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Abstract
Thermo-mineral springs are widely spread over the volcanic areas of Salerno, a city in southern Italy. Although the water of 
thermal structures provides beneficial effects on human health, the air is characterized by the presence of potentially toxic 
compounds, such as hydrogen sulphide  (H2S) and sulphur dioxide  (SO2). Exposure to sulphurous compounds may have det-
rimental effects on human health, with asthma being the most common. In this study, air concentrations of  H2S and  SO2 in 
the thermal springs of Contursi Terme (Salerno, Italy) were monitored for 4 months (using both active and passive sampling), 
along with the chemical and microclimatic characterization of thermal water, to assess workers’ exposure to these pollutants. 
An in-depth characterization of indoor air at the springs is paramount to establish emission control limits for occupational 
exposure and to take protective measures. The air concentration of  SO2 varied from 0.11 ± 0.02 to 0.91 ± 0.02 mg/m3, fol-
lowing a seasonal pattern (higher values in winter and lower in spring). Conversely, indoor  H2S concentrations did not vary 
significantly with time, but outdoor levels (from 0.40 ± 0.03 to 1.90 ± 0.03 mg/m3) were always higher than indoor ones 
(from 0.11 ± 0.03 to 0.56 ± 0.03 mg/m3). Not negligible air concentrations of these pollutants were detected in this thermal 
spring workplace, so further investigations are needed to ensure workers’ safety.
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Introduction

Thermal springs are mineral waters with a specific saline 
composition (Quattrini et al. 2016). These environments 
have been known as early as the first century A.D. when 
their presence was reported in ancient literature and the 
use of thermal baths for curative purposes was well known 
since Roman times (Routh et al. 1996; Frosch 2007; Valeri-
ani et al. 2018). The thermo-mineral springs received great 

attention in the culture of bathing and personal hygiene for 
specific therapeutic uses (Jackson 1990; Croutier 1992; 
Frost 2004; Torres-Ceron et  al. 2019; Costantino et  al. 
2020). Although the water of thermal structures provides 
beneficial effects on human health, the atmosphere of these 
environments is characterized by the presence of sulphurous 
compounds such as hydrogen sulphide  (H2S) and sulphur 
dioxide  (SO2) (Attene-Ramos et al. 2006; Stanhope et al. 
2017; Pironti et al. 2021a, b ; Ricciardi et al. 2021).  H2S is 
an undesirable air pollutant because of its malodour and tox-
icity even at low concentrations (< 10 ppm) (Elwood 2021). 
Concerns about health effects are mostly related to the brain 
and central nervous system, with the risk of damage depend-
ing on both the length of the exposure and the concentration 
of  H2S (EPA 1986; Legator and Singleton 1997; Lim et al. 
2016; Nuvolone et al. 2019).

Air pollutants could interact with the body via skin 
contact, the respiratory tract, or even oral intake, which 
pose various health hazards, such as respiratory irritation 
(Rafieepour et al. 2013) and oral disease (Vianna et al. 
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2005), and may even increase the risk of cancer (IARC 
1992; NTP 2016; Ghantous et al. 2015). Irritants such as 
acid gases are less known than sensitizers as causative 
agents of occupational respiratory diseases, which ham-
pers the recognition and the understanding of the hazards 
of irritative agents at workplaces. The health impact of 
irritants is potentially high because persistent symptoms 
and abnormal lung function have still been reported years 
after diagnosis. Recently, the role of irritants in pulmonary 
disease has also been discussed (Dumas et al. 2014). Many 
studies on occupational respiratory hazards related to the 
presence of irritants in different industries’ workplaces 
(gases, dust, fumes, mists, vapours, smoke, fog and sprays) 
were reported in the literature. In some cases, substances 
are generated via industrial processes, for example during 
the aeration process, drying of the sludge and mechanical 
filtering processes.

SO2 is another important air pollutant to monitor in work-
places for worker safety (Goudarzi et al. 2016; Yan et al. 
2020; Wang et al. 2022). It is produced from the combustion 
of solid fossil fuels and is considered the most relevant pol-
lutant from materials’ deterioration, especially in the corro-
sion of metals and stone recession. These corrosive effects 
are even greater with the presence of an oxidizer such as 
 NO2.  SO2 is the most important pollutant from industrial 
activities such as petroleum refining, non-ferrous metal 
smelting and burning of coal for energy production. Expo-
sure to  SO2 can result in an increased risk of lung cancer 
(Lee et al. 2002; Hamra et al. 2015) and heart and respira-
tory diseases (Golbaz and Jonidi Jafari 2011; Shang et al. 
2013; Beelen et al. 2014; Dursun et al. 2015).

In recent years, despite a general improvement in air qual-
ity in workplaces, a real concern over the preservation of the 
health of workers exposed to atmospheric pollution remains 
(Charlier et al. 2021; Motta et al. 2021; Motta et al. 2022a; 
Montano et al. 2022; Nascimento et al. 2020; Zhang et al. 
2021). Even though several studies regarding the beneficial 
effects of thermal waters for users are recognized in the lit-
erature (Giampaoli et al. 2013; Carbajo and Maraver 2017; 
Costantino et al. 2020), only one study so far has monitored 
the air concentration of pollutants such as  H2S in thermal 
spring environments (Fazlzadeh et al. 2018), while no stud-
ies have investigated  SO2 concentration in the air of this 
specific workplace. Obviously, the understanding of the ori-
gin and the evolution of contaminants is necessary for the 
decisions that must be taken by industrial companies and 
international agencies of health (Mohai et al. 2011; Vimer-
cati et al. 2018; Motta et al. 2022b; Pironti et al. 2022).

In this study, we monitored the concentration of specific 
pollutants  (H2S and  SO2) at the thermal springs of Contursi 
Terme (Salerno, Italy) for 4 months to evaluate workers’ 
exposure to these harmful pollutants and evaluate the need to 
implement corrective measures to safeguard workers’ health.

Material and method

Materials

All the reagents used for the measurements  (Na2CO3, 
 NaHCO3,  H2SO4,  Na2SO4,  H2O2, NaOH, thiosulphate, 
iodine, certified reference material, silica gel) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA).

Sampling site

Water and air sampling was performed from 21 January 
to 21 April 2015 in the thermal springs of Contursi Terme 
(Salerno, Italy). The location of this village in the Region 
Campania of Italy is shown in Fig. 1.

With a temperature at the source of 47.6 ± 0.5 °C, the 
thermal spring water at Contursi Terme can be classified 
as hyperthermal (Štambuk-Giljanović 2008; Quattrini 
et al. 2016). Monthly water samples were taken from the 
pool of the thermal springs during the sampling period. 
Physicochemical characteristics of the thermal water were 
monitored by measuring the concentration of cations  (Li+, 
 Na+,  K+,  Ca2+ and  Mg2+), anions  (Cl−,  SO4

2− and  HCO3
−), 

silica and sulphide; conductivity; fixed residue at 180 °C; 
hardness; temperature; and pH at the source and pool. The 
temperature, conductivity and pH of water samples were 
determined using a multiparameter probe from Hanna 
Instruments (HI98194).

Passive and active air monitoring

Air monitoring was conducted using both active and passive 
samplers. Passive samplers employed were RING® radial 
diffusive devices (purchased from Aquaria Srl, Milan, Italy) 
(Cucciniello et al. 2012, 2015; Proto et al. 2014; Motta et al. 
2018). Bar and restaurant rooms were considered indoor 
environments while the external pools as outdoor environ-
ments.  H2S and  SO2 were measured according to the meth-
odologies of the National Institute for Occupational Safety 
and Health (NIOSH), the US federal agency for research and 
prevention of work-related injury and illness (Methodology 
6013 for Hydrogen Sulphide and 6004 for Sulphur Dioxide) 
(NIOSH 1994a, b).

Active sampling was carried out near the thermal spring 
source (1 m away from the thermal source) with a sorbent 
tube and an AP Buck VSS 1 pump (Aquaria srl, Italy) using 
an airflow rate of 200 mL/min (Cucciniello et al. 2017). 
Active monitoring was done two times per month for expo-
sure times of 20–30 min. Passive sampling was performed 
in the bar and restaurant room (indoors), and external pool 
(outdoors). For each passive sampler, the start and the end 
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of sampling period coincide with the days in which active 
sampling was performed, so the exposure time is in the range 
7–14 days.

A detailed description of all the collected samples, 
including sampling date, exposure time, weather conditions 
and number of samples, is reported in Table S1. For each 
sample type  (SO2 active sampling,  H2S active sampling,  SO2 
passive sampling indoor,  SO2 passive sampling outdoor,  H2S 
passive sampling indoor and  H2S passive sampling outdoor), 
samples are enumerated in chronological order from Janu-
ary to April.

The substrate for the  H2S monitoring in the air was based 
on zinc acetate–impregnated silica in glass tubes. After col-
lection,  H2S is oxidated to sulphate with an alkaline solution 
of hydrogen peroxide according to previous work (Motta 
et al. 2014). Triethanolamine was used as the substrate for 
 SO2, and then water extraction was performed and  SO2 was 
recovered as sulphate.

Chromatographic analyses

Target chemicals  (SO2 and  H2S) were quantified as sulphate 
using ion-exchange chromatography on a Thermo Scien-
tific Dionex™ Aquion™ ion chromatograph equipped with 
a conductivity system detector (Ricciardi et al. 2022). A 
Dionex IonPac AS23 carbonate eluent anion-exchange col-
umn was used for anions  (Cl− and  SO4

2−), while a Dionex 
IonPac CS12A (sulphuric acid as eluent) for cations  (Li+, 
 Na+,  K+,  Ca2+ and  Mg2+). Ionic concentrations (expressed 
as mg/L) were obtained using calibration curves prepared 
employing standard ion solutions. The precision, expressed 
as one standard deviation, was 1% for all the ions considered.

Sulphidimetric grade determination

Evaluation of total and dissolved sulphide in water was done 
according to national protocol APAT IRSA-CNR (APAT 
IRSA-CNR 2003):

where a is the volume (mL) of the iodine solution used in the 
titration, b is the volume (mL) of the thiosulphate solution 
used in the titration, NI is the normality of the iodine solu-
tion, NT is the normality of the thiosulphate solution, V is the 
volume (mL) of the sample taken, and 16 is the equivalent 
weight of sulphide.

For the determination of the dissolved sulphide content, a 
preliminary separation of the suspended sulphides by sedi-
mentation was carried out, making them flocculate by the 
addition of a solution of aluminium chloride and sodium 
hydroxide.

Statistical analysis

Statistical analyses, including one-way ANOVA (analysis of 
variance), were performed using the R Studio software (ver-
sion 4.1.1). In particular, we evaluated the statistical differ-
ences between the indoor and outdoor concentrations of the 
considered pollutants obtained by passive sampling and the 
statistical differences between the concentrations recorded 
in different sampling periods. The null hypotheses for the 
ANOVA were that there are no differences between indoor 

S2−
(mg

L

)

=
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)

16 × 1000

V

Fig. 1  Map of Italy: magnifica-
tion of the Region Campania 
is shown in yellow, while the 
village of Contursi Terme is 
shown in red
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and outdoor concentrations detected for the same pollutant 
during the same sampling period and there are no differ-
ences between concentrations recorded in different sampling 
periods. Hence, the independent variables were the “type 
of environment” (indoor and outdoor) and the “sampling 
period” (January–February and March–April), whereas the 
dependent variable was the air concentration of the consid-
ered pollutants. The significance level was set at α = 0.05.

Results

The results of the physicochemical analysis of water are 
summarized in Table 1. The bicarbonate sulphurous min-
eral thermal water presented concentrations of  HCO3

− equal 
to 1800 ± 40 mg/L,  SO4

2− of 270 ± 10 mg/L and a total 
sulphide content of 28 ± 2 mg/L (dissolved sulphide was 
16 ± 1 mg/L).

The atmospheric pollutants  (SO2 and  H2S) were measured 
at different times and locations in the thermal spring sites. 
First, active samples were collected to measure the concentra-
tion of pollutants in a short time interval (20–30 min) and in 
a specific place. Air concentrations of  SO2 and  H2S obtained 
by active sampling were in the range 2.0–5.2 mg/m3 and 
2.2–20.2 mg/m3, respectively (Table 2). These values are snap-
shots of the pollutant’s concentrations near its emission source.

To evaluate the mean concentration of a pollutant to which 
workers are exposed daily and temporal variations, passive 

sampling was performed both indoors (bar and restaurant 
room) and outdoors (external pool). The use of passive sam-
plers allows to obtain threshold limit value-time-weighted 
averages (TLV-TWA) of the concentrations of pollutants 
in a wider time lapse than active sampler (168–336 h vs 
20–30 min) and to acquire average concentrations over time. 
In fact, contrary to active sampling, the values resulting from 
passive sampling are not susceptible to punctual emissions 
and momentary variations of pollutant concentration.

The temporal variation in concentrations measured by pas-
sive sampling during the monitoring campaigns is shown in 
Fig. 2 for  SO2 and in Fig. 3 for  H2S for indoor (yellow) and 
outdoor (green) environments.  SO2 and  H2S concentrations 
detected by passive sampling are generally lower than those 
obtained by active sampling and varied from 0.11 to 0.91 mg/
m3 and from 0.11 to 1.90 mg/m3, respectively.

The ANOVA showed there are no significant differences 
(p-value > 0.05) between the indoor and outdoor concen-
tration values for  SO2, whereas there are considerable dif-
ferences (p-value < 0.05) between the indoor and outdoor 
concentrations for  H2S. Moreover, there are significant dif-
ferences between the concentrations detected during the 
first half of the sampling period—January to February—
and those recorded in the second half—March to April—
for  SO2 (p-value < 0.05), but not for  H2S (p-value > 0.05).

Discussion

Because the effects of pollutant exposure on human health 
can become visible only after several years, when the 
action measures are necessary but also difficult to take, a 

Table 1  Physicochemical characteristics of the thermal springs; aver-
ages with the standard deviation (σ) are reported

* Values measured in January

Parameter Result

Cations (mg/L) Li+ 3 ± 1
Na+ 730 ± 30
K+ 150 ± 10
Ca2+ 340 ± 20
Mg2+ 140 ± 10

Anions (mg/L) Cl− 990 ± 30
SO4

2− 270 ± 10
HCO3

− 1800 ± 40
Silica (mg/L) SiO2 38 ± 5
Total sulphide (mg/L) S2− 28 ± 2
Dissolved sulphide (mg/L) S2− 16 ± 1
Conductivity at 20 °C (µS/cm) 5620 ± 60
Fixed residue at 180 °C (mg/L) 3870 ± 70
Water hardness (°F) 137 ± 8
Temperature at source (°C) 47.6 ± 0.5
Temperature at pool (°C)* 27 ± 1
pH at source 6.67 ± 0.05
pH at pool* 6.9 ± 0.1

Table 2  Air concentration values of  SO2 and  H2S (mean of three val-
ues) obtained by active sampling, with the standard deviation (σ)

Sample Analyte Air concentration (mg/
m3)

σ

1 SO2 4.9  ± 0.3
2 SO2 3.0  ± 0.2
3 SO2 5.1  ± 0.3
4 SO2 3.9  ± 0.3
5 SO2 4.1  ± 0.3
6 SO2 2.0  ± 0.3
7 SO2 2.2  ± 0.4
8 SO2 5.2  ± 0.3
9 H2S 19.0  ± 0.3
10 H2S 16.9  ± 0.4
11 H2S 20.2  ± 0.4
12 H2S 6.1  ± 0.3
13 H2S 8.9  ± 0.4
14 H2S 2.2  ± 0.3
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Fig. 2  SO2 values in indoor 
(yellow) and outdoor (green) 
environments by passive 
sampling

Fig. 3  H2S values in indoor 
(yellow) and outdoor (green) 
environments by passive 
sampling
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prevention strategy is crucial to protect human health in 
workplaces, where people spend most of their daily time. 
The importance of this study is linked to the determination 
at this thermal site of the presence and levels of certain 
types of pollutants that, even at low concentrations, can 
have lasting harmful effects on human health over time.

In this study, we looked at two pollutants that are most 
representative of thermal water composition,  H2S and  SO2. 
To obtain a full overview of the concentration of pollutants 
at this thermal site, both active and passive air sampling 
were performed. For both pollutants, the concentrations 
detected by active sampling (Table 2) were higher than 
those recorded by passive sampling (Table S2 and Figs. 2 
and 3). This is in line with the principle that active sam-
pling gives a point measure of concentration and not a 
time average. Moreover, active sampling was carried out 
near the thermal spring source (at the entrances of the hot 
water into the pool), whereas passive samplers were placed 
in the most crowded places with customers and workers, 
near the pool and the workstations to better evaluate the 
concentration at which customers/patients and/or workers 
are exposed.

During the monitoring campaigns, we noted a decreas-
ing trend in the concentration of  SO2 (Fig. 2) from Janu-
ary to February (means of 0.65 ± 0.04 mg/m3 for outdoor 
and 0.7 ± 0.2 mg/m3 for indoor) to March–April (means 
of 0.2 ± 0.1 mg/m3 for outdoor and 0.3 ± 0.1 mg/m3 for 
indoor), without significant differences between the indoor 
and outdoor environments (p-value > 0.05). The presence 
of this pollutant is mainly related to anthropogenic emis-
sions from industries and household heating, and not to 
the thermal spring itself.

The air concentration values for  SO2 obtained by pas-
sive sampling were always lower than the exposure limits 
in workplaces, expressed as both TLV-TWA (threshold 
limit value-time-weighted average), that is 5.2 mg/m3, 
and TLV-STEL (threshold limit value-short-term expo-
sure limit), that is 13.3 mg/m3. Conversely, active sam-
pling showed air concentrations closer to the TLV-TWA 
limit. In literature, studies involving exercising asthmatics 
indicate that a proportion of the population experience 
changes in pulmonary function and respiratory symptoms 
after periods of exposure to  SO2 as short as 10 min. For 
instance, in Canada an increase of 11% in hospitalizations 
due to respiratory diseases from 1995 to 2000 in children 
from 0 to 14 years was reported after exposure to 10 μg/
m3 of sulphur dioxide (Li et al. 2019). Based on this evi-
dence, the World Health Organization (WHO) air quality 
guidelines revised the  SO2 guideline, adopting a prudent 
precautionary limit of 20 µg/m3 for 24-h periods and a 
value of 500 µg/m3 for 10-min averages (World Health 
Organization 2006). Moreover, industrial activities, e.g. 
oil and gas extraction, contribute to the increase of air 

concentration of  H2S and  SO2 in rural areas (Burstyn et al. 
2007). In Italy, regulatory limits are set to 350 µg/m3 as 
the hourly average (not to be exceeded more than 24 times 
per calendar year) and 125 µg/m3 for daily averages (not to 
be exceeded more than 3 times per calendar year) (D.Lgs 
155/2010 2010). All the recorded concentrations of  SO2 
in this study exceeded these national limits.

In these thermal-mineral springs, various effects are pre-
sent at the same time: water, high humidity and temperature. 
These conditions promoted  SO2 solubility in water to give 
an acidic solution, capable of reacting with other chemical 
compounds present in that environment. These representa-
tive pollutants are strongly linked to an increase in tempera-
ture and visitors in correspondence to spring. Moreover, the 
indoor environments (reception, bar, restaurant room etc.) 
were characterized by the presence in the air of acidic pol-
lutants such as  SO2 and  H2S that cause corrosion of metals 
present in electronic devices, resulting in faster degradation 
of the indoor environments. Both  SO2 and  H2S are strongly 
corrosive agents, so their presence in indoor air must be 
monitored to prevent the degradation of metal-containing 
devices (Cox and Lyon 1994; Kobus 2000; Wen et al. 2018).

On the other hand, in the case of  H2S (Fig. 3), no signifi-
cant variation of concentrations was noticed between the sam-
pling period of January–February and that of March–April 
(p-value > 0.05), while a significant difference between indoor 
(overall mean of 0.23 ± 0.05  mg/m3) and outdoor (over-
all mean of 1.0 ± 0.5 mg/m3) concentrations was observed 
(p-value < 0.05). This is representative of the fact that the pres-
ence of  H2S is specific to the thermal springs.

European and national legislation do not define limit val-
ues or air quality target values for  H2S. In the absence of spe-
cific regulatory references, it is standard practice to refer to 
the WHO guideline values. The atmospheric concentration 
limit values are 7 ppm (9.76 mg/m3) for a 30-min average 
to olfactory pollution and 150 ppm (209 mg/m3) for a daily 
average to prevent eye irritation (World Health Organization 
2003). Furthermore, in Europe the Scientific Committee on 
Occupational Exposure Limits (SCOEL) recommended a 
TLV-TWA of 5 ppm (7 mg/m3) and a TLV-STEL of 10 ppm 
(14 mg/m3) (SCOEL/SUM/124 2007 2007; Elwood 2021). 
Air concentrations of  H2S from 0.2 to 29.4 ppm (0.3–41 mg/
m3), noticeably higher than these TWA and STEL, were 
detected in thermal springs located in Ardabil Province, in 
a structure with several indoor pools (Fazlzadeh et al. 2018). 
The thermal site of Contursi Terme is characterized by out-
door pools only, so lower concentrations of  H2S in the air 
are expected. In fact, passive sampling allowed us to detect 
concentrations ranging from 0.11 to 1.90 mg/m3 (Fig. 3) and 
these values present no risks for human health. These results 
can be explained by the fact that the air concentration of  H2S 
is strongly related to the thermal spring emissions, while that 
of  SO2 is probably derived also by other emission pathways.
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However, active sampling performed near the spring 
source revealed that concentrations were, in some cases, 
higher than the limits in the working environment for both 
 H2S and  SO2.

This study has some limitations. First, the investigation 
is limited to monitoring a single site that has specific micro-
climate conditions and structural elements that are different 
from those of other thermal natural springs. Second, this 
study ruled out some factors that can affect local employee 
health during work hours in a thermal spring such as dietary 
habits, job description, lifestyle and smoking. Furthermore, 
numerous workers’ psychological, physical and health con-
ditions were not included in the data collection. However, in 
this study, we focused on assessing the air quality, in terms 
of  H2S and  SO2 concentrations, to which workers at this spa 
complex are daily exposed. We believe that this approach is 
the first stage in safeguarding the health of the workers and 
to which should be given more consideration. To our knowl-
edge, only one other example of  H2S concentration monitor-
ing in a spa area can be found in the literature. Undoubtedly, 
the above limitations must be taken into account in a quanti-
tative assessment of the health effects on workers as a result 
of exposure to these pollutants.

Conclusion

The chemical identification of pollutants in a particular 
environment, such as a thermal spring, and control of their 
concentration are essential to suggest new and improved pro-
cedures of safety and guidelines for professional activities. 
Although the water of thermal structures provides beneficial 
effects on human health, air monitoring, performed near the 
spring source, showed that concentrations of sulphurous 
compounds (both  H2S and  SO2) are in some cases higher 
than the limits in the working environment. Therefore, fur-
ther investigations and regulations are needed to estimate 
the occupational risk and ensure workers’ safety in these 
particular working places.
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