga et al. 2021) (He et al. 2021). The WHO approved 
emergency use, suggesting that 51% CoronaVac and 79% Cov-
ilo/BBIBP-CorV/Sinopharm were found to be effective (Mal-
lapaty 2021). Another vaccine candidate developed by Bharat 
biotech BBV152/covaxin has been authorized for emergency 
use for people 18 years or older with 78% efficacy (WHO 
2021a). As of June 24, 2022, Valneva (VLA2001) becomes the 
first vaccine against COVID-19 disease to receive a standard 
marketing authorization in Europe. It is an inactivated whole 
virus vaccine used in people aged 18 to 50 years (No Author 
2022b).

Nucleic acid vaccines

The nucleic acid-based vaccines carry a nucleotide sequence 
as DNA or RNA encoding protein of interest. The RNA or 

Fig. 1  Different approaches are 
used by vaccines against SARS-
CoV-2
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DNA produce proteins in the host cells, which later acts as 
antigens and triggers the immune response. This approach 
employs a host cellular machinery to generate the foreign 
antigens presented to MHC class I and II molecules of 
antigen-presenting cell (APC), eliciting both cellular and 
humoral responses (Ye et al. 2020). In DNA vaccines, a 
piece of DNA encoding antigen is inserted into a plasmid 
that replicates and transfers the genes between the cells. 
The main challenge is crossing the membrane, which can 

be solved using electroporation, gene gun and encapsulating 
into nanoparticles for better delivery (Kowalzik et al. 2021).

DNA-based vaccines are considered stable and safer than 
conventional vaccines because the vectors used are non-rep-
licating and express the gene of interest (Machhi et al. 2021). 
ZyCoV-D developed by Zydus Cadila uses a DNA-based 
technology. It is a needless vaccine requiring three doses (Dey 
et al. 2021). Besides ZyCOV-D, another vaccine, INO-4800, 
developed by Inovio Pharmaceuticals, has been developed that 

Table 2  Vaccines authorized for emergency use according to type, age group, conditions, and possible adverse effects

n-VVr non-replicating viral vector, IV inactivated, IM intramuscular, ID intradermal

Vaccine type Vaccine name Dosage and dose 
frequency

Storage Manufacturer Route Probable side 
effects

References

n-VVr Ad5-nCoV/Con-
videcia

Dose-1: 0.5 ml 2–8 °C CanSinoBio IM Fatigue, fever, 
headache

Jin et al. (2022)

n-VVr ChAdOx1-S /
Covishield

Dose-1: 0.5 ml
Dose-2: 0.5 ml

2 to 8 °C Serum institute 
of India

IM Swelling, bursting, 
pain at the site of 
injection, rash

Hung and Poland 
(2021)

n-VVr Ad26.COV.S /
Jannssen/Jcovden

Dose-1: 0.5 ml 2–8 °C Johnson & 
Johnson

IM Fatigue, fever, 
headache, myal-
gia, pain the site 
of injection

McGinley (n.d)

n-VVr ChAdOx1-S /
AZ vaccine/
Vaxzevria

Dose-1: 0.5 ml
Dose-2: 0.5 ml

2–8 °C AstraZeneca IM Tenderness, pain, 
itching and 
swelling at the 
site of injec-
tion, Influenza 
like symptoms, 
rarely blood clots 
reported

Kiem et al. (2021)

IV BBV152/Covaxin Dose-1: 0.5 ml
Dose-2: 0.5 ml

2 to 8 °C Bharat Biotech IM Pain at the site of 
injection

Parida et al. (2022)

IV Covilo/BBIBP-
CorV/Sinopharm

Dose-1: 0.5 ml
Dose-2: 0.5 ml

 − 70 to − 20 °C Sinopharm/Bei-
jing Institute 
of Biological 
Products

IM Fever, chills, 
fatigue, acute 
encephalomyelitis

WHO (2021b)

IV Coronavac Dose-1: 0.5 ml
Dose-2: 0.5 ml

2–8 °C Sinovac IM Fatigue, nausea, 
dizziness, pain at 
the site of injec-
tion

Li et al. (2022a)

m-RNA Elasomeran,m-
RNA 1273/ 
Spikevax

Dose-1: 0.5 ml
Dose-2: 0.5 ml

 − 20 °C Moderna IM Chills, headache, 
swelling, redness

Baden et al. (2021)

m-RNA Tozinameran /
BNTI62b2/Pfizer 
vaccine/COMIR-
NATY 

Dose-1: 0.3 ml
Dose-2: 0.3 ml

 − 80 to − 60 °C Pfizer BioNTech IM Chills, headache, 
swelling

Britton et al. 2021)

PS NVX-CoV2373/
Nuvaxovid

Dose-1: 0.5 ml
Dose-2: 0.5 ml

2–8 °C Novavax IM Tenderness, head-
ache, pain at the 
site of injection

Daniela and Ngel 
(2021)

PS NVX-CoV2373/
Covovax

Dose-1: 0.5 ml
Dose-2: 0.5 ml

2–8 °C Serum Institute 
of India

IM Tenderness, fatigue, 
fever, headache, 
chills

Fenton and Lamb 
(2021)

DNA ZyCoV-D Dose-1: 0.5 ml
Dose-2: 0.5 ml
Dose-3: 0.5 ml

2–8 °C Zydus Cadila, 
India

ID Pain at the site of 
injection, head-
ache, chills

Khobragade et al. 
(2022)
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generates both cell-mediated and humoral responses. Also, 
INO-4800 utilizes mammalian expression plasmids that encode 
S-protein expressed in humans and animals (Tebas et al. 2021).

In the case of m-RNA-based vaccines, RNA must be 
transported into the human cell. The lipid nanoparticle is 
used for its delivery, which of RNA to produce antigen pro-
tein (Forni et al. 2021). Limitations of such vaccines include 
stability of m-RNA at storage condition and thereby need of 
cold chain (de Queiroz et al. 2020). Despite the extensive 
use of LNPs for delivering m-RNA, it remains unclear how 
many m-RNA strands can be encapsulated per nanoparticle. 
Two m-RNA vaccine candidates, m-RNA-1273 from Elaso-
meran/Spikevax/Moderna and BNT162b2 from Pfizer/BioN-
Tech, showing 94% efficacy, have been authorized for emer-
gency use. The phase 3 study comprised 43,548 participants 
with 8 cases of COVID-19 among 17,411 participants in the 
vaccine arm and 162 cases among 17,511 participants in 
control arm, resulting in 95% efficacy. Mild to the moderate 
local reaction was reported, which resolved within 1–2 days 
(Kwok 2021). The meta-analysis published by Zeng et al. 

(2022) evaluates the efficacy of vaccines against COVID-19 
variants (Alpha, Beta, Gamma, Delta, Omicron) estimat-
ing that full vaccination is highly effective against the alpha 
variant, moderately effective against the Beta, Gamma, and 
Delta variants (95% confidence interval), while the booster 
vaccination is more effective in delta and omicron. Also, 
the m-RNA vaccines showed higher efficacy against the 
above mentioned variants (Islam et al. 2022). Based on the 
data, BNT162b2 became the first vaccine against SARS-
CoV-2 authorized for emergency use by US-FDA (Kwok 
2021). Co-administration of multiple m-RNA types could 
be used as multi-target vaccination strategies, expression 
of protein cocktails for regeneration purposes (Zhang et al. 
2021). m-RNA cocktails could also emerge as a new emerg-
ing COVID-19 treatment to produce stronger and wider 
immune response. There is no certain limit to the number 
of RNAs that can be combined and can target more than one 
pathogen or more than variant in the case of SARS-CoV-2 
(DeFrancesco 2021). As of 17 June 2022, FDA has author-
ized emergency use of Pfizer-BioNTech and Moderna for 

Table 3  Status of COVID-19 vaccines under review for emergency use authorization by the WHO

EUA emergency use authorization, EOI expression of interest, VVr viral vector vaccine, IV inactivated vaccine, PS protein subunit, VLP virus 
like particle, NP nanoparticle

S. no Type of vaccine Vaccine name Manufacturer Status

1 PS CoV2 preS dTM-AS03 Sanofi Ongoing assessment
2 PS SCB-2012 Clover Biopharmaceuticals Ongoing assessment
3 PS Recombinant Novel Coronavirus (CHO) Zhifei Longcom, China Ongoing assessment
4 PS Abdala CIGB EOI accepted and rolling data started
5 PS-NP Nuvaxovid SK Bioscience EOI accepted and rolling data started
6 PS Corbevax Biological E EOI under review
7 PS GBP510 SK Bioscience EOI under review
8 PS Recombinant COVID-19 vaccine Westvac Biopharmaceuticals EOI under review
9 PS Nanocovax Nanogen EOI under review
10 PS Spikogen Cinnagen EOI under review
11 PS UB-612 Vaxxinity EOI under review
12 PS EpiVacCorona Vector State Research Centre of 

virology and Biotechnology
Pending decision

13 PS Soverana 01
Soverana 02
Soverana Plus

BioCubaFarma Awaiting decision

14 VVr Sputnik-V Russian Direct Investment Fund Awaiting decision
15 VVr Vaccine R-COVI R-PHARM EOI under review
16 VVr AZD1222 Bio-Manguinhos/Fiocruz EOI under review
17 IV Verocell, Inactivated Sinopharm Ongoing assessment
18 IV Verocell IMBCAMS Under initial development stage
19 IV Coviran Shifet Pharmed. Barkat EOI accepted and rolling data started
20 RNA ARCT-154 Arcturus Therapeutics EOI under review
21 RNA-NP Zorecimeran (INN) concentrate and solvent 

for dispersion for injection; Company code: 
CVnCoV/CV07050101

CureVac Withdrawn

22 VLP COVIFENZ Medicago Withdrawn
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use in children of 6 months of age (FDA—Food and Drug 
Administration 2021).

Viral vector vaccines

This type of vaccine contains a recombinant virus, attenu-
ated to reduce the pathogenicity. The shell of this modi-
fied virus contains genetic material mimicking the course 
of infection (Fig. 1); thus, a strong cytotoxic and humoral 
response is induced (WHO 2021a). The viral vector vaccines 
can generate high levels of recombinant protein expression, 
which provides the basis for modern vaccine development 
(Lundstrom 2020). Viral vector vaccine technology has nei-
ther been used as a preventive vaccine nor tested for safety 
and efficacy in the long term. But major advantage offered 
by this method includes great efficiency and gene-specific 
delivery for initiation of healthy immune responses (Yadav 
et al. 2020). The recombinant adenoviruses are used as 
vaccine vectors as it accommodates large genetic payload, 
which triggers the immune system (Buchbinder et al. 2020; 
Jones and Roy 2021). Viral vector vaccines are categorized 
as replicating and non-replicating.

The replicating viral vector vaccines infect the cells pro-
ducing vaccine antigen, whereas the non-replicative viral 
vaccines enter the cells producing vaccine antigen, but no 
new viral particles are formed. The major advantage of the 
replicating viral vector is its ability to mimic the natural 
infection resulting in the induction of cytokines and mol-
ecules, providing potent adjuvant effect (Rawat et al. 2021). 
These vaccines also provide an immune response, including 
innate immunity and rapid responses against the invading 
organism (Robert-Guroff 2007; van Riel and de Wit 2020).

The non-replicating viral vector vaccines are a novel 
approach in which around 12 vaccine candidates have been 
evaluated against COVID-19 (Table S4). Such vaccines use 
genetically modified adenovirus vectors that cannot repli-
cate inside the human body. The modification is achieved by 
deleting a gene encoding the viral structural protein, prevent-
ing virus assembly. One such candidate is Ad5nCoV, which 
uses human adenovirus 5 with an overall 65.3% efficacy after 
4 weeks. Another vaccine candidate, AZD1222 (ChAdOx1), 
is a non-replicating viral vector vaccine with 63% efficacy 
and Ad26.COV.S/Janssen/Jcovden is also a non-replicating 
viral vector vaccine with an efficacy of 85.4% (CDC 2021).

In a meta-analysis published by Korang et al. (2022) 
involving 71,514 participants and 3 trials estimated 95% 
efficacy of m-RNA vaccine (95% confidence interval); 
48,029 participants and 3 trials estimated 61% efficacy of 
inactivated vaccines (95% confidence interval); 71,401 par-
ticipants and 5 trials estimated 68% efficacy of viral vector 
vaccines; 17,737 participants and 2 trials estimated 77% 
efficacy of protein subunit vaccines. The data suggested 

that although m-RNA vaccines are clear winners in terms 
of efficacy, the viral vector vaccines were found to be most 
effective in reducing the mortality.

Recombinant viral protein‑based vaccines

Recombinant protein vaccine uses spike protein of SARS-
CoV-2 as a vaccine antigen that helps the body recognize 
and fight off the virus. Different genes encoding antigenic 
determinants that have been cloned, expressed as recombi-
nant proteins, are established as vaccines. This is the most 
common platform for the production of vaccines because 
of the cost-effective production and safety profile, but it 
requires adjuvants for long-lasting immune response (Rawat 
et al. 2021).

Protein sub‑unit vaccines

These are protein-based vaccines (Table S5) (Fig. 5) con-
taining the viral protein as the antigen, eliciting the immune 
responses. Most vaccines use S-protein, containing multiple 
subunits, or RBD, which elicits the potent neutralizing anti-
body (WHO 2021a). The subunit vaccine provides immune 
protection by using some portion of the virus (Zhenghui and 
Moyle 2018) and includes a pathogen’s protein components 
that induce immune responses. Most of these vaccines use 
a membrane-bound S-protein, containing multiple subunits 
or RBD (Chakraborty et al. 2021). The Novavax is a pro-
tein subunit vaccine that demonstrated 90.4% efficacy from 
its Phase 3 clinical trials in the US and was well tolerated 
(WHO 2021a; No Author 2021a).

Attempts are being made to design a multiepitope pep-
tide-based vaccine using target envelope protein using the 
genomic and immunoinformatic approaches, which help in 
the rapid development of vaccine (Abhishek et al. 2020). 
NVX-CoV2373, a protein subunit vaccine developed by 
Novavax, contains matrix-M1 adjuvant demonstrating 89.3% 
efficacy (Hofman et al. 2021; Kwok 2021).

In December 2021, two subunit vaccines, NVX-CoV2373/
Covovax and Corbevax, were approved for emergency use. 
The Serum Institute of India produces NVX-CoV2373/Covo-
vax under license from Novavax, which is a subunit vaccine. 
The genetic sequence first introduced in baculoviruses and then 
made to infect the moth cells to produce proteins similar to 
the structure of SARS-CoV-2 spike protein. Corbevax is also 
a subunit vaccine that utilizes Pichia pastoris yeast and has 
been used to grow the RBD of SARS-CoV-2 (Marshall 2022).

Virus‑like particle vaccines

The VLP vaccines are derived from virus-like structures made 
of different molecules that can self-assemble, and mimics the 
size and form of the virus. They are made up of assembled 
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viral proteins that lack viral genetic material. Therefore, VLP 
are non-infectious, highly immunogenic, eliciting both cell-
mediated and antibody responses with its application in tar-
geted drug delivery and gene therapy. Also, the VLP are sub-
divided (Table S6) into non-enveloped and enveloped subtypes 
(Hashemzadeh et al. 2020; Nooraei et al. 2021). These vac-
cines represent the evolution of protein sub-unit and comprise 
viral coat proteins that assemble into a capsid-like structure in 
the absence of a viral genome (Fig. 1). Such non-infective par-
ticles are coupled with multiple copies of antigens, and these 
clusters allow activation of B-cells and the antibody responses 
(Nooraei et al. 2021).

Earlier, plant-derived VLP vaccines have demonstrated 
efficacy and immunogenicity against influenza. Recently, Pil-
let et al. demonstrated plant-based vaccine candidates devel-
oped by Medicago, which use the expression of recombinant 
proteins in non-transgenic plant Nicotiana Benthamiana 
(Ward et al. 2021). The vector used in the study was Agro-
bacterium tumefaciens to move the targeted DNA constructs 
into the plant cell. Such plant-derived VLP synthesized a new 
S protein that is trimerized and assembled as VLP, resembling 
the native structure of SARS-CoV-2 variants. Thus, this form 
of S-protein is used as a vaccine antigen containing several 
epitopes. Further, to improve the vaccine efficacy adjuvants 
are used with VLP, which also helps in dose-sparing strategies 
to maximize vaccine doses. For example, cytidine phospho-
guanosine CpG-1018 contains immunostimulatory oligode-
oxynucleotide sequence 1018 and AS03: GSK-α-tocopherol 
containing o/w emulsion adjuvant system. These generally 
enhance immune responses by providing  TH 1 (T-helper 
type-1) responses, while AS03 initiates a transient immune 
response including both T-cell mediated and antibody medi-
tated responses (Ward et al. 2021).

Recent clinical trial data of different vaccines 
effective against SARS‑CoV‑2

In May 2020, US-FDA launched operation warp speed, a 
plan to “accelerate the development” manufacturing and 
the distribution of vaccines to meet the increasing demand 
(Joffe et al. 2021). By September 2021, around 182 million 
people in the USA were fully vaccinated, and the clinical 
trial data of Pfizer-BioNTech, Elasomeran/m-RNA 1273/
Spikevax/Moderna, and Ad26.COV.S/Janssen/Jcovden 
vaccine showed effective immunization (Xu et al. 2021). 
By October 2021, US-FDA authorized emergency use of 
Tozinameran/BNTI62b2/Pfizer vaccine/Comirnaty for pre-
venting COVID-19 in children aged 5–11 years, and was 
90.7% effective (FDA News Release 2021). A phase 3 rand-
omized, placebo-controlled, observer-blind trial conducted 
to evaluate the efficacy, safety, immunogenicity of this vac-
cine has been conducted for people older than 18 years of 

age. The safety was evaluated involving 30,351 participants 
and 15,185 participants who received at least one dose of 
vaccine or placebo (Jackson et al. 2020). The adverse effects 
reported in participants included headache (64.7%), pain at 
the site of injection (92%), and fever (15.5%). Other adverse 
effects include fatigue, myalgia, chills, arthralgia, nausea, 
and vomiting (Callaway 2021a).

Multiple types of vaccines are being developed world-
wide against COVID-19, including oral vaccines. Premas 
Biotech has developed one such vaccine, an Indian pharma 
company in collaboration with Oramed Pharmaceuticals, 
showed that oral vaccine (Oravax) was efficaious in sin-
gle dose (No Author 2022b). Oravax promoted immune 
response (IgA), which protects GIT and respiratory tract 
infection and promotes systemic immunity due to the pro-
duction of IgG neutralizing antibodies.

Inactivated virus vaccines for COVID‑19 in clinical 
trials

The inactivated vaccines are easier to manufacture scale-
up and do not require an ultracold supply chain. The inac-
tivated vaccines pose no risk to the immunocompromised 
patients, unlike the live vaccines. Live vaccines may repli-
cate uncontrollably in immunocompromised patients, lead-
ing to restrictions on their use (Iversen and Bavari 2021). 
The inactivated vaccines have a limitation of protection 
in the short term and weaker immune response (Angeli 
et al. 2021). A need for boosters arises to reach long-term 
immunity (Croda and Ranzani 2022). Table S2 includes 
the clinical trial data of inactivated vaccines effective 
against COVID-19. This represents the distribution of the 
vaccine based on different age groups as a child (aged 
birth, 17 years), adults (18–64 years), and older adults 
(65 years and above) and in different phases of the clini-
cal trial starting with phase 1, phase 2, and phases 3 and 
4. Figure 2 includes the summarized representation of 
clinical trials of inactivated vaccines in different phases, 
age distribution, and geographical distribution. The clini-
cal data is extracted from the clinicaltrial.gov database, 
with the inactivated vaccine, safety, and efficacy as search 
terms. The data shows that maximum trials are in phase 
3(30.76%) and phase 4 (26.15%), while the least number 
of trials in phase 2|3 (3.07%). Also, this includes 33.84% 
active trials and 36.92% recruiting (Fig. 2). The data also 
shows that the maximum number of trials were conducted 
only on the adult age group (73.44%) while the least on 
older adults (1.56%).

Nucleic acid vaccines for COVID‑19 in clinical trial

DNA vaccines are comparatively more stable than a vaccine 
containing RNA (Shafaati et al. 2022), and thus possess a 
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good degree of manufacturability. However, unlike RNA, 
DNA needs to be assisted to reach the nucleus. Thereby, 
special adjuvants and carrier systems are required to stim-
ulate immune response (Leitner et al. 1999). Also, using 
approaches like a microneedle patch delivery could improve 
storage stability at room temperature for 30 days. This may 
overcome supply chain limitations to remote areas with lim-
ited vaccine supply (Georgiadis and Georgiadis 2021). On 
the other hand, the m-RNA vaccines turned out to be a clear 
winner in efficacy, rapid production process, and the flex-
ibility to switch between the multiple strains. Besides these 
advantages, the m-RNA vaccines’ instability and ultracold 
storage requirements could be the limiting factors. This 

could be resolved by encapsulating the m-RNA into LNPs, 
which may be stored for 6 months at cool temperature, i.e., 
2–8 ◦C without compromising immunogenicity (Park et al. 
2021). Another approach being employed to improve the sta-
bility of m-RNA vaccines is freeze-drying which leaves the 
m-RNA stable for 10 months at 4 ◦C (Uddin and Roni 2021).

Table S3 shows the clinical trial data of nucleic acid-
based vaccines (DNA & RNA) effective against COVID-19. 
It shows the distribution of nucleic acid vaccines as per the 
different age groups as a child (aged birth, 17 years), adults 
(18–64 years), and older adults (65 years and above) in dif-
ferent phases of the clinical trial starting from phase 0 (early 
phase 1), phase 2, and phases 3 and 4. Figure 3 summarized 

Fig. 2  Results of the clinical 
trial of inactivated vaccines 
against SARS-CoV-2 consid-
ering trials being conducted 
among people with different age 
groups, geographical diversity, 
and in distinct phases giving an 
idea that the maximum number 
of trials are being conducted in 
China and nearly 73.44% trials 
are being conducted among 
adults, i.e., 18 years and older 
and 1.56% on older adults and 
child, adult, and older adult. 
Also, maximum trials are in 
phase 3 of the clinical trial. 
Data obtained from clinicaltrial.
gov (accessed on October 31, 
2021)
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the clinical trials of nucleic acid vaccines in different phases, 
age distribution, and geographical distribution. The clinical 
data is extracted from the clinicaltrial.gov database, with the 
DNA vaccine, m-RNA vaccine safety, and efficacy as search 
terms. The outcomes drawn from the studies are maximum 
candidates in candidates in the case of nucleic acid vaccines, 
including 63.88% active trials and 43.51% recruiting ones. 
The maximum studies, i.e., 21.29% trials alone, are in phase 
2, and the least number of studies nearly 1.85% are in the 
early phase 1. Out of all clinical trials on the nucleic acid-
based vaccines, 85.18% were based on m-RNA vaccines, 
and 14.81% were based on DNA vaccines. 60.19% of the 
trials were conducted on adults and 2.78% on older adults, 
while the least number of trials, 0.93% were conducted on 
children and adults (Fig. 3).

Viral vector vaccines for COVID‑19 in clinical trials

The viral vector vaccines are a game changer in terms of 
storage stability. This makes it cost-effective without the 
need for special supply chain conditions. One popular exam-
ple of this category is the vaccine candidate from Janssen. 
Compared with other vaccines, a single jab vaccine pro-
motes patient compliance and reduces vaccine hesitancy. 
The modified genes could elicit allergic reactions, leading 
to rare and adverse effects (Cerda and García 2021). This 
problem could be solved by using non-viral vectors, which 
could be lipid or polymer-based. Other problems associated 
with the viral vector vaccines include lack of strong and 
long-lasting immunity after single-dose and pre-existing 
anti-adenovirus immunity (Velikova and Georgiev 2021). 
Despite such limitations, the viral vector vaccines are easy 
to scale up, include multiple epitopes, and are considered 
more immunogenic than the other vaccine types.

Table S4 includes clinical trial data of viral vector vac-
cine effective against COVID-19. It shows the distribution of 
vaccines as per the different age groups as child (aged birth, 
17 years), adults (18–64 years), and older adults (65 years 
and above). Also, the vaccine status in distinct phases such as 
phase 1, phase 2, and phases 3 and 4 has been discussed. Fig-
ure 4 summarized the clinical trials of viral vector vaccines in 
distinct phases, age distribution, and geographical distribu-
tion. The clinical data is extracted from the clinicaltrial.gov 
database, with the viral vector vaccine, safety, and efficacy 
as search terms. The outcomes drawn from the studies are 
maximum in phase 1 of the clinical trial, which accounts for 
24.07% trials in phase 1, subsequent 23.52% trials in phase 
1|2 of the clinical trials, and round 7.4% trials in phase 4. 
Also, 31.37% active trials and 29.41% recruiting ones. Also, 
67.71% of the trials were conducted on adults and 2.94% 
trials on child, while the least number of trials, 1.96%, were 
conducted on child, adults, and older adults.

Protein subunit vaccines for COVID‑19 in clinical 
trials

The subunit vaccines contain protein fragments from 
the pathogen that can  produce an effective immune 
response with reduce side effects. Compared to the live and 
inactivated vaccines, PS vaccines are considered much more 
efficient in inducing cell-mediated and humoral responses 
as the risk of handling pathogen is eliminated (Khan et al. 
2021). PS vaccines are limited in efficacy, which can be 
improved using adjuvants (Fathizadeh et al. 2021). The third 
booster of these vaccines after the “priming shot” of inacti-
vated vaccine could produce the safer and highly immuno-
genic response in adults (Ai et al. 2022). People receiving 
2 shots of inactivated virus vaccines showed a suboptimal 
level of protection against omicron transmission. Even after 
the third dose of inactivated vaccine, neutralizing antibod-
ies stay low. Studies show that PS vaccines elicit a response 
(89.3% efficacy) (Table 4), and a booster of PS after an inac-
tivated virus vaccine produced a better humoral response. 
Thus, the protein subunit vaccines are a better choice.

Table S5 includes clinical trial data of protein subunit vac-
cines effective against COVID-19. It shows the distribution 
of subunit vaccines as per the different age groups as a child 
(aged birth, 17 years), adults (18–64 years), and older adults 
(65 years and above). Figure 5 summarized the clinical trials 
of protein subunit vaccines in distinct phases, age distribution, 
and geographical distribution. The clinical data is extracted 
from the clinicaltrial.gov database, with the protein subunit 
vaccine, safety, and efficacy as search terms. The outcomes 
drawn from the studies are maximum candidates in phase 1 
of the clinical trial, accounting for 31.88% trials in phase 1, 
subsequent 27.72% trials in phase 1|2 of the clinical trials, 
and 1.44% trials in phase 4. Also, the protein subunit vaccines 
include 36.23% active trials and 37.68% recruiting ones, while 
the maximum trials were conducted on adults, older adults 
(nearly 65.22%), and 27.54% trials on adults 1.45% on child, 
adult, and older adults (Fig. 5).

Other vaccine types for COVID‑19 in clinical trials

The live-attenuated vaccines use a weak form of the virus 
that does not cause infection. However, they may revert the 
pathogenicity to cause disease in the immunocompromised 
patients (Machhi et al. 2021). To overcome this limitation, 
codon deoptimization can substitute the nucleotides from 
the virus coding sequence. The virus-like particles vaccines 
bear a similar structure and antigenicity to the parent virus 
(Okamura and Ebina 2021). Also, the VLP vaccine can be 
engineered to display foreign epitopes. Compared with the 
other viral vector vaccines, the VLP does not infect cells for 
antigen expression and does not induce neutralizing anti-
bodies against themselves, but is similar to the structure of 
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the virus. They can induce stronger immune responses and 
offer a strong safety profile (Zha et al. 2021). The VLP, due 
to its smaller size, can be taken up by APC, which presents 
the disease particles to the lymphocytes. Once taken up by 
APC, the VLP are degraded and activate T-cell response to 
an infection. On the other hand, nanoparticle VLP-based 
vaccines show high specificity, efficiency, and good phar-
macokinetic characteristics, eliminate the need for inject-
able vaccines, and can be administered by inhalation route. 

Such VLP vaccines are considered safe as no viable VLP 
material is present, and can be self-administred (Li et al. 
2022b). As the viruses mutate rapidly, it makes other avail-
able vaccines either less effective or ineffective. In contrast, 
the VLP-bearing surface proteins can be modified to fight 
against the novel version of the virus (Belete 2021).

Table S6 includes clinical trial data of live-attenuated vac-
cines, APC, and VLP vaccines effective against COVID-19. It 
shows the distribution as per the different age groups as child 

Fig. 3  Results of the clini-
cal trial of nucleic acid-based 
vaccines effective against 
SARS-CoV-2 considering trials 
being conducted among people 
with different age groups, 
geographical diversity, and in 
distinct phases giving an idea 
that the maximum number of 
trials are being conducted in the 
US among adults, i.e., nearly 
60.19% trials among 18 years 
and older and 0.93% of trials 
on child, adult. Also, maximum 
studies were found to be in 
phase 2 of the clinical trial, and 
the least number of trials were 
found to be in early phase 1. 
Data obtained from clinicaltrial.
gov (accessed on October 31, 
2021)
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(aged birth, 17 years), adults (18–64 years), and older adults 
(65 years and above). Also, the status of the vaccine in distinct 
phases such as phase 0 (early phase 1), phase 2, and phase 3 and 
4 have been discussed. Fig. 6 summarized the clinical trials of 
live attenuated, APC, and VLP vaccines in distinct phases, age 
distribution, and geographical distribution. The clinical data is 
extracted from the clinicaltrial.gov database, with the protein 
subunit vaccine, safety, and efficacy as search terms. The data 
shows that the maximum studies are in phase 1 clinical trial. It 
accounts for 40% trials in phase 1, and the least number of trials 

(6.67%) in phase 2ǀ3 (Fig. 6). 54.54% trials were conducted on 
adults, 9.09% in older adults, and 9.09% in child, adult, and 
older adults, including 46.66% recruiting and 20% active trials.

Nanotechnology‑based COVID‑19 vaccines in clinical 
trials

Nano drug delivery systems are being explored to deliver 
antiviral drugs efficiently (Szunerits et al. 2015). Nano size 
is comparable to the virus size that improve the treatment’s 

Fig. 4  Results of the clinical 
trial of viral vector vaccines 
effective against SARS-CoV-2 
considering trials being 
conducted among people with 
different age groups, geographi-
cal diversity, and in distinct 
phases giving an idea that the 
maximum number of trials are 
being conducted in China and 
64.71% on adults, i.e., 18 years 
and older while only 1.96% 
trials on child, adult, and older 
adult. Also, maximum studies 
were found in phase 1 of the 
clinical trial. Data obtained 
from clinicaltrial.gov (accessed 
on October 31, 2021)
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efficacy in many ways. Various approaches like fabricating 
the polymeric nanoparticles for rapid mucus penetration or 
modifying the surface nanoparticles by conjugating using 
PEG are explored (Rashidzadeh et al. 2021). The “nano vac-
cines” are the new generation vaccines used to aid antigen 
delivery into the body. Both Elasomeran,m-RNA 1273/Spik-
evax/Moderna and Tozinameran/BNTI62b2/Pfizer vaccine/
COMIRNATY are formulated with the lipid nanoparticle 
as a delivery vehicle. m-RNA when draped with positively 
charged lipids, forms the self-assessed lipid  nanoparti-
cles (Reichmuth et al. 2016). The LNPs also prevents the 
m-RNA degradation mediated by RNase, which is easily 
available in biofluids at site of injection (Schoenmaker et al. 
2021).

 Various other biocompatible lipid or inorganic nanopar-
ticles can encapsulate the cargo vaccine for better delivery 
(Chung et al. 2020). Polymer-based nanoparticles encap-
sulated with antigen, when administered intra-nasally, trig-
gers much stronger immune responses. In LNPs, lipid por-
tion enhances encapsulation of m-RNA and self-assembly 
acts as a stabilizing agent, polyethylene glycol conjugated 

lipids increases the half-life and boosts circulation time. It 
also offer various other advantages like simple synthesis 
methods, serum stability, small size, and improved efficacy 
in nucleic acid delivery. As the nucleic acids are negatively 
charged, it binds with positively charged lipids in LNPs, and 
help in the delivery of m-RNA across the biological barri-
ers. The LNPs have been found to show low immunogenic-
ity and cytotoxicity compared to the liposomes (Cullis and 
Hope 2017). The LNPs are characterized for their particle 
size and distribution, zeta potential, degree of polymor-
phism, drug loading, release, and entrapment (Schwarz 
et al. 1994).

Nanomaterials are also used to diagnose and treat viral infec-
tion by conjugating with the specific viral constituents forming 
nano biohybrid platforms, such as colorimetric analytic devices 
that used silver nanoparticles to detect MERS-CoV (Bidram 
et al. 2021). Nanomaterials like silver colloid, diphyllin nano-
particles, and titanium dioxide are the promising drug delivery 
platform for effective coronavirus management (Rashidzadeh 
et al. 2021). Table S7 includes studies and clinical status of the 
vaccines based on nanotechnology used against SARS-CoV-2.

Table 4  Efficacy data of different type of vaccines effective against SARS-COV-2 infection. Data obtained from clinicaltrial.gov (accessed on 
October 31, 2021)

IV inactivated, N-VVr non-replicating viral vector, PS protein subunit

Vaccine Type Doses Age group Pregnancy and breast-
feeding

Efficacy Special warning by 
US-FDA

NCT number

BBV152 (Covaxin) IV 2 18 years or older Insufficient data to 
assess safety in 
pregnancy

78% No such data available NCT04641481

AZD1222 (Cov-
ishield)

N-VVr 2 18 years or older Given only if benefit 
outweighs the poten-
tial risks

63.09% No such data available NCT04794946, 
NCT05059106

Ad26.COV2.S (Jans-
sen)

N-VVr 1 18 years or older Given only if benefit 
outweighs the poten-
tial risks and can be 
given in breastfeed-
ing women

66% Risk of rare but seri-
ous risk of thrombo-
sis with thrombocy-
topenia

Increased risk of Guil-
lain Barre syndrome

NCT04436276, 
NCT04505722

BNT162b2 (Pfizer 
BioNTech)

m-RNA 2 12 years or older Given only if benefit 
outweighs the poten-
tial risks and can be 
given in breastfeed-
ing women

95% Risk of heart inflam-
mation (myocarditis)

NCT04848584, 
NCT04614948

Moderna m-RNA 2 18 years or older Pregnant women may 
choose to receive 
vaccine

94% Risk of heart inflam-
mation (myocarditis)

NCT04470427, 
NCT04649151, 
NCT04796896, 
NCT05074368

Novavax PS 2 18–84 years old No such data available 89.3% No such data available NCT04611802
Covilo/BBIBP-CorV/

Sinopharm
IV 2 18 years or older Insufficient data 79% No such data available NCT04560881, 

NCT04659239, 
NCT04852705, 
NCT05126550
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Emerging strategies to combat uncertain 
COVID‑19 disease

Despite the progress of the vaccines, there are still many 
obstacles that hinder efficient use of COVID-19 vaccine. 
This include cold chain storage requirements, higher costs, 
scalability concerns, efficacy issues, painful injection, multiple 
jabs, and occurrence of rare side effects in immunocompro-
mised patients, which are causing vaccine hesitancy among 
individuals. The next generation vaccines need to overcome 
these major limitations. The alternative vaccine delivery sys-
tems are needed to improve the immune responses, enhance 

stability, and offer desirable routes of administration. Moreo-
ver, the vaccine delivery should be less invasive, reducing the 
need for trained medical staff and allowing self-administration 
(Hossain et al. 2020).

The strategies are being explored to stabilize the S protein 
in its pre-fusion conformation and enhance its expression, 
which can improve the quantity and quality of vaccine-induced 
antibodies production in body. Whereas, for m-RNA vac-
cines, the m-RNA translation occurs in the cytoplasm to avoid 
the risk of genomic integration. Of all vaccines, industries have 
preferred m-RNA vaccines mainly as they offer rapid develop-
ment, large-scale development, and trigger both antibody and 

Fig. 5  Results of the clinical 
trial of protein subunit vaccines 
effective against SARS-CoV-2 
considering trials being 
conducted among people with 
different age groups, geographi-
cal diversity, and in distinct 
phases giving an idea that the 
maximum number of trials 
are being conducted in China 
among adults and 65.22% trials 
were conducted on adults, older 
adults, 1.45% trials on child, 
adult, and older adult. Also, 
maximum studies were found 
to be in phase 1 of the clini-
cal trial. Data obtained from 
clinicaltrial.gov (accessed on 
October 31, 2021)
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T-cell responses. However, m-RNA being unstable requires 
low temperature for storage and transportation. Further, the 
efficacy of vaccines for the elderly population has been lower 
as they are more susceptible to the infection (Uddin and Roni 
2021).

Also, Moderna has announced its preclinical data on COVID 
and flu combination vaccines. Tozinameran/BNTI62b2/Pfizer 
vaccine/COMIRNATY has been approved for children in 
12–15 years of age group, which include 2 shots, 21 days apart. 
A US manufacturer also released the results for the second and 
third staged clinical trials of Teen COVE on 3732 children. In 

India, BBV152/Covaxin, ChAdOx1-S/Covishield, and sputnik V 
are developed, but none is approved for children below 18 years. 
Recently, ZyCoV-D, which is the world’s first DNA vaccine, got 
its approval for emergency use against the SARS-CoV-2 for indi-
viduals 12 years and above (Momin et al. 2021). It is a 3-shot 
vaccine and requires storage at 2–8 °C. It uses a portion of genetic 
material from the virus, which gives instructions from DNA to 
make specific proteins recognized by the immune system. Each 
vaccine has its pros and cons; however, there is a need to focus 
on new strategies and vaccines that could effectively treat against 

Fig. 6  Results of the clinical trial of live-attenuated, APC, and VLP 
vaccines effective against SARS-CoV-2 considering trials being con-
ducted among people with different age groups, geographical diver-
sity, and in distinct phases giving an idea that the maximum number 
of trials are being conducted in Canada and USA among adults, i.e., 

18 years and older (54.55%), 9.09% in older adult and 9.09% in child, 
adult, and older adult. Also, maximum studies were found to be in 
phase 1 of the clinical trial and the least number of trials were found 
to be in phase 2ǀ3. Data obtained from clinicaltrial.gov (accessed on 
October 31, 2021)
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COVID-19 infection, while preventing side-effects, reduce num-
ber of dose and enable self-administration.

Safety and efficacy concern of COVID‑19 vaccines 
with emerging variants

As many of the vaccines require ultracold chain technol-
ogy that is expensive to maintain, major concerns come to 
the insufficient data to prove for how long these vaccines 
will remain effective over time. With the rise of new vari-
ants of SARS-CoV-2, in November 2021, the WHO desig-
nated this B.1.1.529 strain as the variant of concern named 
omicron (Callaway and Ledford 2021). This variant has 
more than 30 mutations in the spike protein that reduced 
susceptibility to the available monoclonal antibodies. Ear-
lier, the alpha variant had shown increased transmissibility 
and infectivity, while the beta variant was less sensitive 
towards the neutralization by vaccine and the infection-
induced antibodies (Gupta and Topol 2021).

On the other hand, the delta variant had different muta-
tions in the spike protein from the alpha, beta, and gamma 
variants. The mutation in the spike protein can affect the 
ability of viruses to cause infection and makes it even harder 
for the immune cells to attack pathogens. Preliminary studies 
have shown that omicron, the heavily mutated Covid strain, 
reduces the efficacy of the two dose vaccine. Thus, three 
doses are required, including two preliminary shots and a 
booster shot showing a significant level of protection against 
the omicron variant (Callaway 2021b).

Although, researchers are working at breakneck speed to 
gather more information about the severity. However, trans-
missibility of the new variant and its ability to evade the vac-
cine effects, and chances of causing reinfection are increas-
ing. It is known that omicron can infect 3–6 times as many 
people as delta variant over the same period. Earlier studies 
based on spike mutation suggest that the variant blunts the 
potency of neutralizing antibodies. Even though omicron can 
dodge neutralizing, it does not mean that responses triggered 
by the vaccination will not offer protection against the vari-
ant. Thus, a third dose may help supercharge the neutralizing 
antibodies level (Callaway and Ledford 2021; Karim and 
Karim 2021).

Pfizer, on December 8 2021, stated that a third dose might 
increase the neutralizing antibodies level against omicron by 
25-fold compared to the two doses. It also announced results 
from an initial study that serum antibody induced by Tozi-
nameran/BNTI62b2/Pfizer vaccine/Comirnaty neutralized 
SARS-CoV-2 omicron variant after three doses (Pfizer 
2021). As vaccine effectiveness against symptomatic omi-
cron infection is lower than the delta variant suggesting that 
after 2 doses of m-RNA vaccine from Moderna or Pfizer, the 
efficacy against the symptomatic infection is 30% in omicron 
than 87% in delta (Burki 2022). A booster dose may be given 

at least 6 months after completing the primary vaccination 
series (Pfizer 2021).

As vaccines were developed quicker than usual develop-
ment time, their safety and efficacy must be continuously 
monitored. As of August 2022, over 12 billion doses of 
vaccines have been given, and data show that the vaccines 
are safe and effective. Data shows that m-RNA vaccines are 
clear winners in efficacy, followed by protein subunit vac-
cines. The inactivated virus vaccines also one of the top vac-
cines in use.

The effectiveness of 2 doses of m-RNA or adenoviral 
vectored vaccines wanes over time, but the emerging studies 
show that a 3rd booster dose could restore the effectiveness 
> 90%. A study data of 6-month follow up shows 6% reduc-
tion in the vaccine efficacy every 2 months for Tozinameran/
BNTI62b2/Pfizer vaccine/Comirnaty (Kertes et al. 2022). 
However, some studies have also confirmed the reduction 
in serum concentration of neutralizing antibodies 4–6 weeks 
after the vaccination. The responses to booster doses given 
after 6 months from the last dose have shown induction of 
considerably high amounts of neutralizing antibodies. Ear-
lier studies in Israel showed that more than 1.1 million peo-
ple aged over 60 years who have received m-RNA booster 
doses after 6 months after the second dose resulted in the 
restoration of vaccine effectiveness (Collie et al. 2022). The 
study published by Ssentongo et al. (2022) shows that the 
efficacy of vaccines against SARS-CoV-2 reduces from 
83 to 22% after 5 months of completing original vaccina-
tion series. Against the symptomatic COVID-19, vaccine 
efficacy declines from 94% in first month to 64% by fourth 
month. Data clearly showed the waning of vaccine efficacy 
against the infection suggesting the need for booster vac-
cines. Table 5 includes clinical status of COVID-19 vaccines 
in phase IV of the clinical trial. The table also includes mix 
and match vaccine studies, vaccine study in specific disease 
condition, and booster dose study in different age groups. 
m-RNA cocktails could also emerge as a new emerging plat-
form for COVID-19 treatment to produce an even stronger 
immune response. This could be since there is no certain 
limit to the number of RNAs that can be combined and can 
target more than one pathogen or more than variant in the 
case of SARS-CoV-2 (DeFrancesco 2021). Efficacy data 
of the different types of vaccines effective against SARS-
COV-2 infection is mentioned in Table 4.

Additional dose

US-FDA and CDC recommended additional doses of vac-
cine to the following individuals: aged 5 years and older, 
are on active cancer treatment, are diagnosed with HIV 
and have low CD4 count, are diagnosed with any immu-
nodeficiency disorders, received an organ transplant or on 
immunosuppersants, and have received a stem cell transplant 
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(FDA—Food and Drug Administration 2021). An additional 
dose is required to improve their immune response to the 
initial vaccine series as they are at a greater risk of serious 
illness. There is a difference in the additional and booster 
dose of vaccine. The booster dose is termed as the third 
dose given to people who had received Elasomeran,m-RNA 
1273/Spikevax/Moderna or Pfizer-BioNTech vaccine at least 
6 months after compeletion of vaccine series, while for 
Ad26.COV.S/Jannssen/Jcovden at least 2 months after com-
pletion of their vaccine series. Booster is also given if the 
protection against the virus over time has decreased, which 
can be measured using antibody titers in blood (Dunkle et al. 
2022).

Mix and match vaccines

For the first time, researchers have shown that the “mix and 
match” vaccine combination as a new emerging strategy for 
better preotection against SARS-CoV-2. Vaccines that are 
already in used have shown some rare adverse effects leading 
to the discontinuation of specific vaccines in some countries. 
Other struggles include its supply and availability issues, 
and emergence of new variants, which has necessitated the 
use of heterologous vaccination approach known as mix-
ing vaccines (Rashedi et al. 2022). Studies by Richardson 
(2022) shown protection against COVID-19 by mixing 
m-RNA, spike adjuvant, and adenoviral vaccines for pro-
tection against SARS-CoV-2.

These vaccines have turned out to be highly effective, 
safe, producing stronger immune responses, and exceeding 
the performance of m-RNA vaccines (Callaway 2021a). Mix 
and match vaccines produce stronger immune responses and 
are used in immunocompromised patients. Also, there is a 
possibility that mixing the vaccines could protect the organ-
transplant recipients. Studies have claimed that having an 
m-RNA vaccine dose after the Oxford-AstraZeneca dose 
imparts better protection against the SARS-CoV-2 than giv-
ing two doses of Oxford-AstraZeneca (Lewis 2021b).

In April 2021, a Spanish Combivac trial enrolled 663 
people who had received the first dose of Oxford-Astra-
Zeneca vaccine and 232 who had received a booster. Two-
thirds of the participants were picked randomly to receive 
the m-RNA vaccine (Pfizer) at least 8 weeks after their first 
dose. After the second dose, the participants began to show 
higher levels of antibodies, and these antibodies recognized 
SARS-CoV-2 (Callaway 2021c).

Nasal vaccine

Vaccines are administered through invasive routes producing 
circulating immunoglobulin G antibodies that fights off the 
pathogens. It has been found that nasal epithelium has the 
highest concentration of angiotensin converting enzyme-2 

receptors, and it plays a significant role in entry of SARS-
CoV-2 into cells. Thus, it is expected that replication of 
virions takes place mostly in the nasal mucosa. The intra-
nasal vaccine produces IgA, which evokes stronger immune 
responses at the site of virus entry, and it is more effica-
cious in destroying the viruses at an early stage than IgG, 
which avoids further damage to the lungs (Lund and Randall 
2021). Also, this route offers the advantage of inducing both 
strong local and systemic immune responses. Furthermore, 
the nasal administration of vaccines does not require special-
ized medical staff, which improves patient compliance, and 
it is cost-effectiveness and efficient route of delivery (Tiboni 
et al. 2021).

A study (Reichmuth et  al. 2016) showed intranasal 
delivery exploring the feasibility of Venezuelan equine 
encephalitis virus replicon that encodes both light and 
heavy chains for antibody expression in lungs prevent-
ing SARS-CoV-2 infection. This approach suggests the 
expression of neutralizing antibodies in lungs using 
m-RNA could be a potential approach for prophylaxis 
of SARS-CoV-2 infection. Besides codagenix, another 
adenoviral-vectored vaccine is under development. It is 
a simple and painless way of administering the vaccine 
by using nasal drops. This vaccine was found to be well 
tolerated. Also, BB154, a live attenuated vaccine is being 
developed by Bharat Biotech International Limited, is cur-
rently under animal trials (Hassan et al. 2020).

Strategies to overcome COVID‑19 vaccine 
administration and stability

Antiviral pill

The pharmaceutical firm Merck has recently announced the 
development of an antiviral pill Molnupiravir which could 
force the virus to mutate itself to death. Thus, it cut hospi-
talizations and deaths by 50% in mild to moderate COVID-
19 cases (Cascella et al. 2020). The drug is under review by 
US-FDA, and if approved, it would turn out to be the first 
oral antiviral treatment for COVID-19 infection (Willyard 
2021). Molnupiravir targets RNA-dependent RNA polymer-
ase, introducing errors in the viral genome, hampering its 
replication (Gordon et al. 2021).

Another antiviral pill PAXLOVID was launched by Pfizer 
in November 2021. It is a combination of ritonavir and nir-
matrelvir that inhibits SARS-CoV-2 replication. A phase 2ǀ3 
clinical on protease inhibitor antiviral therapy showed that 
PAXLOVID could significantly reduce hospitalizations and 
deaths by 89%, making it more efficacious than molnupiravir 
(Robinson 2021). Pfizer is seeking emergency use authoriza-
tion of PAXLOVID designed to combat the SARS-CoV-2 
infection and is not recommended in patients with kidney or 
liver impairment. At the same time, molnupiravir may affect 
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bone and cartilage growth in patients younger than 18 years 
of age. It may cause fetal abnormalities in the case of preg-
nant individuals (Pfizer Inc 2021). Thus, these pills offer a 
great advantage over currently available vaccines in terms 
of self-administration avoiding the need of a skilled person 
to inject the vaccine, associated pain and fear of injection. 
Using oral pills enhances patient compliance and eliminates 
cold chain storage requirements.

Microneedle patch delivery system

Another novel approach is a microneedle patch to deliver a 
DNA vaccine against SARS-CoV-2 infection (Fig. 7). It can 
be stored at room temperature for 30 days or longer (Kon-
rath et al. 2022). Earlier the vaccines required controlled 
cold storage that restricted its distribution due to limited 
resources. A microneedle patch could efficiently deliver 
the vaccine under the skin without the need of cold chain 
or painful injections. Recently, DNA vaccine was used, 
which was comparatively easier to make than the RNA or 
proteins. DNA being more stable added a great advantage. 
However, unlike the RNA, the DNA must find its way inside 
the nucleus, so nanoparticles were used along with an adju-
vant to stimulate the immune responses. Further coating 
the microneedle patch with the vaccine nanoparticles could 
painlessly deliver the vaccine into the skin (Yin et al. 2021).

Preparedness to next pandemic

Infectious diseases are inevitable but their effects can be 
mitigated by investing in the prevention and preparedness 
methods for such pandemics. Combating the COVID-19 
pandemic has been an enlightening for humanity. It has been 
tackled well with the joint efforts of NGO’s, government, 
healthcare workers, two years of breakneck research and a 
collection of therapies to treat COVID-19 infected patients. 
Although vaccinations has led to decline in certain diseases 
but hesitance to enroll in the clinical trials has been raising 
(Sidik 2022). The pandemics management include contain-
ment strategies, lockdowns, accurate tracing of infection 
source and infected individual, isolation of infected ind-
vidual and proper treatment of patients. Other mitigation 
strategies include social distancing, use of facemasks, which 
helps in decreasing the spread of infection (Coccia 2021b).

As the world roll out of vaccines against the COVID-
19, the global inequalities of vaccine distribution and race 
against vaccine development for the COVID-19 variants 
might favor wealthy nations by stocking vaccine doses. 
COVAX is an alliance led by coalition for epidemic pre-
paredness innovations that together  GAVI and WHO 
ensured global vaccine equity. Another major aim is to 

accelerate development and manufacturing of COVID-19 
vaccines, including for new infectious varriants. The mas-
sive global effort are needed to fast-track development of 
vaccines against COVID-19 and its distribution in both low- 
and middle-income countries. Herd immunity can only be 
achieved through mass vaccinations. Even after more than a 
year of vaccine distribution, the vaccine waste is found to be 
as high as 30%. So the effective supply chain management in 
low income countries should be improved. It may overcome 
the practice of supplying “about to expire” vaccines doses 
to low income countries, which exacerbates wastage of vac-
cines (Lazarus et al. 2022a).

Other non-pharmaceutical interventions (NPIs) include 
actions apart from vaccinations and use of medicines, that 
are implemented to slow down the spread of infections. Dur-
ing the start of pandemic, NPIs were the only solution to 
decrease the transmission for both governmental (top down) 
and self-initiated (bottom up) measures (Perra 2021). NPIs 
are considered most accessible keeping in mind the time 
taken by the pharmaceutical companies to develop specific 
vaccines (Coccia 2020). Such strategies play a key role in 
reducing the transmission and reduce overall impact of pan-
demic (WHO 2019).

However, the impact of pandemic and measures to con-
trol has raised questions about the preparedness to next pan-
demic. The new technology and preventive measures could 
control the emergence of such pandemics. In local epidemic 
outbreak, contact tracing within the epicenter could limit the 
human-to-human transmission. In COVID-19 pandemic cri-
sis, major pharmaceutical measures included vaccinations 
to support disease prevention and aid faster recovery (Coc-
cia 2022a). Currently, 48 COVID-19 vaccine candidates are 
undergoing the clinical evaluation. Real world data is sugges-
tive of an edge to m-RNA vaccines in terms of efficacy, mar-
ket penetration, and scalability (MacIntyre et al. 2022).

Vaccinations have been essential to prevent healthcare 
systems from collapsing and also helps in achieving the herd 
immunity in faster and safer way. Women with low income 
and lower level of education were found to be reluctant in 
receiving the vaccines. Vaccine hesitancy is basically the 
reluctance of people to receive safe and available vaccines. 
A 5C model of drivers of vaccine hesitancy include confi-
dence, convenience, complacency, risk calculation and col-
lectively (Machingaidze and Wiysonge 2021). As per reports 
the major variables associated with decision making pro-
cesses regarding the vaccination (Cerda and García 2021). 
The study included an online survey of 370 respondents in 
Chile, and the results showed 49% were willing to take the 
vaccine while 28% undecided or 77% individuals potentially 
willing to be inoculated. Other factors associated with vac-
cine hesitancy include depression, fear of COVID-19 and 
generalized anxiety because of re-infection even after multi-
ple doses of vaccines (Sekizawa et al. 2022). The public trust 
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in vaccines plays a major role and it is influenced by spread 
of misinformation through advertisements and social media. 
As the doses are trickling in, resistance to get vaccinated is 
also emerging as a issue. Also, vaccine safety concern are 
also there as the vaccines have been developed at a very 
fast speed and their recommendations have been changing 
quite often (Mallapaty 2022) (Coccia 2022b). A behavioral 
study in the Phase IV clinical trial is studying the associa-
tion of social, individual and contextual factor with vaccine 
hesitancy and vaccine acceptance (NCT05022472). The out-
come of this study may help government bodies in proper 
planning and minimize vaccine wastage.

Conclusion

The COVID-19 vaccine has been in the market worldwide 
and is already used in billions of people. Until the world’s 
population get completely vaccinated, COVID-19 will con-
tinue as a global public health with emergence of resistant 

variants. Patients with comorbid conditions like diabetes, 
obesity, cardiovascular disease, and chronic kidney disease 
are at greater risk of developing such infections. The man-
agement and prevention of such highly transmissible viral 
illness requires holistic and professional approaches includ-
ing specialties, physicians, pharmacists, nurses and govern-
ment authorities. COVID vaccines are effectively safe, but 
the emergence of new variants has led to a decrease in their 
efficacy. WHO, GAVI and Covax are making significant 
efforts to carry out mass immunization to control and end 
the pandemic. Despite advances in the production of vac-
cines, there are several obstacles to improve the vaccine’s 
effectiveness, which include safety, efficacy for different var-
riants, and sustained antiviral immune responses. Approval 
of Covid vaccines and vaccine acceptance among people 
are the major steps in combating SARS-CoV-2. With the 
rise in new variants, strategies have been developed to fight 
against the upcoming variants, including approval of anti-
viral pills and microneedle delivery systems; however, not 
yet clinically approved. Both come with a major advantage 

Fig. 7  Schematic (left) showing the microneedle (MN) patch design 
for vaccine delivery via skin and generating an immune response. 
MN patch loaded with the vaccine in tips (right) and delivered to 

mice via skin and transfection of DNA vaccine over 120 h, showing 
good reproducibility. Copyright (2021) American Chemical Society
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of non-invasive methods of drug administration and reduc-
ing vaccine hesitancy. Also, the newly approved mix and 
match vaccines have become highly effective and have 
made global implications. It also showed stronger immune 
response in immunosuppressed individuals. Most vaccines 
appear to be safe and effective, but a double doses or higher 
are recommended. More research is needed to investigate 
the long-term safety and efficacy of the vaccines. Of all 
vaccines, m-RNA vaccines have been mostly used, but its 
limitation of being unstable and maintaining ultracold chain 
storage has led to limited access to remote areas. In contrast, 
VLP vaccines could be the next-generation vaccines; how-
ever, maximum studies are still in Phase I. As the viruses are 
known to mutate rapidly, making other vaccines ineffective, 
the VLP bearing surface proteins can be modified to fight 
against the emerging variant virus. Further, their stability 
can be enhanced by formulating into nanoparticle VLP, and 
they do not require cold chain storage.
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