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Abstract
Dissolved oxygen (DO) forecasting is essential for aquatic managers responsible for maintaining ecosystem health and the 
management of water bodies affected by water quality parameters. This paper aims to forecast dissolved oxygen (DO) con-
centration using a multivariate adaptive regression spline (MARS) hybrid model coupled with maximum overlap discrete 
wavelet transformation (MODWT) as a feature decomposition approach for Surma River water using a set of water quality 
hydro-meteorological variables. The proposed hybrid model is compared with numerous machine learning methods, namely 
Bayesian ridge regression (BNR), k-nearest neighbourhood (KNN), kernel ridge regression (KRR), random forest (RF), and 
support vector regression (SVR). The investigational results show that the proposed model of MODWT-MARS has a better 
prediction than the comparing benchmark models and individual standalone counter parts. The result shows that the hybrid 
algorithms (i.e. MODWT-MARS) outperformed the other models (r = 0.981, WI = 0.990, RMAE = 2.47%, and MAE = 0.089). 
This hybrid method may serve to forecast water quality variables with fewer predictor variables.
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Nomenclature
ACF	� Autocorrelation function
ANN 	� Artificial neural network
BF	� Basis functions
BNR	� Bayesian ridge regression
BOD	� Biological oxygen demand
COD	� Chemical oxygen demand
CCF	� Cross-correlation function
CEEMDAN	� Complete ensemble empirical 

mode decomposition with adaptive 
noise

CEEMDAN-BNR	� Hybrid model integrating the 
CEEMDAN algorithm with BNR

CEEMDAN-KNN 	� Hybrid model integrating the 
CEEMDAN algorithm with KNN

CEEMDAN-KRR 	� Hybrid model integrating the 
CEEMDAN algorithm with KRR

CEEMDAN-MARS 	� Hybrid model integrating the 
CEEMDAN algorithm with MARS

CEEMDAN-RF 	� Hybrid model integrating the 
CEEMDAN algorithm with RF

CEEMDAN-SVR 	� Hybrid model integrating the 
CEEMDAN algorithm with SVR

/ Published online: 1 September 2022

Environmental Science and Pollution Research (2023) 30:7851–7873

http://orcid.org/0000-0002-7941-3902
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-22601-z&domain=pdf


1 3

EEMD	� Ensemble empirical mode 
decomposition

EEMD-BNR	� Hybrid model integrating the 
EEMD algorithm with BNR

EEMD-KNN	� Hybrid model integrating the 
EEMD algorithm with KNN

EEMD-KRR	� Hybrid Model integrating the 
EEMD algorithm with KRR

EEMD-MARS	� Hybrid Model integrating the 
EEMD algorithm with MARS

EEMD-RF	� Hybrid model integrating the 
EEMD algorithm with RF

EEMD-SVR	� Hybrid model integrating the 
EEMD algorithm with SVR

EMD	� Empirical mode Decomposition
EMD-BNR	� Hybrid model integrating the EMD 

algorithm with BNR
EMD-KNN	� Hybrid model integrating the EMD 

algorithm with KNN
EMD-KRR	� Hybrid model integrating the EMD 

algorithm with KRR
EMD-MARS	� Hybrid model integrating the EMD 

algorithm with MARS
EMD-RF	� Hybrid model integrating the EMD 

algorithm with RF
EMD-SVR	� Hybrid model integrating the EMD 

algorithm with SVR
DWT	� Discrete wavelet Transformation
DWT-BNR	� Hybrid model integrating the DWT 

algorithm with BNR
DWT-KNN	� Hybrid model integrating the DWT 

algorithm with KNN
DWT-KRR	� Hybrid model integrating the DWT 

algorithm with KRR
DWT-MARS	� Hybrid model integrating the DWT 

algorithm with MARS
DWT-RF	� Hybrid model integrating the DWT 

algorithm with RF
DWT-SVR	� Hybrid model integrating the DWT 

algorithm with SVR
ECDF	� Empirical cumulative distribution 

function
ELM 	� Extreme learning machine
FE	� Forecasting error
GCV	� Generalised cross-validation
IMF	� Intrinsic mode functions
KNN	� K-nearest neighbourhood
KRR	� Kernel ridge regression
LM	� Legates-McCabe’s Index
LSSVM	� Least square support vector 

machine
MAE	� Mean absolute error
MAPE	� Mean absolute percentage error

MARS	� Multivariate adaptive regression 
splines

MLP	� Multi-layer perceptron
MODWT	� Maximum overlap discrete wavelet 

transformation
MODWT -BNR	� Hybrid Model integrating the 

MODWT algorithm with BNR
MODWT -KNN	� Hybrid Model integrating the 

MODWT algorithm with KNN
MODWT -KRR	� Hybrid Model integrating the 

MODDWT algorithm with KRR
MODWT –MARS	� Hybrid Model integrating the 

MODWT algorithm with MARS
MODWT -RF	� Hybrid Model integrating the 

MODWT algorithm with RF
MODWT -SVR	� Hybrid Model integrating the 

MODWT algorithm with SVR
MRA	� Multi-resolution analysis
MSE	� Mean squared error
NCA	� Neighbourhood component 

analysis
NSE	� Nash–Sutcliffe efficiency
PACF	� Partial auto–correlation function
r	� Correlation coefficient
RBF	� Radial basis function
RF	� Random forest
RMSE	� Root-mean-square-error
RRMSE	� Relative root-mean-square error
SVR	� Support vector regression
TDS	� Total dissolved solids
WQ	� Water quality

Introduction

The deterioration of the quality of water sources throughout 
the world is considered a wide-reaching issue of importance. 
Because of the rapid rise of communities and the diversity of 
their activities, this deterioration is speeding up, and it could 
constitute a severe threat to the aquatic environment and 
human health (Henderson et al. 2009; Hur and Cho 2012; 
Mouri et al. 2011; Su et al. 2011).

The dissolved oxygen (DO) in water is a critical water 
quality variable that is crucial for the proper functioning of 
the aquatic ecosystem (Ranković et al. 2010). DO demon-
strate the water pollution in rivers (Heddam and Kisi 2018; 
Mohan and Kumar 2016) and the state of the river’s eco-
systems (Mellios et al. 2015; Ranković et al. 2010). The 
concentration of dissolved oxygen (DO) in aquatic sys-
tems refers to the metabolism of the aquatic systems, and it 
reflects the transient balance between the oxygen system and 
the metabolic activity. The concentration of DO is affected 
by a variety of parameters, including salinity, temperatures, 
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and pressure (US-Geological-Survey 2016). Researchers 
investigated the concentration and change of DO over the 
last decade since the dynamics of DO are nonlinear (Kisi 
et al. 2020). It is very desirable for water resource managers 
to develop a DO model for rivers that can reliably quantify 
and predict DO concentrations based on hydro-meteorolog-
ical variables.

There are various methods available for estimating the 
DO concentration, but most of them are time-consuming 
and expensive to use since they require numerous param-
eters that are not readily available in most cases (Suen and 
Eheart 2003). More to the point, conventional data process-
ing techniques are no longer appropriate for water qual-
ity modelling, which may be linked to the explanation that 
many parameters affecting water quality have a complicated 
nonlinear interaction with one another (Ahmed 2017; Xiang 
et al. 2006). There are specific issues in developing a water 
quality model for tiny streams or rivers due to the lack of 
available data, investment, and many different inputs to con-
sider. As a result, certain well-known water quality analysis 
models, such as the United States Environmental Protec-
tion Agency (USEPA): QUAL2E and QUAL2K, WASP6, 
require a great deal of information that is not always read-
ily available (Ahmed 2017). Moreover, these models are 
complex and sensitive and, therefore, tough to recognise.

Machine learning-based data-driven algorithms have 
become potentially widespread in the field of water qual-
ity modelling (Ahmed 2017; Ahmed and Shah 2017a; For-
ough et al. 2019; Kuo et al. 2004; Tomic et al. 2018) and 
hydrological modelling (Ahmed et al. 2021b, c; Ahmed and 
Shah 2017b; Yaseen et al. 2016). In addition, a number of 
artificial intelligence (AI)-based models for predicting and 
estimating DO concentrations have been developed such as 
soft computing (Tao et al. 2019), artificial neural networks 
(ANNs), and hybrid ANN (Keshtegar et al. 2019; Zounemat-
Kermani et al. 2019), fuzzy-based models (Heddam 2017; 
Raheli et al. 2017), multivariate adaptive regression spline 
(MARS) (Rezaie-Balf et al. 2019), support vector machine 
(SVM) (Heddam and Kisi 2018; Li et al. 2017b), extreme 
learning machine (ELM) (Heddam 2016; Heddam and Kisi 
2017; Zhu and Heddam 2020), quantile regression (Ahmed 
and Lin 2021), and other potential approaches were applied 
for dissolved oxygen concentration modelling.

This study investigates the utilisation of multivariate 
adaptive regression splines (MARS) (Friedman 1991) to 
describe DO dynamics’ intrinsic nonlinear and multidisci-
plinary relationship. Like neural networks, no prior infor-
mation on the numerical function is required for MARS. 
The benefit of the MARS model is that it can accomplish 
complex data by grouping related data collected, permitting 
it to understand easily (Zhang and Goh 2016). Considering 
the positive attribute, the MARS model has been used in 
hydrology (Deo et al. 2017b; Heddam and Kisi 2018; Kisi 

and Parmar 2016; Yin et al. 2018) and the energy sector (Al-
Musaylh et al. 2019). Heddam and Kisi (2018) applied the 
least-square support vector machine (LSSVM), multivari-
ate adaptive regression splines, and M5 model tree (M5T) 
for daily dissolved oxygen forecasting. The authors found 
the MARS model a substantial forecasting approach with a 
limited number of predictor variables. Therefore, incorporat-
ing the hybrid approaches and a potential feature selection 
algorithm may boost the result of forecasting. Nevertheless, 
the hybrid MARS models are yet to be executed in the study 
sites of Bangladesh.

Using multi-resolution analysis (MRA), a technique for 
extracting data features, the prediction performance can be 
enhanced significantly. Using the EMD, you can decom-
pose a signal following the spirit of the Fourier series into 
a specific number of components. A coefficient represent-
ing Gaussian white noise with a unit variance is introduced 
sequentially to the time series in CEEMDAN-based decom-
position to reduce the complexity and avoid the intricacy of 
the time series (Prasad et al. 2018). A coefficient denoting 
Gaussian white noise with covariance matrices is intro-
duced sequentially to the time series in CEEMDAN-based 
decomposition to reduce the complexity and prevent the 
intricacy of the time series (Di et al. 2014). Previous studies 
have used CEEMDAN in forecasting soil moisture (Ahmed 
et al. 2021a; Prasad et al. 2018, 2019) with an earlier ver-
sion (i.e. EEMD) used in forecasting stream-flow (Seo and 
Kim 2016) and rainfall (Beltrán-Castro et al. 2013; Jiao 
et al. 2016; Ouyang et al. 2016). Discrete wavelets trans-
form (DWT) has been employed (Deo and Sahin 2016; Deo 
et al. 2016; Nourani et al. 2014, 2009) in different fields of 
hydrology. On the other hand, DWT has a limitation that 
prevents it from extracting all the features of the predic-
tors in its entirety. An enhanced discrete wavelet transforms 
(DWT), such as the MODWT, can solve these problems 
(Cornish et al. 2006; Prasad et al. 2017; Rathinasamy et al. 
2014). Al-Musaylh et al. (2020) successfully used MODWT 
to decompose the short-term electricity demand of Aus-
tralia. The study incorporated the MODWT by separately 
splitting the data to training, testing, and validation to calcu-
late the detailed approximation, as Quilty and Adamowski 
(2018) prescribed. The potential application of MODWT is 
further approved by Prasad et al. (2017), where MODWT 
was used to forecast stream-flow. However, neither the 
MODWT nor the DWT decomposition model has incor-
porated the MARS model in DO forecasting, as attempted 
in this study.

The feature selection technique, namely neighbourhood 
component analysis (NCA) for regression, was used in this 
investigation. As a result of the algorithm being slowed 
down by the extraneous and redundant features, the predic-
tion model is less accurate (Arhami et al. 2013) different 
feature selection methods have been utilised in predictive 
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models (Ahmed et al. 2021a; Prasad et al. 2017, 2019). The 
NCA method has been successfully applied by Ahmed et al. 
(2021a) to forecast surface soil moisture. The study demon-
strates that the feature weight calculated by NCA was found 
successful in forecasting soil moisture and to the study by 
Ghimire et al. (2019b), where they applied NCA for solar 
radiation forecasting. Forecasting DO concentration with a 
machine learning method incorporated with the NCA feature 
selection method and feature decomposition methods would 
substantially increase forecasting performance.

To the author’s knowledge, there has been no systematic 
comparison of various feature decomposition strategies in 
improving MARS performance for daily DO estimates. The 
fundamental contribution of this study is the selection of an 
appropriate feature decomposition algorithm (i.e. MODWT, 
DWT, CEEMDAN, EEMD, and EMD) tailored MARS model 
for DO prediction. While effective adjustment of MARS 
parameters via feature decomposition algorithms can increase 
prediction accuracy, the incorporation of feature selection 
and feature decomposition theories can aid decision-makers 
in making the optimal choice for the best prediction model. 
Because attempting all available optimisation techniques is 
practically impossible, the scope of the current study has been 
reduced to a few potential algorithms to be merged with the 
MARS. As a result, the goal of this study is to (1) use 5 fea-
ture decomposition techniques to modify MARS ability, (2) 
compare the performances of hybridised MARS models, and 
(3) rank the hybridised MARS models using hydro-meteoro-
logical variables. The findings of this work will be a helpful 
tool that can provide valuable information for better water 
management.

Materials and methods

Theoretical frameworks of proposed models

Multivariate adaptive regression spline

According to Friedman (1991), a non-parametric and 
nonlinear regression technique, the multivariate adaptive 
regression spline (MARS), was utilised in this investiga-
tion. MARS uses numerous splines to build nodes between 
these lines (Friedman 1991). The underlying functional 
link between inputs and outputs is not assumed in the 
MARS model. The data in each spline is assigned using 
basis functions (BF) in MARS models. It is possible to 
express the BF as a single equation between two knots. 
Two adjacent data domains converge at a knot, and the 
output is continuous. An adaptive regression algorithm is 
used (Heddam and Kisi 2018). The MARS model depicts 
the piecewise relationship between the input and output 
variables using numerous lines. The over-fitting of training 

data is avoided by setting a predefined minimum number 
of observations between knots (Heddam and Kisi 2018).

Let y be the target output, and a matrix of n input vari-
ables be the vector x = (x1,… , xn) . The data are then pre-
sumed to be created from an undisclosed ‘true’ model. In 
the case of a straight answer, this will be as follows:

In which � is the distribution of the model error, and n 
is the number of training data points. By adding sufficient 
BFs, MARS approximates the f(.). For linear functions 
piecewise: max (0, x-t) where a knot exists at position t 
(Zhang and Goh 2016). The max (.) equation implies that 
only the positive portion of (.) is used; otherwise, a zero 
value will be given corresponding to:

Thus, f (x) is constructed as a linear BF(x) combination:

The coefficients � are constants, calculated using the 
form of least squares. Initially, f (x) is applied to input data 
in a forward–backward stepwise process to determine the 
knot’s position where the feature value varies (Deo et al. 
2017b). A broad model is built at the end of the forwards’ 
stage to over-fit the qualified input data. According to the 
generalised cross-validation, the model is optimised by 
deleting one last basis function from the model (GCV). 
GCV for a model is computed as follows for the training 
data with n observations:

where M is the number of BF, d is the penalising param-
eter, n is the number of measurements, and f (xi) denotes the 
MARS model’s expected values.

MARS is a non-parametric regression modelling tech-
nique that is flexible and does not make any assumptions 
about the relationships between the variables (Stull et al. 
2014). The model is simple to understand and interpret 
(Kuhn and Johnson 2013). MARS models typically exhibit 
a favourable bias-variance trade-off. While the models are 
sufficiently flexible to account for nonlinearity and vari-
able interactions (and so have a relatively low bias), the 
limited nature of the MARS basis functions precludes 
excessive flexibility (thus, MARS models have relatively 
low variance).

(1)y = f (x1,… ., xn) + � = f (x) + �

(2)max(0, x − t) =

{
x − t, ifx ≥ t

0, otherwise

(3)f (x) = �0 +

n∑
i=1

�iBF(x)

(4)GCV =

1

n

∑n

i=1

�
yi − f (xi)

�2
�
1 −

M+d×(M−1)∕2

n

�2
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Maximal overlap discrete wavelet transforms

Distinctive wavelet transforms (DWTs) are modified by the 
maximal overlap discrete wavelet transform (MODWT) 
(Li et al. 2017a). Ideally, time series analysis can be done 
using the MODWT’s appealing qualities, which prevent 
missing data without subsampling. MODWT’s ability to 
extract additional information is enhanced because the 
coefficients of decomposed components in each layer are 
identical to the original time series. Time-series data are 
broken down into high-pass and low-pass filters using 
MODWT, which handles two feature sets. Further, high-
pass filters can be broken down into several information 
levels depending on the suitable time frame (He et al. 
2017). Low-pass filters reflect the real-time-series signal 
pattern called an approximation. The signal �m is decom-
posed through wavelet low-pass πm and high-pass detail 
filters hm and reconstructed by digital reconstruction fil-
ters complementing decomposition filters. This principle 
is described in the equations below:

Comparing models

In this study, we proposed a MODWT-MARS model to 
predict the dissolved oxygen of a running river. To find a 
practical approach to machine learning methods and fea-
ture decomposition methods, a pool of six machine learning 
models and five feature decomposition methods were also 
incorporated. The theoretical description of the proposed 
algorithms (i.e. MODWT and MARS) was explained in the 
previous section, and this section provides a short overview 
of the comparing algorithms.

Breiman (2001) proposed an algorithm based on a ran-
dom forest (RF), which included methods for regression and 
classification. The bootstrap resampling procedure generates 
a new set of training data from the initial training sample set 
N, and then bootstrap-set random forests are built using K 
decision trees. The RF model’s full specifications may be 
read here (Ali et al. 2020a). The random forests approach 
has become a prominent tool for classification, prediction, 
investigating variable relevance, selection, and outlier iden-
tification. RF comprises a group (ensemble) of basic tree 
predictors. Each tree may generate a response given a col-
lection of predictor values (Jui et al. 2022; Yu et al. 2017).

(5)Xm+1(K) =
∑

p
hp−2kXm(P)

(6)dm+1(K) =
∑

p
lp−2kXm(P)

(7)Xm(K) =
∑

p
h

�

p−2kXm+1(P) +
∑

p
l
�

p−2kXm+1(P)

With regularisation and the kernel technique, it is pos-
sible to reduce over-fitting using the KRR (Kernel Ridge 
Regression) regression model (Saunders et al. 1998). The 
“kernel technique” can be used to generate a nonlinear form 
of ridge regression. Extending the general framework, kernel 
ridge regression allows nonlinear prediction. Linear, poly-
nomial and Gaussian kernels are only some of the many 
options available for enhancing overall performance (You 
et al. 2018). The suggested KRR technique has the funda-
mental advantage of learning a global function and predict-
ing any target variable using a regularised variation of least 
squares.

The Bayesian modelling approach uses hierarchical data 
(Huang and Abdel-Aty 2010). Bayesian regression uses this 
regularisation parameter, easily tailored to the data. The 
Gaussian maximum posterior estimate is discovered before 
the coefficient w and, with an accuracy of λ (-1), is treated 
as a random variable instead of a lambda. In contrast, most 
decision-making analyses based on maximum likelihood 
estimation entail determining the values of parameters that 
may significantly impact the analysis outcome and for which 
there is considerable uncertainty. The capacity to include 
previous information is one of the primary advantages of 
the Bayesian technique (Saqib 2021).

A machine learning kernel method known as SVR (Sup-
port Vector Regression) can be used for various purposes, 
including forecasting time series. SVRs that use kernels can 
also learn the nonlinear trend of the training data. There are 
three SVR models to pick from, each with a different kernel 
(RBF, poly, and linear) (Yang et al. 2017). It should also 
be noted that the proposed KRR model in its generic sense 
has been used in many research including the forecasting of 
precipitation (Ali et al. 2020b), drought (Ali et al. 2019), 
wind speed (Alalami et al. 2019; Douak et al. 2013; Mishra 
et al. 2019; Naik et al. 2018; Zhang et al. 2019), and solar 
power (Dash et al. 2020).

K-nearest neighbours (KNN) algorithm is implemented 
using instance-based learning, which serves two purposes: 
(1) estimating the test data density function and (2) catego-
rising the test data obtained from the test patterns (Shabani 
et al. 2020). Choosing the number of neighbours (k) is a 
crucial stage. This method’s efficiency depends on select-
ing samples from the nearest reference database (or most 
similar). If k is significant, other points from other classes 
can be placed inside the desired range of possibilities (Wu 
et al. 2008). The KNN method has been successfully applied 
previously (Ghiassi et al. 2017; Liu et al. 2020).

This study incorporated five decomposition methods (i.e. 
DWT, EMD, EEMD, MODWT and CEEMDAN) and six 
machine learning methods (i.e. MARS, RF, BNR, SVR, 
KNN and KRR) to address the prediction problem of dis-
solved oxygen concentration. Hyperspectral feature decom-
position is DWT-assisted, and the features are evaluated 
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for their efficacy in discriminating between subtly different 
ground covers (Bruce et al. 2002). The theoretical expla-
nation of the method is explained by other researchers 
(Agbinya 1996; Fowler 2005; Shensa 1992). Most recently, 
Huang et al. (Huang et al. 1998) developed an empirical 
mode decomposition (EMD) method for analysing the infor-
mation contained in data derived from non-stationary and 
nonlinear systems. This algorithm decomposes the signal 
into a series of oscillatory functions that are ‘well-behaved,’ 
which are referred to as the intrinsic mode functions in this 
context (IMFs). When used with the powerful adaptive 
EMD tool, it behaves as a dyadic filter bank (Flandrin et al. 
2004). It is handy for filtering out noise in the measurement 
domains (Khaldi et al. 2008). Torres et al. (2011) imple-
mented the CEEMDAN process to reduce the computational 
cost and retain the ability to eliminate mode mixing. The 
readers are requested to go through the previous studies 
(Ahmed et al. 2021a; Zhang et al. 2017; Zhou et al. 2019) 
for getting further information on CEEMDAN.

Study area and data

The Surma River, Bangladesh, provided daily water qual-
ity factors. Figure 1 depicts the Surma River monitoring 
stations. This river drains one of the heaviest runoffs in the 
Surma-Meghna Basin system (Chowdhury and Ali 2006). 
The Surma River originates in Assam’s Cachar district, 
flows through Bangladesh’s Sylhet and Sunamganj districts, 
joins the Meghna River near Bhairab Bazar Kishoreganj, 
and empties into the Bay of Bengal. Many studies are found 
regarding water quality analysis (Ahmed 2017; Ahmed and 
Shah 2017a, b), riverbank erosion (Islam and Hoque 2014), 
stream flows (Ahmed and Shah 2017b), and water level mod-
elling (Biswas et al. 2009). The Surma River’s Keane Bridge 
station provided the study’s water quality variables between 
January 2017 and December 2019 obtained 15 cm to 20 cm 
below the surface.

The selection of prospective predictive factors is critical 
for predictive modelling. Various studies reveal that some 
variables predict DO better than the others (Ahmed 2017; 
Tomic et al. 2018). Ahmed (2017) used Biological Oxygen 
Demand (BOD) and Chemical oxygen demand (COD) for 
predicting the dissolved oxygen of the Surma River. Kisi and 
Ay (2012) observed that the temperature, pH, and electri-
cal conductivity are highly influential over Fountain Creek, 
Colorado. However, Ranković et al. (2010) claimed that 
pH and water temperature have a practical relation in DO 
prediction, whereas nitrates, chloride, and total phosphate 
have poor connections. It is found that pH is a standard vari-
able for predicting DO values using ANN, followed by tem-
perature. However, along with pH and temperature, some 
authors used oxygen-containing (PO4

3−, NO3-N) variables 
or oxygen demanding variables (NH−4 N, COD, and BOD) 

(Wen et al. 2013). Turbidity (Iglesias et al. 2014) and total 
solid can be considered essential water quality parameters, 
as their high value indicates typically high values of other 
parameters associated with water quality. The missing values 
were interpolated from two adjacent values. The fundamen-
tal statistics of the input variables are tabulated in Table 1.

Development of MODWT‑MARS model

The multi-phase MODWT-MARS model and other bench-
mark models were created in Python using the sci-kit-learn 
machine learning platform (Pedregosa et al. 2011b). All sim-
ulations were performed on a machine with an Intel i7 pro-
cessor running at 3.6 GHz and 16 GB of RAM. Furthermore, 
a software platform such as ‘MATLAB2020’ is employed 
for feature selection using neighbourhood component analy-
sis (NCA). However, tools such as matplotlib (Barrett et al. 
2004) and seaborn (Waskom et al. 2020) are employed to 
visualise the forecasted DO. Figure 2 depicts the workflow 
of the proposed MODWT-MARS model.

The wavelet transformation using MODWT was com-
bined with the predictor variables filtered by the NCA 
approach to create the MODWT-MARS model. Identifying 
the wavelet-scaling filter types and decomposition level is 
vital in creating a substantial wavelet transformation model. 
Because there is no one approach to choose the optimal fil-
ter, Al-Musaylh et al. (2020) used a trial and error strategy. 
Quilty and Adamowski (2018) discovered an issue in the 
forecast model inputs due to erroneous wavelet decomposi-
tion during the wavelet-based forecasting model. The inac-
curacy can be traced back to the decomposition process’s 
boundary conditions. They identified three problems: (1) 
improper use of future data, (2) unsuitable selection of 
decomposition levels and filters, and (3) incorrect division of 
validation and calibration data. The readers are encouraged 
to look up more information about the findings of Quilty and 
Adamowski (2018). The authors’ concern about the develop-
ment of MODWT and DWT decomposition were addressed 
in this study. After separating the DO variables to resolve 
more comprehensive information to create the MODWT-
MARS model, Fig. 3 displays the time-series of the intrinsic 
mode functions (IMFs) and the residual components and 
decomposed components of MODWT.

There is no formula for verifying whether or not a mod-
el’s valid predictors are present (Tiwari and Adamowski 
2013). Although the research describes three input selec-
tion strategies for picking the time series of lagged memories 
of DO and predictors for an optimum model, the literature 
does not specify which method should be used. The auto-
correlation function (ACF), partial autocorrelation function 
(PACF), and cross-correlation function (CCF) approaches 
are the three types of approaches to consider. A substantial 
antecedent behaviour in terms of the lag of DO from the 
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Keane Bridge

Fig. 1   The study region showing the Keane Bridge station of Surma River, Sylhet, Bangladesh
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predictors was found in this study, utilising PACF as the 
predictor (Tiwari and Adamowski 2013; Tiwari and Chat-
terjee 2011). Figure 4 demonstrates the PACF for DO time 
series showing the antecedent behaviour in terms of the lag 
of DO and decomposed components of DO using MODWT. 
It is clear from the figure that antecedent monthly delays are 
found significant.

The cross-correlation function determines which predic-
tor’s antecedent lag selects the input signal pattern and which 

pattern the predictor selects (Adamowski et al. 2012). The 
cross-correlation function is used to establish the statistical 
similarity between the predictors and the target variable. The 
cross-correlation function between the predictors and the 
DO for the River Surma is depicted in Fig. 5a. Afterwards, 
a set of significant input combinations were determined by 
assessing rcross of each predictor with DO. In this plot, a 95% 
confidence level of the statistically significant rcross is shown 
in the blue line. It is found from the Fig. 5a the correlation 

Table 1   Basic statistics i.e. 
minimum (min), maximum 
(max), mean (M), standard 
deviation (SD), and coefficient 
of variation (CV) of the water 
quality variables in Surma 
River, Sylhet, Bangladesh

Variable Acronyms Unit Min Max Mean SD CV (%)

Humidity h % 0.01 3.79 0.53 0.70 132
Water temperature w 0C 0.18 4.0 1.53 1.05 69
Rainfall r mm 8.00 127 32.66 20.99 64
TDS td Mg/l 10.0 522 142.3 102.15 72
pH p - 5.70 8.25 6.92 0.55 8
Turbidity tr (NTU) 4.18 42.62 11.84 7.37 62
Air temperature a 0C 12.30 33.30 27.10 4.93 20.00
DO d (mg/l) 1.90 17.30 5.40 2.45 45

Fig. 2   The study's workflow 
details the steps in the model 
designing phase and the 
proposed hybrid CEEMDAN-
MARS predictive models. Note: 
IMF = Intrinsic Mode Func-
tion, CCF = Cross-Correlation 
Functions, PACF = partial 
autocorrelation function, 
CEEMDAN = complete ensem-
ble empirical mode decomposi-
tion with adaptive noise and 
DO = Dissolved Oxygen (mg/l)
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of respective data with DO was found as the highest for all 
stations at lag zero (rcross ≈ 0.25–0.45). A similar procedure 
is maintained for the decomposed predictor variables. Fig-
ure 5b–f demonstrate the rcross value between #d1 (DO) and 
#dn (Predictors) and their respective residuals (n = 1 to 4). 
Figure 5 shows that the rcross value was ranged between 0.25 
and 0.50 found more than 95% confidence level. The predic-
tor data sets are normalised (Ahmed 2017; Ali et al. 2019) 
between 0 and 1 to minimise one variable’s overestimation.

(6)DOnorm =
DO − DOmin

DOmax − DOmin

Python-based Scikit-learn (Pedregosa et al. 2011a) was 
used to build this study’s SVR, RF, KRR, BNR, and KNN 
model. For SVR, the RBF (Radial Basis Function) was 
employed in developing the SVR model (Suykens et al. 
2002). The RBF uses a faster function during training to 
examine nonlinearities between the objective and predic-
tor variables (Goyal et al. 2014; Lin 2003; Maity et al. 
2010). The tricky process of creating an accurate SVR 
model required identifying the 3D parameters (C, σ, and 
ε) (Hoang et al. 2014). This is why the NCA algorithm was 
used to select the parameters with the smallest weight value. 
(Pedregosa et al. 2011a).

Fig. 3   Time series of the a maximum overlap discrete wavelet coef-
ficient (MODWC) of Dissolved Oxygen using MODWT, and intrinsic 
mode functions (IMFs) and the residual components after decompos-

ing the DO in the training period using b CEEMDAN and c EEMD. 
The time series of the actual DO is plotted at the top of the figure

Fig. 4   Partial autocorrelation 
function (PACF) plot of the 
DO time series exploring the 
antecedent behaviour in terms 
of the lag of daily DO. The 
blue line in the figures indicates 
the ± 95% confidence level
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Fig. 5   An analysis of the statistically significant cross-correlation 
function plots of a actual variables vs DO, b IMF1 of all variables vs 
IMF1 of DO, c IMF2 of all variables vs IMF2 of DO, d IMF3 of all 

variables vs IMF3 of DO, e IMF4 of all variables vs IMF4 of DO, f) 
residuals of all variables vs residuals of DO
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Fig. 5   (continued)
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Alternatively, the MARS model adopted the Python-
based Py-earth package (Rudy and Cherti 2017). The two 
MARS models used are cubic or linear piecewise functions. 
This study used a piecewise cubic model because it provided 
a smoother response. Also, the generalised recursive parti-
tioning regression was adopted since it can handle multiple 
preconditioners. A forward and backward selection was used 
for optimisation. Initially, the algorithm ran with a “naïve” 
model that only contained the intercept term. The training 
MSE was reduced by iteratively adding the reflected pairs 
of basis functions (Table 2).

The accuracy of the hybrid MARS and other comparing 
models was constructed using piecewise cubic and linear 
regression functions, respectively. The best MARS model 
was selected using the lowest Generalised Cross-Validation 
(GCV) (Lin 2003); the MODWT-MARS model yielded the 
lowest RMSE and the highest LM, demonstrating the most 
accurate predictions. The optimum tuning parameters of 
various machine learning methods are tabulated in Table 3.

Model evaluation benchmarks

Several statistical score metrics were considered in the rigor-
ous evaluation of the proposed model (i.e. MODWT-MARS) 
compared with the counterpart models. The commonly adopted 
model score metrics such as Pearson’s correlation coefficient 
(r), root-mean square error (RMSE; mg/l), mean absolute error 
(MAE; mg/l), Nash–Sutcliffe efficiency (NSE), Absolute Per-
centage Bias (APB; %), and Willmott’s Index agreement (WI) 
(Krause et al. 2005; Legates and McCabe 1999; Nash and Sut-
cliffe 1970; Willmott et al. 2012) were used as the popular met-
rics used elsewhere (Ahmed et al. 2021a; Ghimire et al. 2019c). 
Due to the stations’ geographic alterations, the percentage error 
measures relative error values such as RRMSE, RMAE, and 
MAPE were considered. Owing to the inherent merits and 
weaknesses of the metrics, combining them is prudent (Sharma 
et al. 2019). Different sets of model evaluation metrics such 
as RMSE, MAE, and r2 (coefficient of determination) (Chu 
et al. 2020); NSE, RMSE, MAE, and PERS (persistence index) 

Table 2   Different input 
combinations prepared by 
using the NCA feature selection 
algorithm. Numerical values 
after the variable indicate 
respective lag memories of the 
datasets

No Different input combinations

1 h3

2 h3,tr5

3 h3,tr5, h5

4 h3,tr5, h5, h6

5 h3,tr5, h5, h6, tr4

6 h3,tr5, h5, h6, tr4, tr7

7 h3,tr5, h5, h6, tr4, tr7, tr3

8 h3,tr5, h5, h6, tr4, tr7, tr3, h4

9 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6

10 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4

11 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2

12 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1

13 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8

14 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8, p4

15 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8, p4,a2

16 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8, p4,a2, td3

17 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3

18 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5

19 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5, a4

20 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5, a4, a1

21 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5, a4, a1, w3

22 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5, a4, a1, w3, a3

23 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5, a4, a1, w3, a3, w2

24 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5, a4, a1, w3, a3, w2, r13

25 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5, a4, a1, w3, a3, w2, r13, w4

26 h3,tr5, h5, h6, tr4, tr7, tr3, h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3, p5, a4, a1, w3, a3, w2, r13, w4, r1

27 h3,tr5, h5, h6, tr4, tr7, tr3, h4,tr6,td4,td2,td1,td8,p4,a2, td3, p3, p5, a4, a1, w3, a3, w2, r13, w4, r1, w1

28 h3,tr5, h5,h6,tr4,tr7,tr3 h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3,p5,a4,a1,w3,a3,w2, r13, w4, r1, w1, d1

29 h3,tr5,h5,h6,tr4,tr7,tr3,h4, tr6, td4, td2, td1, td8,p4,a2, td3, p3,p5,a4,a1,w3,a3, w2,r13,w4,r1,w1,d1,w5

30 h3, tr5, h5, h6,tr4,tr7, tr3,h4,tr6,td4,td2,td1,td8,p4,a2,td3,p3,p5,a4,a1,w3,a3,w2,r13,w4,r1,w1,d1,w5,p1
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(Tiwari and Chatterjee 2010); Legates-McCabe’s Index (LM), 
Willmott’s Index (WI), RRMSE, and RMAE (Ali et al. 2019; 
Ghimire et al. 2019b; Yaseen et al. 2019) were selected for eval-
uating the model with numerous sets of variables. The correla-
tion coefficient (r) provides information about the linear asso-
ciation between forecasted and observed DO data; therefore, it 
is limited in its capacity. However, r is considered oversensi-
tive to extreme values (Willmott et al. 1985). Moreover, RMSE 
and MAE can provide appropriate information regarding the 
forecasting skill, whereby RMSE evaluates the robustness of 
the model related to high values but focuses on the deviation 
of the forecasted value from the observed (Deo et al. 2017a). 
Alternatively, MAEs are not a perfect replacement for RMSEs 
(Chai and Draxler 2014). The Nash–Sutcliffe efficiency (NSE) 
is a widely used model evaluation criteria for the hydrological 
models. NSE is a dimensionless metric and a scaled version 
of MSE, offering a better physical interpretation (Legates and 
McCabe 2013). However, the NSE over-emphasises the higher 
values of outliers, and lower values are neglected (Legates and 
McCabe 1999). Due to the standardisation of the observed and 
predicted means and variance, the robustness of r is limited. 
Willmott’s Index (WI) was utilised to address this issue by 
considering the mean squared error ratio instead of the dif-
ferences. The mathematical notations of the statistical metrics 
are as follows:
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where DOi
obs

 and DOi
for

 denote the observed and model-fore-
casted values from the ith element; DO

i

obs
 and DO

i

for
 denote 

their average, respectively, and N represents the observa-
tion’s number of the DO.

Results

In this study, MARS models optimised using a feature 
decomposition approach were utilised to forecast DO 
time series using hydro-meteorological variables. Several 
ways were employed to do this, including the conventional 
machine learning models (i.e. MARS, RF, SVR, KNN, 
and KRR), feature decomposition methods (i.e. MODWT, 
CEEMDAN, EEMD, EMD, and DWT), and the feature 
selection method (i.e. NCA) to screen the optimal model 
to forecast the DO. Though the mathematical metrics are 
so ambiguous that there is no way to evaluate the suitable 
alternative, it is reasonable to use multiple performance 
evaluation approaches. Compared to the other models, the 
hybrid, and standalone models of BNR, KNN, KRR, and RF 
outstripped all decomposition methods. The performance 
of MODWT-MARS has revealed that the NCA algorithm 
helped choose the relevant features to assist the MARS in 
better emulating the future DO concentration. MODWT 
found important performance matrices, such as r, NSE, WI, 
RMSE, and MAE. The MODWT-MARS model outperforms 
all the other tested models.

This study used the NCA algorithm to screen the appro-
priate predictor variables in the model. Table 2 provides the 
input combination for forecasting DO. The robustness of 
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the NCA integrated BNR, KNN, KRR, MARS, and SVR 
model is provided in Tables A1–A6 in terms of statistical 
metrics would be found as supplementary materials. Tables 
show that each model’s optimum standalone models were 
found between combinations from 19 to 29. For the case of 
the BNR model, the standalone model (BNR28) shows poor 
performance (r = 0.809, WI = 0.887, RMAE = 7.55%, and 
MAE = 0.275) comparing with the BNR-MODWT model 
(r = 0.977, WI = 0.987, RMAE = 3.37%, and MAE = 0.117). 
Moreover, the hybrid models showed improved performance 
ranging from 0.888 to 0.977 and 7.17 to 3.37% for r and 
RMAE accordingly. The MARS29 model was found as the 
optimum model (r = 0.824, WI = 0.895, RMAE = 7.97%, and 
MAE = 0.277) among all combinations of MARS model. 
The MODWT-MARS model was found as the highest per-
formed model with substantial performance parameters 
(r = 0.981, WI = 0.990, RMAE = 2.47%, and MAE = 0.089) 
which is followed by CEEMDAN-MARS model (r = 0.949, 
WI = 0.971, RMAE = 4.65%, and MAE = 0.156). Men-
tionable that the highest model of SVR was found for 
CEEMDAN-SVR (r = 0.971, WI = 0.983, RMAE = 3.36%) 
compared to the optimum standalone model (SVR20). 

Mentionable that KRR, KNN, and RF model provides poor 
performance comparatively.

Further analysis through a box plot showing the fore-
casted vs observed DO and absolute forecasting error of all 
hybrid models is illustrated in Fig. 6. The absolute fore-
casted error was determined as |FE|= DOfor – DOobs. The 
box plot demonstrates the observed (DOobs) data dispersion 
and forecasted (DOfor) DO from the proposed machine learn-
ing approaches and comparing models. Figure 6b, c, and e 
visualise the quartiles’ data with distinctly larger outliers. 
The lower end of the plot lies between the lower quartile 
(25th percentile) and the upper quartile (75th percentile). The 
MODWT-MARS model shows an identical prediction com-
pared with MODWT-SVR, with higher outliers for the SVR 
model. A more in-depth inspection of the absolute forecast 
error (|FE|) from the hybrid MODWT-MARS model further 
strengthens the suitability of the hybrid MARS approach 
in predicting the DO of the Surma River, which has the 
narrowest distribution compared with other models. The 
MODWT-MARS model has a significant percentage (98%) 
of the |FE| in the first error brackets (0 <|FE|< 0.25), while 
the MODWT-SVR model has a percentage of 95%.

Table 3   The optimal 
hyperparameter of the proposed 
MARS model, including that of 
the other benchmark models’ 
methods include machine 
learning (i.e. BNR, SVR, KRR, 
KNN, and RF)

Name Hyper-parameters Acronym Optimum

KRR Regularisation strength alpha 1.5
Kernel mapping kernel linear
Gamma parameter gamma None
Degree of the polynomial kernel degree 3
Zero coefficient for polynomial and sigmoid kernels coef0 1.2

BNR Maximum number of iterations n_iter 200
Stop the algorithm if w has converged tol 0.0001
Shape parameter for Gamma distribution over alpha alpha_1 1e-05
Inverse scale parameter over alpha alpha_2 1e-05
Shape parameter for Gamma distribution over lambda lambda_1 1e-06
Inverse scale parameter for Gamma distribution over lambda lambda_2 1e-04
The initial value for alpha alpha_init None

KNN Number of neighbours n_neighbors 5
Weights Weights uniform
The algorithm used to compute the nearest neighbours algorithm auto
Leaf-size passed leaf_size 30
Power parameter for the Minkowski metric p 2
The distance metric to use for the tree metric minkowski
Additional keyword arguments for the metric metric_params none
The number of parallel jobs n_jobs int

MARS maximum degree of terms max_degree 1
Smoothing parameter used to calculate GCV penalty 3.0

RF Number of trees in the forest n_estimators 120
Maximum depth of the tree max_depth 2
Minimum number of samples for an internal node min_sample_split 2
Number of features for the best split max_features auto
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The empirical cumulative distribution function (ECDF) 
visualisation demonstrates the forecast error data’s fea-
ture from the least to highest and perceives the full fea-
tures circulated across the dataset. Figure 7 represents the 
empirical CDF of all six models for objective models and 
comparing models. The hybrid MODWT-MARS model 
was seen as reasonably sound against other models. The 
MODWT-MARS generated errors significantly lower from 
0 to 0.25 mg/l. In the model-like KNN, KRR, and RF, the 
distribution of CDF was larger comparatively. The analysis 
also revealed that the standalone models showed a poor 
distribution, proving that MODWT-MARS was the most 
precise and responsive model.

To analyse the proposed MODWT-MARS model’s 
further robustness, the models’ forecasting performance 
was further assessed based on RRMSE and MAPE for 
all tested models, as shown in Fig. 8. From the figure, 

the magnitude of RRMSE and MAPE for the objective 
model (MODWT-MARS) is significantly lower, which 
clarifies the potential merits of the proposed model. The 
best RRMSE (3.6%) and MAPE (2.2%) were found for 
the MODWT-MARS model, which was followed by the 
MODWT-BNR model with moderate RRMSE (4.0%) and 
MAPE (3%). Besides, KNN, KRR, and RF models with 
MODWT showed RRMSE (11.5% to 13.5%) and MAPE 
(9.5% to 12%) values, demonstrating poor performance.

Compared to the standalone models using the Taylor 
diagram (Taylor 2001), the proposed model performance 
improves the interpretation presented in Fig. 9. The Tay-
lor diagram demonstrates that the MODWT-MARS model 
with the NCA algorithm is closer to the observation than the 
comparing models. Again, the forecasted DO illuminates the 
proposed model’s better pertinency than the standalone and 
benchmark models. The benchmark models’ performance 

Fig. 6   Box plots of hybrid 
models (MODWT-MARS) 
and their respective standalone 
counterparts (i.e. MARS, BNR, 
KRR, KNN, RNN, and SVR) in 
forecasting DO compare to the 
observed DO of Surma River
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with CEEMDAN and MODWT (i.e. MODWT-SVR, 
CEEMDAN-SVR, and CEEMDAN-MARS) achieved closer 
proximity to the observed values. However, the proximity 
of the observed DO for the MARS model with MODWT 
feature decomposition is the closest.

The scatter plot of the forecasted and observed DO for 
the proposed MODWT-MARS model portrayed a detailed 
comparison of DO forecasting (Fig. 10). The scatter plots 
comprise with the coefficient of determination (R2) with 
goodness-of-fit between forecasted vs observed DO and a 
least-square fitting line and the corresponding equation; 
DOfor = m X DOobs + C, where, m is referred to as the gradi-
ent, and C is denoted as the y-intercept. Figure 10 reveals 
that the proposed model displays significant performance 
with a more considerable R2 value. The DO forecasting using 
a hybrid machine learning model (i.e. MODWT-MARS) 
performed significantly better than the other models. The 
magnitudes registered from the hybrid MODWT-MARS 
model were the closest to unity, which, in pairs (m|R2), are 
0.978|0.976, followed by MODWT-SVR (0.939|0.965). 
Moreover, the CEEMDAN-SVR (0.699|0.795) and CEEM-
DAN-MARS (0.700|0.794) models provide a comparatively 
lower pair. Alternatively, y-intercepts [ideal value = 0] 
was found close to zero i.e. 0.084 for the proposed model. 

Fig. 7   Empirical cumulative distribution function (CDF) of fore-
casted error |FE| of DO generated by the proposed MODWT-MARS 
and comparing models

Fig. 8   Comparison of the fore-
casting skill of proposed models 
in terms of RRMSE (%) and 
MAPE (%) in the testing period

7866 Environmental Science and Pollution Research (2023) 30:7851–7873



1 3

However, the y-intercept deviated from the ideal value with 
more outliers for the other models.

To attain a different interpretation of the proposed 
MODWT-MARS model’s accuracy, the time series plot is 
used to comprehend the proposed model’s forecasting abil-
ity. Figure 11 demonstrates the time series plot of forecasted 
and observed DO with MODWT-MARS compared to the 
standalone MARS model. Results show that the proposed 
MODWT-MARS model is found close to the observed DO 
revealed a high predictive accuracy. After applying the NCA 
algorithm as a feature selection approach and MODWT as 
a feature decomposition technique, the forecasted DO is 
enhanced.

Notably, five unique decomposition algorithms, EMD, 
EEMD, CEEMDAN, DWT, and MODWT, are incorporated 
to enhance the MARS-based predictive model. In terms of r, 
LM, and APB of DO forecasting, the MODWT effectively 

forecasts improvement (Fig. 12). In the MARS model, r and 
LM values using the MODWT model increased by ~ 19% 
and ~ 20% accordingly, and APB decreased by ~ 68%. Simi-
larly, for the BNR model, MODWT feature decomposi-
tion skill increased r and LM values up to ~ 21% and ~ 59% 
accordingly, and APB is decreased by ~ 57%. Additionally, 
r and LM values for the MARS model with CEEMDAN 
are increased by ~ 15% and ~ 50%, respectively. Similarly, 
the inclusion of DWT, EMD, and EEMD also substantially 
improved the r, LM, and APB values.

Discussion

According to the findings of this study, different input 
combinations have varying effects on the outcomes. Then, 
several input variables must be analysed, and the most 

Fig. 9   Tylor diagram repre-
senting correlation coefficient 
and the standard deviation 
difference for proposed hybrid 
models vs benchmark models

7867Environmental Science and Pollution Research (2023) 30:7851–7873



1 3

appropriate collection of variables must be employed to 
optimise the products. Every model should have its ideal 
combination; yet the most effective combination is rare 
throughout the various models. Al-Musaylh et al. (2019) 
used the hybrid MARS model in forecasting electricity 
demand with a good performance. This study demon-
strated profound forecasting of Dissolved Oxygen (DO) 

concentration. Our findings have led to better forecasting 
than any algorithm evaluated in standalone and hybrid 
versions. We propose more studies to forecast DO using 
wet and dry season datasets and compare the results with 
the whole dataset’s findings. Different pre-processing 
techniques could also enhance the projection accuracy 
of the MARS model. First, it is possible to implement a 
suitable feature selection approach such as NCA (Ahmed 
et al. 2021a; Ghimire et al. 2019a) algorithm to pick the 
input variables that significantly impact the model. The 
feature weight calculated using neighbourhood compo-
nent analysis (NCA) respective to predictor variables was 
added one by one based on the highest to lowest feature 
weight to improve the model performance. The optimum 
combination of input parameters was found significantly 
in the proposed hybrid MARS model. By fitting piecewise 
linear regressions, MARS essentially creates flexible mod-
els by approximating the nonlinearity of a model using 
discrete linear regression slopes in various intervals of 
the independent variable space. An expansion in product 
spline basis functions of the predictors selected during a 
forwards and backwards recursive partitioning technique 
is how MARS best fits a model given a collection of pre-
dictor variables.

The time complexity of machine learning models is very 
important for the better application of the ML models. All 
the ML models used in our study shows less complex in 
terms of training time with less than 2 min for almost all 
the models. The incorporation of five feature decompo-
sition approaches is vital to understanding the diverse 
implementation of the models in association with data 
pre-processing (i.e. feature selection and feature decom-
position). The results showed that the inclusion of feature 
decomposition methods such as MODWT, CEEMDAN, 
EEMD, EMD, and DWT increased the performance of DO 
forecasting compared to the respective standalone methods. 
As MODWT can handle any sample size, the smooth and 
detail coefficients of MODWT filters and produces a more 
asymptotically efficient wavelet variance estimator than the 

Fig. 10   Scatter plot of forecasted vs observed DO, using a Bayesian 
ridge regression (BNR)  and b multiple adaptive regression splines 
model using MODWT and CEEMDAN decomposition. A least 
square regression line and coefficient of determination (R2) with a lin-
ear fit equation are shown in each sub-panel

Fig. 11   Comparison between 
forecasted DO and observed 
DO during model testing using 
MODWT-MARS and Stan-
dalone MARS model
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as a feature decomposition method for DO forecast of the 
river Surma. The study used five distinct feature decom-
position approaches (i.e. MODWT, CEEMDAN, EEMD, 
EMD, and DWT) and six machine learning models (i.e. 
BNR, KNN, KRR, MARS, RF, and SVR) for developing 
the optimum model. A new approach to the DO forecasting 
model was created using a decedent-lagged memory frame-
work to explain the forecasting problem more appropriately 
and its consequences afterwards. The proposed MODWT-
MARS approach provides the optimal performance among 
the benchmarked models. From this analysis, the following 
observations can be made.

Fig. 12   Effect of a EMD, b EEMD, c CEEMDAN, d MODWT, and e DWT of the performance of six models based on r, LM, and APB

DWT. However, the MODWT-MARS model was found as 
the optimum. Different researchers reported similar perfor-
mance, where MODWT data decomposition is reported to 
improve performance (Li et al. 2017a; Prasad et al. 2017).

Conclusions

This study developed hybrid machine learning models 
incorporating neighbourhood component analysis (NCA) 
as a feature selection method, multivariate adaptive regres-
sion splines (MARS) as a predictive model, and MODWT 
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1.	 The achieved results demonstrated that the NCA algo-
rithm would be a helpful option for getting the predictor 
variables’ substantial features. The model’s performance 
metrics indicate that the NCA algorithm was a suitable 
tool for feature selection, as the NCA and MODWT 
optimised models showed better performance than the 
standalone models.

2.	 The proposed hybrid MODWT-MARS model outper-
formed all other models in forecasting the dissolved 
oxygen concentration of the Surma River. A low MAE 
(0.089) and a high NS (0.990) value substantiate the 
MODWT-MARS model’s superiority. Correlation 
coefficient (r) values increased by 20%, and LM index 
values increased by 19% compared to their respective 
standalone models. To be more precise, the MODWT-
MARS performed the best when r (0.981), WI (0.990), 
RMSE (0.121 mg/l), and MAE (0.089 mg/l) values were 
considered.

3.	 Based on the analysis, it is recognised that the hybrid 
MODWT-MARS model with the NCA feature algo-
rithm shows superior forecasting of DO. The station’s 
antecedent values of water quality parameters and 
hydro-meteorological variables embed the machine 
learning approach’s future forecasting success. So, this 
type of forecast is used for better water quality manage-
ment.

4.	 The current analysis strongly implies that MODWT 
and NCA methods with the MARS model can be used 
to forecast accurately. Their employment improved the 
accuracy of the MODWT-MARS model established in 
the current study and reduced the model’s complexity by 
removing unnecessary input variables by incorporating 
NCA.

In addition to providing scientific benefits, the MARS 
low input need combined with their substantial predic-
tive capability also provided significant practical benefits. 
They enable the development of a station-specific prudent 
predictive model of DO for monitoring river health at a 
minimal cost and the development of region-specific man-
agement plans across a range of land use and land cover 
gradients in a cost-effective manner.
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