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Abstract
Mosquitoes are the underlying cause of various public health and economic problems. In this study, patterns of mosquito 
occurrence were analyzed based on landscape and meteorological factors in the metropolitan city of Seoul. We evaluated the 
influence of environmental factors on mosquito occurrence through the interpretation of prediction models with a machine 
learning algorithm. Through hierarchical cluster analysis, the study areas were classified into waterside and non-waterside 
areas, according to the landscape patterns. The mosquito occurrence was higher in the waterside area, and mosquito abun-
dance was negatively affected by rainfall at the waterside. The mosquito occurrence was predicted in each cluster area based 
on the landscape and cumulative meteorological variables using a random forest algorithm. Both models exhibited good 
performance (both accuracy and AUROC > 0.8) in predicting the level of mosquito occurrence. The embedded relationship 
between the mosquito occurrence and the environmental factors in the models was explained using the Shapley additive 
explanation method. According to the variable importance and the partial dependence plots for each model, the waterside 
area was more influenced by the meteorological and land cover variables than the non-waterside area. Therefore, mosquito 
control strategies should consider the effects of landscape and meteorological conditions, including the temperature, rainfall, 
and the landscape heterogeneity. The present findings can contribute to the development of mosquito forecasting systems in 
metropolitan cities for the promotion of public health.

Keywords  Mosquito occurrence pattern · Prediction model · Landscape conditions · Meteorological conditions · Shapley 
additive explanations

Introduction

Mosquitoes are notorious insect species that pose a major 
threat to human health, killing 725,000 people annually 
(World Health Organization 2018). Mosquito-associated 
mortality is attributed to their role as vectors for disease 
transmission. Among the various mosquito species, three 
genera are known to be the main vectors of viral diseases 
(World Health Organization 2018). Aedes causes Chikun-
gunya, dengue fever, and carries the Zika virus. Anopheles 
causes malaria, and Culex is known as a vector for Japanese 

encephalitis and West Nile fever. These mosquito-borne 
diseases have spread worldwide, posing a global threat to 
human health (Gubler et al. 2001; Kindhauser et al. 2016).

Various studies have been conducted on mosquitoes 
(Hales et al. 2002; Hay et al. 2002; Kearney et al. 2009; 
Lebl et al. 2013; Maguire et al. 1999; Sutherst 2004). The 
distribution and occurrence of mosquitoes are determined 
by various factors, including human activities such as travel 
and trade (Reiter 2001) as well as changes in the habitat, 
temperature, and rainfall (Epstein 2002; Ruiz et al. 2010, 
Vandyk and Rowley 1995). An increase in temperature and 
rainfall reduction can induce the occurrence of mosquito-
borne diseases (Ruiz et al. 2010). Benedum et al. (2018) pre-
viously developed a statistical model for the effect of rainfall 
flushing on dengue transmission in Singapore.

With recent advances in computational science, 
machine learning methods are frequently employed in 
the study of mosquito occurrence. Machine learning 
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algorithms have been used to understand and predict 
various ecological phenomena (Olden et al. 2008). Such 
algorithms have been used for the selection of important 
variables for mosquito distribution among climate data 
(Wieland et al. 2017). Decision trees and random forest 
models have also been employed to predict mosquito dis-
tribution (Früh et al. 2018; Kwon et al. 2015). Artificial 
neural networks for the prediction of mosquito abundance 
and mosquito-borne disease incidence have also been pre-
viously described (Laureano-Rosario et al. 2018; Lee et al. 
2016). Studies on mosquito control have also implemented 
maximum entropy modeling and artificial neural networks 
(Joshi and Miller 2021). Based on these studies, mosquito 
forecasting systems have been implemented as part of 
public health programs in various countries. For example, 
the Northeast Regional Climate Center in the USA fore-
casted a potential mosquito population in the Northeastern 
United States (Gong et al. (2011); http://​www.​nrcc.​corne​
ll.​edu/​indus​try/​mosqu​ito/). In Southeast Asia, a dengue 
forecasting model satellite-based system (D-MOSS) was 
constructed to develop a dengue fever early warning sys-
tem (Colón-González et al. 2021).

Various interpretable machine learning methods have 
recently been developed to overcome weaknesses in machine 
learning algorithms which are a lack of interpretability and 
causality occurring between the input and the output val-
ues of the models (Arrieta et al. 2020, Das and Rad 2020). 
Among them, the partial dependence plot (PDP) (Fried-
man 2001; Greenwell et al. 2018) has been widely used to 
graphically visualize non-linear, non-monotonous responses 
of model outputs to changes in an independent variable (Lee 
et al. 2021a, 2019). Shapley additive explanation (SHAP) 
(Lundberg and Lee 2017) is frequently used to evaluate the 
contribution of input variables to an individual prediction 
because of its distinctive advantages such as clear interpre-
tation, easy implementation, and it being applicable to any 
type of data (Cha et al. 2021; Linardatos et al. 2021; Molnar 
2022; Razavi et al. 2021).

South Korea is among the countries under constant threat 
of mosquito-borne disease. Korean patients often present 
with mosquito-transmitted malaria and Japanese encephali-
tis. In particular, the number of patients infected with Japa-
nese encephalitis has steadily increased since 2017 (Korea 
Centers for Disease Control and Prevention 2019). There-
fore, many studies have been conducted in South Korea on 
mosquito distribution (Jeong and Lee 2003, Lee and Hong 
1995) and the relationship between mosquitoes and envi-
ronmental conditions, including meteorological and spatial 
factors (Chae et al. 2014, Kim and Park 2013, Shin 2011). A 
locally developed mosquito forecasting system was recently 
implemented in Seoul, the metropolitan capital of Korea 
(Park and Im 2018), and is to be implemented throughout 
the country.

However, urban areas such as Seoul Metropolitan City 
have different mosquito occurrence characteristics from the 
natural environment, because many factors such as land-
scape, land use, meteorological factors, and mosquito con-
trol activities affect the occurrence of mosquitos. Therefore, 
to effectively evaluate the mosquito occurrence in urban 
areas, this information must be considered. However, there 
are limited studies that reveal the relationship between mos-
quitoes and the urban environment.

The present study was conducted to support the Korean 
mosquito forecasting system and to suggest relevant predic-
tive variables in urban areas through interpretable machine 
learning approaches. We analyzed the patterns of mos-
quito occurrence in relation to meteorological factors and 
employed a machine learning algorithm to predict the occur-
rence of urban mosquitoes with interpretable methods.

Materials and methods

Mosquito abundance

Mosquito abundance data were obtained from the Public 
Health Center of Yeongdeungpo-gu, Seoul, South Korea. 
Seoul (centroid: longitude 126.992, latitude 37.552) is 
the capital of South Korea with a basin topography and is 
located in the midwest of the Korean Peninsula. Accord-
ing to the Köppen–Geiger climate classification system, the 
Seoul climate is a humid continental climate with snow, dry 
winters, and hot summers (Kottek et al. 2006) (In Seoul, 
the annual average temperature is 12.5 ℃, and annual pre-
cipitation is 1417.9 mm). The Han River also flows through 
Seoul. Yeongdeungpo-gu (centroid: longitude 126.910, 
latitude 37.522) is an administrative district located south 
of the Han River in Seoul. It is mostly flat land, with many 
factories and residences.

The mosquito abundance was measured daily using auto-
matic collecting machines, which form part of the digital 
mosquito monitoring system (DMS, Environmental Tech-
nology & Development; http://​www.​etnd.​co.​kr/). These 
were placed at 21 monitoring sites (Fig. 1) during the night 
(6:00  pm–7:00 am) from May to October over 5  years 
(2011–2015) (Kwon et al. 2015). The mosquito data for four 
of these years (2011–2013, 2015) were used in this study. 
The data from 2014 were excluded because of many unex-
pected values caused by problems with the DMS calibration.

The DMS attracted female mosquitoes by diffusing car-
bon dioxide (300 mL/min) and automatically counted the 
mosquitoes passing through the observation cage using 
an infrared beam sensor. The data were sent to the com-
puter server via a code division multiple access method 
in real time and then stored on the database server. The 
DMS was effective in counting the mosquito abundance, 
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with a high correlation coefficient (r > 0.92) between the 
manual and automatic counts of the mosquito numbers 
(Kwon et al. 2015; Yi et al. 2014). Abnormal mosquito 
abundance values, namely, unrealistic values, were attrib-
uted to mechanical malfunction or other organisms, such 
as spiders, and were excluded from the analysis. Days with 
more than 300 individuals being counted were considered 
outliers based on the distribution of the total daily mos-
quito abundance, consultation with experts, and the litera-
ture (Kwon et al. 2015). Outliers or missing values were 
replaced with an average value between the previous and 
the following days.

The DMS could not distinguish species in the data trans-
mitted because it only counted the number of mosquitoes 
passing through the observation cage. According to mos-
quito monitoring data collected with light traps from 2011 
to 2017 in Seoul, Korea (https://​news.​seoul.​go.​kr/​welfa​re/​
mosqu​ito), 13 species were recorded, with Culex pipiens 
pallens accounting for 92.5% of the total abundance, fol-
lowed by Aedes koreicus (5.3%) and Aedes vexans nippo-
nii (1.0%). Although there was annual variation in the total 
abundance of other species, their abundance was less than 
1.0% of the total. Therefore, mosquito abundance in this 

study mainly represents the abundance of C. pipiens pallens, 
which is the dominant mosquito species in Seoul.

Environmental data

Meteorological data including the daily average temperature, 
daily minimum temperature, daily maximum temperature, 
daily rainfall, and the number of rainfall days were obtained 
using automatic weather stations (AWSs) operated by the 
Korea Meteorological Administration (https://​data.​kma.​go.​
kr/). The four AWSs (AWS 405, 410, 418, and 510) were 
located in the study area (Fig. 1), and the meteorological data 
measured at the AWS nearest to the mosquito monitoring site 
were used in the study (AWS 405, sites A, B, and C; AWS 
410, sites O, P, Q, R, S, T, and U; AWS 418, sites K and L; 
AWS 510, sites D, E, F, G, H, I, J, M, and N). During the 
study period from May to October (Table 1), the daily aver-
age temperature (± standard deviation) was 22.5 °C (± 4.6), 
the minimum temperature was 18.8 °C (± 5.0), the maximum 
temperature was 27.0 °C (± 4.7), and the rainfall was 6.1 mm 
(± 21.2), respectively. Meteorological data for 60 cumula-
tive days (1, 2, ~ , 60 days) were used to create a cumulative 
meteorological dataset. For example, a cumulative five days 

Fig. 1   Location of 21 mosquito monitoring sites (A − U) in Yeong-
deungpo-gu, Seoul, South Korea. Colors within circles show each 
land cover type within a radius of 400 m. The number in parenthesis 

indicates a cluster number defined in the hierarchical cluster analy-
sis (Fig. 2). Four automatic weather stations were located in the study 
area
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of rainfall on June 10 represented the cumulative rainfall for 
the five days from June 5th to June 9th.

The landscape data for the monitoring sites were obtained 
from a digital map provided by the Environmental Geo-
graphic Information Service in Korea (https://​egis.​me.​go.​
kr) through extracting land coverage (%) within a 400-m 
radius using a geographic information system (QGIS 3.12; 
QGIS.org (2021)) (Fig. 1). This digital land use map was 
constructed using an aerial orthophotograph of Korea 
(0.25 × 0.25 m2 resolution), and the land cover was catego-
rized into a total of 41 classes by the Ministry of Environ-
ment, Korea. In this study, we used 13 land cover classes 
(seven major classes, urban area, agriculture land, forest, 
grass area, barren area, wetland, and water; and six detailed 
classes:,esidential and other areas in the urban area, nature 
and artificial area in a barren area, stream/river, and lake/
pond in water). Distance to the rivers was also calculated for 
each DMS monitoring site. The radius was chosen accord-
ing to the average flight distance (402 m) of C. pipiens pal-
lens (Verdonschot and Besse-Lototskaya 2014), which is the 
dominant species in this area.

Data analysis

The habitat conditions of mosquitoes are important 
for determining their occurrence (Asigau and Parker 
2018, Montagner et al. 2017). Therefore, 21 mosquito 

monitoring sites in the study were classified based on 
their landscape conditions with land coverage being 
divided into 13 classes using hierarchical cluster analy-
sis (HCA) with a Euclidean distance measure and the 
Ward linkage method (Fig. 2). The land cover data were 
standardized prior to the HCA. The same data were 
used for non-metric multidimensional scaling (NMDS), 
which was conducted to analyze the relationships 
among the monitoring sites according to the landscape 
conditions.

The effects of the meteorological factors on mosquito 
occurrence were evaluated using Spearman rank correla-
tion analysis and the Mann–Whitney U test. Cumulative 
meteorological data were used to explain the time delay 
effect of meteorological factors on the mosquito abun-
dance instead of time-lagged data because the cumulative 
meteorological data showed a stronger correlation with the 
mosquito abundance than the time-lagged meteorological 
variables.

We analyzed the effects of the meteorological factors 
on mosquito occurrence and abundance. The mosquito 
abundance, difference in abundance, and the change rate 
(%) of abundance were compared during meteorological 
events such as rainy weather (continuous rainy days) and 
dry weather (more than two days without rain) using the 
pairwise Mann–Whitney U test.

Table 1   Summary of 
meteorological data 
(mean ± standard deviation) 
measured at each automatic 
weather station (AWS) during 
the study period

Variables Weather station Mean

Year AWS 510 AWS 418 AWS 410 AWS 405

Daily average temperature (°C) 2011 21.8 ± 4.6 21.9 ± 4.5 21.3 ± 4.5 21.8 ± 4.7 21.7 ± 4.6
2012 22.8 ± 4.6 23.1 ± 4.6 22.3 ± 4.6 22.8 ± 4.7 22.7 ± 4.6
2013 22.8 ± 4.8 22.8 ± 4.7 22.3 ± 4.7 22.8 ± 4.9 22.7 ± 4.8
2015 22.9 ± 4.3 22.8 ± 4.3 22.4 ± 4.3 22.8 ± 4.4 22.7 ± 4.3
Mean 22.6 ± 4.6 22.7 ± 4.6 22.1 ± 4.5 22.6 ± 4.7 22.5 ± 4.6

Daily minimum temperature (°C) 2011 18.4 ± 5.0 18.3 ± 4.9 17.7 ± 5.1 18.1 ± 5.2 18.1 ± 5.0
2012 19.4 ± 4.8 19.5 ± 4.8 18.5 ± 4.8 19.2 ± 4.9 19.1 ± 4.8
2013 19.4 ± 5.3 19.3 ± 5.1 18.6 ± 5.3 19.2 ± 5.4 19.1 ± 5.3
2015 19.2 ± 4.5 19.2 ± 4.5 18.1 ± 4.6 18.8 ± 4.7 18.9 ± 4.6
Mean 19.1 ± 4.9 19.1 ± 4.8 18.2 ± 5.0 18.8 ± 5.1 18.8 ± 5.0

Daily maximum temperature (°C) 2011 26.0 ± 4.7 26.4 ± 4.8 25.6 ± 4.6 26.1 ± 4.8 26.0 ± 4.7
2012 27.1 ± 4.8 27.7 ± 4.8 26.7 ± 4.7 27.3 ± 4.8 27.2 ± 4.8
2013 27.1 ± 4.7 27.0 ± 4.8 26.8 ± 4.5 27.4 ± 4.8 27.1 ± 4.7
2015 27.5 ± 4.5 27.3 ± 4.6 27.4 ± 4.5 27.9 ± 4.6 27.5 ± 4.5
Mean 26.9 ± 4.7 27.1 ± 4.8 26.6 ± 4.6 27.2 ± 4.8 27.0 ± 4.7

Daily rainfall (mm) 2011 9.0 ± 31.5 8.5 ± 28.2 9.5 ± 30.2 7.9 ± 29.5 8.7 ± 29.8
2012 7.2 ± 22.9 6.7 ± 22.1 7.7 ± 25.2 7.2 ± 22.1 7.2 ± 23.1
2013 5.6 ± 17.3 5.7 ± 16.9 5.5 ± 18.0 5.1 ± 15.7 5.5 ± 17.0
2015 3.1 ± 8.9 3.0 ± 9.0 2.6 ± 7.9 3.0 ± 8.7 2.9 ± 8.6
Mean 6.2 ± 21.8 6.0 ± 20.4 6.3 ± 22.1 5.8 ± 20.5 6.1 ± 21.2
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Prediction model for mosquito occurrence 
and evaluation

A model using a random forest algorithm (RF), which is 
a machine learning method, was developed to predict the 
daily mosquito occurrence under two different landscape 
conditions defined in the HCA. RF is a useful method for 
the classification and prediction of ecological data with a 
high level of accuracy (Cutler et al. 2007; Lee et al. 2020). 
In the previous study (Kwon et al. 2015) conducted at the 
same study sites, the RF model showed a better performance 
in predicting the mosquito occurrence than other machine 
learning methods such as the support vector machine and the 
classification and regression tree. Therefore, we used the RF 
model as a prediction model algorithm in this study. Dur-
ing the modeling process, the mosquito abundance at each 
monitoring site was categorized into four levels according to 
the criteria of the mosquito forecast system in Seoul, South 
Korea (http://​news.​seoul.​go.​kr/​welfa​re/​mosqu​ito) (Table 2).

To exclude multicollinearity among the meteorologi-
cal and landscape variables, only variables that were 
selected based on a variance inf lation factor (VIF; 
VIF < 5) were used in the RF models for the different 
clusters defined in the HCA. Therefore, the depend-
ent variables were different between clusters. In the RF 
models, the daily mosquito level was set as the depend-
ent variable, whereas the selected meteorological and 
landscape variables were used as independent variables 
(Table 3). Among the 25 independent variables selected, 

nine variables including the month (mosquito occur-
rence date) and the cumulative rainfall for 1 and 4 days 
were used in both models of the two clusters defined 
in the HCA; eight variables including the cumulative 
minimum temperature for 1 and 56 days, as well as the 
cumulative rainfall for 12 and 60 days, were only used 
in the RF model for cluster 1. Eight variables, including 
the cumulative minimum temperature for 13 days and 
the cumulative rainfall for 2 and 14 days, were used in 
the RF model for cluster 2.

Two RF models were developed for each cluster, and the 
mosquito occurrence at each monitoring site was predicted 
for each cluster. For each cluster, the datasets were divided 
into two subsets for training and testing the models at a 
ratio of 7:3 by considering the monitoring sites and the 
mosquito occurrence levels. The accuracy (ACC) and the 
area under the receiver operating characteristic (AUROC) 
curve value were used to evaluate the performance of the 
RF models for the mosquito occurrence levels. In this 
study, ACC and AUROC curve value mean balanced 
accuracy and multi-class AUROC curve value are suitable 
indices for multi-class datasets (Grandini et al. 2020, Hand 
and Till 2001, Sokolova and Lapalme 2009). There is no 
universal evaluation value for ACC. However, empirically, 
when ACC is 0.8 or more, it is considered to be high accu-
racy. If the AUROC curve value of the model is more than 
0.7, the model is considered to have a good performance for 
prediction (Greiner et al. 2000; Ray et al. 2010).

Fig. 2   a Classification of mosquito monitoring sites based on envi-
ronmental conditions with a hierarchical cluster analysis via Euclid-
ean distance and Ward linkage method. b Ordination of monitoring 
sites on non-metric multidimensional scaling with Euclidean dis-

tance. Only some variables showing statistically significant differ-
ences were displayed. Abbreviations for landscape variables are given 
in Table 3
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Evaluation of variables on the mosquito occurrence

In this study, we used SHAP to interpret the RF models 
developed. The SHAP approach is an emerging methodol-
ogy to identify and explain the internal structures of the 

black-box model such as machine learning models, provid-
ing strong interpretability (Abdollahi and Pradhan 2021, 
Cha et al. 2021, Lundberg and Lee 2017). The SHAP value 
of the SHAP method is the conditional Shapley value 
based on game theory and represents the quantitative con-
tribution of each variable to response variable prediction 
(Lundberg and Lee 2017).

Using the SHAP method, the importance of variables 
in mosquito occurrence and the relationship between the 
mosquito occurrence levels and the dependent variables 
(meteorological and landscape variables) in the RF models 
were evaluated through variable importance and partial 
dependence plots (PDPs). In this evaluation, SHAP values 
are used as a variable contribution instead of Gini impor-
tance in the importance calculation, and as the average 
response to the independent variables in PDPs (Liaw and 

Table 2   Definition of mosquito levels and intervals in the mosquito 
forecast system in Seoul, Korea

* Number of mosquitoes (Individual/day per station)

Level Range (n*) Description

1 0 ≤ n < 30 Comfortability
2 30 ≤ n < 60 Attention
3 60 ≤ n < 90 Caution
4 90 ≤ n ~  Displeasure

Table 3   Environmental 
variables considered in the 
study. Variables used in the 
mosquito occurrence prediction 
via random forest models. 
Numbers (1–60) following 
variable names indicate the 
cumulative days for each 
corresponding variable. Only 
variables selected based on 
the variance inflation factor 
(VIF; VIF > 5) were used in the 
prediction models

Category Variable Abbreviation Model for 
Cluster 1

Model for 
Cluster 2

Dependent Mosquito Mosquito levels (1, 2, 3, 4) √ √
Independent Time Month Month √ √

Meteorology Cumulative minimum temperature 1 Tmin 1 √
Cumulative minimum temperature 13 Tmin 13 √
Cumulative minimum temperature 56 Tmin 56 √
Cumulative rainfall 1 Rain 1 √ √
Cumulative rainfall 2 Rain 2 √
Cumulative rainfall 4 Rain 4 √ √
Cumulative rainfall 12 Rain 12 √
Cumulative rainfall 14 Rain 14 √
Cumulative rainfall 60 Rain 60 √
Cumulative number of rainy day 1 Rday 1 √ √
Cumulative number of rainy days 2 Rday 2 √ √
Cumulative number of rainy days 5 Rday 5 √ √
Cumulative number of rainy days 31 Rday 31 √
Cumulative number of rainy days 43 Rday 43 √
Cumulative number of rainy days 60 Rday 60 √

Land coverage Agricultural area Agriculture √
Barren area (total) Barren √ √
Barren area (nature) Barren (N.) √ √
Barren area (artificial) Barren (A.)
Forest area Forest √
Grass area Glass √
Riparian vegetation Riparian √
Urban area (total) Urban √
Urban area (residential) Urban (R.) √ √
Urban area (other) Urban (O.)
Water Water
Water (stream) Water (S.)
Water (pond) Water (P.)

Geography Distance to rivers Dist √
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Wiener 2002, Molnar 2022). Therefore, a high and positive 
SHAP value indicates that the variable highly and posi-
tively affects the output of the prediction model. In this 
study, the SHAP value was calculated using the kernel 
SHAP method.

All the analyses and the statistical tests used in this study 
were conducted using the R program (R Core Team 2021) with 
specific packages. The packages “stats” (R Core Team 2021) 
and “dunn.test” (Dinno 2017) were used for non-parametric 
statistics tests (the Mann–Whitney U test, Kruskal–Wallis test, 
and Dunn’s test) and HCA. The package “vegan” (Oksanen 
et al. 2020) was used for NMDS, the package “randomForest” 
(Liaw and Wiener 2002) was used for the RF modeling, the 
package “pROC” (Robin et al. 2011) was used to calculate the 
multiclass AUROC value, and the package “shapper” (Mak-
symiuk et al. 2020) was used to calculate the SHAP value.

Results

Characteristics of mosquito occurrence 
and relationship with the environment

The 21 monitoring sites were classified into two clusters 
via HCA, based on the environmental conditions (Fig. 2). 
According to the NMDS, cluster 1 was mainly affected 
by the proportion of urban (total urban, residential, and 
other) areas, agricultural areas, and the distance to the 
rivers from the monitoring site, whereas cluster 2 was 
strongly influenced by the proportion of water, stream, 
and grass areas.

Changes in the daily mosquito abundance in each 
cluster and the meteorological factors (temperature and 
rainfall) were analyzed (Fig. 3). Mosquito data from 2011 
were not available for cluster 2 because the DMS for this 
cluster operated since 2012 (Fig. 3a). The daily mosquito 
abundance was generally high in the summer and autumn 
for both clusters. Rainfall was also high in the summer 
and autumn, with heavy rain occurring mainly from July 
to September. The annual rainfall amount decreased from 
1645.5 mm in 2011 to 531.8 mm in 2015. The daily mos-
quito abundance was significantly different between the 
two clusters (Mann–Whitney U test, p < 0.001), with a 
higher abundance in cluster 2 than in cluster 1.

The average mosquito abundance for both clusters dis-
played a positive correlation with most cumulative meteoro-
logical factors, particularly with cumulative meteorological 
factors (r = 0.092–0.585, p < 0.05), to a greater extent than 
with the time-lagged meteorological factors (r = 0.079–0.551, 
p < 0.05) (Fig. 4). Therefore, cumulative meteorological vari-
ables were used in the RF modeling to predict the mosquito 
occurrence. The mosquito abundance for cluster 1 had the 
strongest correlation with the cumulative average temperature 

for 53 days (r = 0.525, p < 0.001), the cumulative minimum 
temperature for 56 days (r = 0.502, p < 0.001), the cumula-
tive maximum temperature for 53 days (r = 0.551, p < 0.001), 
the cumulative rainfall for 60 days (r = 0.233, p < 0.001), and 
the cumulative number of rainy days for 60 days (r = 0.367, 
p < 0.001). However, the mosquito abundance in cluster 2 
had the highest correlation coefficient with the cumulative 
average temperature for 15 days (r = 0.585, p < 0.001), the 
cumulative minimum temperature for 13 days (r = 0.568, 
p < 0.001), the cumulative maximum temperature for 15 days 
(r = 0.574, p < 0.001), the cumulative rainfall for 14 days 
(r = 0.288, p < 0.001), and the cumulative number of rainy 
days for 31 days (r = 0.445, p < 0.001).

During the study period, continuous rain was observed for 
up to 12 days in the areas of both clusters. Dry weather (days 
without rain) lasted for 57 days and 19 days in the areas of 
cluster 1 and cluster 2, respectively. Although the mosquito 
abundance did not show a statistically significant differ-
ence based on meteorological phenomena in either cluster 
(Table S1), the negative effects of rainfall on the mosquito 
abundance were observed in cluster 2 (Fig. 5). The change 
rate of the mosquito abundance was significantly different 
before and after rainy weather (pairwise Mann–Whitney U 
test, p < 0.05) when there had been no rain before the period 
of rainy weather for more than 4 days.

Effect of environmental variables on the mosquito 
occurrence prediction

Based on the cumulative meteorological and landscape 
variables in the test datasets, the RF models predicted the 
mosquito occurrence levels in each cluster and showed a 
high prediction performance (Fig. 6). For the test dataset, the 
ACC was 0.895 and 0.870 for clusters 1 and 2, respectively, 
and the AUROC values were 0.827 and 0.808, respectively.

The influence of the environmental variables on mos-
quito occurrence was evaluated using SHAP values (Fig. 7). 
Variables such as the cumulative minimum temperature for 
56 days, the cumulative rainfall for 60 days, and the cumula-
tive number of rainy days for 43 days strongly affected the 
mosquito occurrence levels, especially the low level of mos-
quito occurrence in cluster 1. The distance to rivers, residen-
tial areas, and barren areas were also important landscape 
variables. In the RF model for cluster 2, the barren area 
was the most important variable, followed by the cumulative 
minimum temperature for 13 days, the cumulative number 
of rainy days for 60 days, and the residential area. These 
variables strongly affected the high level of mosquito occur-
rence in cluster 2.

The effect of environmental variables on the mosquito 
occurrence levels in both RF models was evaluated using 
partial dependence plots (PDPs) with SHAP values (Fig. 8). 
The responses of the SHAP values were different for the low 
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and high mosquito levels in each model. With the increase 
in the proportion of barren area in both models, the SHAP 
values decreased for mosquito level 1 and increased for 
levels 2 and 3 in cluster 1, as well as for level 4 in clus-
ter 2 (Fig. 8a–b). Meanwhile, the SHAP values increased 
for level 4, while decreasing for level 1 with an increase in 
the proportion of residential area (Fig. 8c–d). Under higher 
cumulative minimum temperatures, the mosquito occur-
rence shifted from low to high levels. In particular, the 

SHAP values for mosquito level 4 increased considerably 
in cluster 2 (Fig. 8e–f). The responses of the SHAP values 
to cumulative rainfall were higher in cluster 1 than in cluster 
2. In the model for cluster 1, the SHAP values for level 1 
were high, with low and high amounts of cumulative rainfall 
(Fig. 8g–h). This trend was also observed in the PDP for the 
cumulative number of rainy days. However, the effect of the 
cumulative number of rainy days was greater in the model 
for cluster 2 than for cluster 1 (Fig. 8i–j).

Fig. 3   Changes in the daily mosquito abundance and the meteorologi-
cal factors (temperature and rainfall) in 2011 (a), 2012 (b), 2013 (c), 
and 2015 (d). The mosquito abundance was averaged with values of 
each site for each cluster. The temperature and rainfall are presented 

as the average values for four automatic weather stations. Gray area 
and vertical lines indicate the time when the digital mosquito moni-
toring system was not operated
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Discussion

Landscape effects

Mosquito occurrence is largely determined by the environ-
mental conditions (Chaves et al. 2011; Cleckner et al. 2011; 
Kwon et al. 2015). In this study, it depended on the dif-
ferences between these conditions in the landscapes being 
monitored. Twenty-one mosquito monitoring sites were clas-
sified into two clusters based on the landscape conditions. 
Cluster 1 was characterized by a non-waterside area with a 
residential area, whereas cluster 2 was characterized by the 
waterside with wetland and grass areas (Fig. 2). A higher 
mosquito abundance was detected in the waterside area than 
in the non-waterside area (Fig. 3). These results support pre-
vious findings showing that mosquitoes prefer wet habitats, 
with mosquito abundance having a positive association with 
the rates of grass area and wetland in their habitat (Chuang 
et al. 2011; Webb et al. 2016). In the present study, two dif-
ferent prediction models for the occurrence of mosquitoes 
were developed based on environmental variables.

Meteorological conditions

Meteorological factors greatly affected the mosquito occur-
rence. The temperature has a major influence on species 
development and mortality rates (Beck-Johnson et al. 2017; 
Dosland et al. 2006), and rainfall provides a suitable habi-
tat for mosquitoes (Chuang et al. 2011; Webb et al. 2016; 
Wilke et al. 2017). The minimum temperature is of par-
ticular importance for the development of poikilotherms, 
including mosquitoes (Higley and Haskell 2001; Lindblade 
et al. 2000). Therefore, the daily minimum temperature 
was employed in our prediction model by considering its 
ecological influence and covariance with other temperature 
variables.

The development of mosquitoes reflects the cumulative 
conditions in their environment, and their occurrence dis-
plays time-delayed responses to changes in the meteorologi-
cal conditions (Hunter and Price 1998, Lebl et al. 2013; Park 
et al. 2003). In this study, the cumulative meteorological 
factors had a stronger correlation with mosquito abundance 
than the time-lagged variables (Fig. 4), highlighting the 

Fig. 4   Changes in the Spearman rank correlation between the mos-
quito abundance and the environmental factors according to the dif-
ference in cumulative or time-lag days for each cluster. a Average 
temperature, b minimum temperature, c maximum temperature, d 

rainfall, and e number of rainy days. The x-axis presents the cumula-
tive number of days and lagged number of days for each meteorologi-
cal variable. The arrows in the figure present the day with maximum 
correlation coefficients in each cluster
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importance of their contribution to mosquito occurrence. 
Herein, the cumulative meteorological values were used to 
explain the delayed and cumulative effects on the mosquito 
occurrence in the prediction models.

Although most cumulative values of the meteorological 
variables were positively correlated with the mosquito abun-
dance in both clusters, the strength and trend of the correla-
tions were different between areas (i.e., clusters) (Fig. 4). 
The non-waterside area (cluster 1) showed a high correlation 
coefficient on high cumulative temperature days, whereas 
the waterside area (cluster 2) had a high coefficient on low 
cumulative days for the three temperature types. The effect 
of rainfall was similar to that of temperature.

Rainfall fluctuation negatively affects the growth rate of 
mosquito populations (Yang et al. 2008), and the number 

of rainy days is one of the factors influencing the mosquito 
occurrence (Valdez et al. 2017; Wilke et al. 2017). In this 
study, we observed a negative effect for rainfall on the mos-
quito abundance in waterside areas (Fig. 5). Rainfall patterns 
are an essential determinant of mosquito occurrence because 
they require standing water to survive and reproduce. How-
ever, rainfall beyond certain levels has a negative impact on 
mosquitoes by flushing them out (Benedum et al. 2018). In 
the present study, the rate of change in the mosquito abun-
dance was significantly different under rainy conditions.

Prediction model for mosquito occurrence

Both RF models for the waterside and the non-waterside 
areas in the metropolitan city showed good performance in 
the prediction of the mosquito occurrence. However, the 
contribution of environmental variables differed between the 
models based on the SHAP values (Fig. 7). The cumulative 
meteorological variables and the distance to the rivers were 
important factors in predicting the mosquito occurrence in 
the non-waterside area, whereas land cover variables and 
the cumulative meteorological variables were important 
in the waterside area. The SHAP values for each variable 
were high for low mosquito levels (levels 1 and 2) in the 
non-waterside area model while they were high for the high 
mosquito occurrence levels (levels 1 and 4) in the waterside 
area model. These results reflect the different environmental 
conditions of the study area in the models (Figs. 1–3). The 
SHAP approach revealed that low levels of mosquito occur-
rence in the non-waterside area were strongly affected by 
the meteorological and geographical conditions, whereas the 
low and high levels of mosquito occurrence in the waterside 
area were influenced by the land cover and the meteorologi-
cal environments.

The relationship between the dependent variables and the 
mosquito occurrence levels could be explained using partial 
dependence plots with SHAP values (Fig. 8). The SHAP val-
ues for mosquito occurrence level 1 commonly decreased as 

Fig. 6   Examples of model 
performance with test datasets 
in 2015. a Site P in cluster 1, b 
site K in cluster 2

Fig. 5   Change rate (%) of the mosquito abundance before and after 
a rainy weather in cluster 2. The pairwise Mann–Whitney U test was 
used for the statistical analysis. When the rain did not last for more 
than 4 days before rainy weather, a statistically significant difference 
was observed in the mosquito change rate. Asterisks mean outliers
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a function of the proportion of barren area and the cumula-
tive minimum temperature, presenting a high contribution 
of these factors in the prediction of high mosquito occur-
rence in the waterside and non-waterside areas. A low level 
of mosquito occurrence was predicted based on the effects 
of drought in both areas. When the cumulative rainfall and 
the number of rainy days were low, the SHAP values for 
mosquito level 1 were high. Heavy rain strongly affected the 
prediction of the lowest mosquito level in the model for the 
non-waterside area.

Machine learning model and interpretation

Our results demonstrate that the RF model can be effectively 
used for the prediction of mosquito occurrence based on 
the landscape and meteorological factors. Machine learning 
methods such as RF do not require expert knowledge of the 
system involved because they are based on common machine 
learning algorithms, namely, ensemble learning (Wieland 
et al. 2021), which has exhibited superior performance in 
various research fields (Cuéllar et al. 2020; Kwon et al. 
2015; Lee et al. 2021b).

In general, machine learning methods tend to lack inter-
pretability. Various methods have been developed to over-
come this limitation. Among them, SHAP has received 
considerable attention owing to its advantages, which are 
as follows (Abdollahi and Pradhan 2021, Lundberg and 
Lee 2017, Molnar 2022): (1) the SHAP approach is based 
on the Shapley values from game theory and satisfies three 
feature attributions, namely, local accuracy, missingness, 
and consistency; (2) the SHAP value can be calculated 

by a model-agnostic or model-specific estimation method 
ensuring a broad scope of application or fast calculation; 
and (3) although the SHAP method was developed for a 
local explanation of the model, a global explanation is 
also effectively possible. Therefore, the SHAP approach 
can be used in various ways according to its purpose, such 
as individual conditional expectation, feature importance, 
and feature dependence.

A considerable number of studies from various research 
fields have recently employed the SHAP method. Wieland 
et al. (2021) used it to evaluate the importance of independ-
ent variables in mosquito habitat models. Cha et al. (2021) 
reported that the SHAP method could be used to evaluate 
models and provide management support by determining 
the contribution of environmental variables in the species 
distribution model. Through the SHAP method, our RF 
models accurately described the relationship between mos-
quito occurrence and the environment in both waterside and 
non-waterside areas of the metropolitan city, with plausible 
interpretation.

Conclusions

Many local governments in South Korea have introduced 
mosquito forecasting systems without sufficient considera-
tion of the habitat conditions of mosquitos. However, mos-
quito occurrence is influenced by various environmental 
factors, such as landscape and meteorological variables. 
In this study, we analyzed mosquito occurrence patterns 
in relation to the meteorological factors within the specific 

Fig. 7   Variable importance in the RF models for cluster 1 (a) and cluster 2 (b). Importance was calculated as the mean absolute of the SHAP 
values. Abbreviations for the variables are given in Table 3
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landscape environment and developed a model for the pre-
diction of mosquito occurrence using RF. Mosquito occur-
rence patterns and their relationship with meteorological 
factors differed between the waterside and the non-water-
side areas. The mosquito population in the waterside area 
showed a negative association with rainfall in the case of 
excessive rainfall. The RF models for both areas exhib-
ited good performance in predicting the mosquito occur-
rence levels, both in terms of accuracy and AUROC. The 
relationship between the mosquito occurrence levels and 
the environmental factors was explained through variable 
importance and partial dependence plots using SHAP val-
ues. The waterside area was influenced to a greater extent 
by the meteorological and land cover variables than the 
non-waterside area. Therefore, mosquito control strategies 
should consider the effects of landscape and meteorologi-
cal conditions, including the temperature, rainfall, and the 
landscape heterogeneity. Our study revealed that interpret-
able machine learning methods can contribute to the evalu-
ation of environmental factors on mosquito occurrence as 
well as the development of a mosquito forecasting system 
and public health.
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