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Abstract
Nitrogen dioxide  (NO2) is a major air pollutant with serious environmental and human health impacts. A random forest model 
was developed to estimate ground-level  NO2 concentrations in China at a monthly time scale based on ground-level observed 
 NO2 concentrations, tropospheric  NO2 column concentration data from the Ozone Monitoring Instrument (OMI), and mete-
orological covariates (the MAE, RMSE, and R2 of the model were 4.16 µg/m3, 5.79 µg/m3, and 0.79, respectively, and the 
MAE, RMSE, and R2 of the cross-validation were 4.3 µg/m3, 5.82 µg/m3, and 0.77, respectively). On this basis, this article 
analyzed the spatial and temporal variation in  NO2 population exposure in China from 2005 to 2020, which effectively filled 
the gap in the long-term  NO2 population exposure assessment in China.  NO2 population exposure over China has significant 
spatial aggregation, with high values mainly distributed in large urban clusters in the north, east, south, and provincial capi-
tals in the west. The  NO2 population exposure in China shows a continuous increasing trend before 2012 and a continuous 
decreasing trend after 2012. The change in  NO2 population exposure in western and southern cities is more influenced by 
population density compared to northern cities.  NO2 pollution in China has substantially improved from 2013 to 2020, but 
Urumqi, Lanzhou, and Chengdu still maintain high  NO2 population exposure. In these cities, the Environmental Protection 
Agency (EPA) could reduce  NO2 population exposure through more monitoring instruments and limiting factory emissions.

Keywords Ground-level  NO2 concentration · Random forest model · Long-term  NO2 population exposure assessment · 
Trend analysis · Spatial and temporal variation

Introduction

Nitrogen dioxide  (NO2) plays an important role in free 
radical chemistry and in photochemical processes in the 
troposphere and stratosphere (Crutzen 1979) and can gen-
erate ozone and fine particulate matter through complex 
physicochemical processes (Bidleman 1988; Odum et al. 
1996; Pankow 1987). The products of these complex pro-
cesses, as well as  NO2 itself, can have a profound impact 
on the global environment (Altshuller and Bufalini 1971; 
Atkinson 2000). In addition to its environmental impact, 

 NO2 can also enter the human body and diffuse through 
the alveoli and pulmonary capillaries to all organs of the 
respiratory system. The health effects of  NO2 have been 
studied by many researchers, including the classification 
of  NO2 toxicity (Anyanwu 1999), the complex association 
with various diseases (Achakulwisut et al. 2019; Hu et al. 
2020; Li et al. 2020; Niu et al. 2021; Zhang et al. 2021), and 
premature death caused by  NO2 (Chen et al. 2018; Crouse 
et al. 2015; He et al. 2020; Hu et al. 2021; Jerrett et al. 2013; 
Liu et al. 2017; Nie et al. 2021). These studies demonstrate 
that  NO2 has important effects on human health. Therefore, 
it is essential to monitor the  NO2 concentration and  NO2 
concentration trend.

Currently, the main  NO2 concentration monitoring 
approach includes ground station and satellite remote sens-
ing monitoring. Station monitoring has high accuracy but 
a small monitoring range, and there is a high uncertainty 
in assessing the pollution level over a large area, especially 
for areas far from ground stations (Boersma et al. 2008). In 
contrast, the near real-time continuous, large-scale area char-
acteristics of remote sensing monitoring largely compensate 
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for the shortcomings of station monitoring (Fishman et al. 
2008; Martin 2008), providing a reliable way to measure 
 NO2 atmospheric concentrations (Bechle et al. 2013; Cheng 
et al. 2019; Ialongo et al. 2020; Krotkov et al. 2016; Penn 
and Holloway 2020).

Satellite monitoring can obtain  NO2 atmospheric column 
concentrations, but ground-level  NO2 concentrations are 
more relevant to the environment and human health. There-
fore, many researchers have tried to establish a mathematical 
model between the  NO2 atmospheric column and ground-
level  NO2 concentrations and then use the  NO2 atmospheric 
column concentration to retrieve the ground-level  NO2 
concentration (Araki et al. 2018; Gu et al. 2017; Larkin 
et al. 2017; Liu 2021; Xu et al. 2019; Zhan et al. 2018; Wong 
et al. 2021). Larkin et al. (2017) attempted to develop a land 
use regression model for estimating global  NO2 concentra-
tions, but the accuracy of the model differed significantly in 
different regions and had limited applicability. The accuracy 
of the retrieval model for a single country or region has been 
improved compared to the global model (Araki et al. 2018; 
He et al. 2019; Silibello et al. 2021). Many researchers have 
constructed retrieval models of ground-level  NO2 concentra-
tions in China, which have different spatial scales, such as 
regional and national scales, as well as different temporal 
scales, such as daily, monthly, and annual concentrations (Chi 
et al. 2021, 2022; Liu 2021; Qin et al. 2020, 2017; Wu et al. 
2021; Xu et al. 2019). However, the majority of these stud-
ies retrieved ground-level  NO2 concentrations from 1 year 
or a certain number of years, without long-term research on 
ground-level  NO2 concentrations. Additionally, they mostly 
focus on the changes in  NO2 concentrations, with fewer stud-
ies involving the assessment of  NO2 population exposure.

Traditional pollutant exposure assessments generally 
interpolate air quality station data spatially to represent 
regional pollutant concentrations (Fridell et al. 2014), and 
the study areas are mostly at urban or small regional scales 
(Fenech and Aquilina 2021; Ramacher and Karl 2020). The 
estimation of ground-level  NO2 concentrations using sat-
ellite remote sensing data provides important support for 
large-scale  NO2 population exposure assessments. Silibello 
et al. (2021) used chemical transport models and machine 
learning to analyze  NO2 population exposure in Italy from 
2013 to 2015, and a combination of both models reduced 
 NO2 concentration underestimation, which provides data 
support for environmental epidemiological studies. Zhan 
et al. (2018) conducted a study on  NO2 population expo-
sure in China from 2013 to 2016. The study found that 
approximately a quarter of the population was exposed 
to  NO2 pollution and that urbanization exacerbated  NO2 
pollution. Qin et al. (2017) studied  NO2 exposure levels 
in China from 2013 to 2014 and found that  NO2 expo-
sure levels were significantly higher in densely populated 
areas than in other areas. Previous studies often used 

residential addresses to replace population distribution at 
small regional scales (Fridell et al. 2014; Im et al. 2018), 
while census data for large regions are often discontinuous 
in time, which becomes a major limitation for large-scale 
population exposure assessments (Jerrett et al. 2005). How-
ever, with the release of multiple population time series 
products, this limitation is well remedied, and the products 
can support  NO2 population exposure assessments over 
long periods of time (Tatem 2017).

In recent years, China has undergone rapid industri-
alization and urbanization, but the air pollution problems 
associated with the development process are also very 
serious (Li and Zhang 2014).  NO2 is one of the major 
air pollutants in China and has a significant impact on 
human health and the environment, so it is essential to 
research the variation in ground-level  NO2 concentration 
and population exposure at the national scale (Xu et al. 
2019; Yang et al. 2017). Currently, most studies related 
to  NO2 population exposure are for small areas or short 
periods, and there is a lack of studies on  NO2 population 
exposure in China over long periods of time. Therefore, 
this study aimed to conduct a long time series study on 
 NO2 population exposure in China. First, we used ground-
based monitoring data, tropospheric  NO2 column concen-
tration data from the Ozone Monitoring Instrument (OMI), 
and meteorological data to build a random forest model 
for estimating ground-level  NO2 concentrations and then 
assess  NO2 population exposure in China from 2005 to 
2020 to analyze the trend and persistence of population 
exposure. This will fill the gap of long time series  NO2 
population exposure assessments in China.

The remainder of this paper is organized as follows. The 
“Study area and data sources” section describes the study 
area and dataset. The “Method” section introduces the ran-
dom forest model and statistical methods. The “Result” 
section introduces the results of ground-level  NO2 concen-
trations from the random forest, analyzes the changes in 
ground-level  NO2 concentrations and population exposure 
over multiple years, and discusses the trends in  NO2 popu-
lation exposure and the persistence of changes. The “Dis-
cussion” section discusses the causes of variation in  NO2 
concentrations and population exposure, comparing multiple 
models, and the “Conclusion” section summarizes the main 
findings.

Study area and data sources

Study area

In this study, the land area of China was taken as the 
study area, with a latitude range of 7 ~ 53°N and a lon-
gitude range of 72 ~ 136°E. The terrain of this region is 
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high in the west and low in the east. China is rich in land 
surface types, including basins, mountains, hills, plains, 
and plateaus. Additionally, China contains five climatic 
zones: cold temperate, middle temperate, warm temper-
ate, subtropical, and tropical, with diverse climate types 
and geographical environments. In recent decades, Chi-
na’s industrialization has accelerated, and its economy 
has developed rapidly, which has led to more serious 
environmental problems. Figure 1a shows the distribu-
tion of major cities in China, and Fig. 1b shows the dis-
tribution of ground-level air quality monitoring stations 
in China in 2020.

Ground NO2 data

China has gradually established a national air quality 
monitoring network, and by 2015, the number and cover-
age of monitoring stations had increased significantly. 
In this study, hour-by-hour ground-level  NO2 concentra-
tion data from January 1, 2015, to December 31, 2020, 
were selected from the China National Environmental 
Monitoring Center (CNEMC, http:// 106. 37. 208. 233: 
20035/). We filtered the stations with at least 80% valid 
values throughout the year from all stations as input to the 
model, and finally, approximately 1450 stations passed 
the filtration. Since the crossing time of the OMI was 
approximately 13:45 min local time, the average value 
from 13:00 to 14:00 for each station was selected as the 
daily measurement.

OMI NO2 data

The  NO2 tropospheric column concentration data used in 
this study were obtained from OMI, which is carried out on 
the Aura satellite of the Earth Observing System (EOS) and 
obtains information by observing the backscattered radia-
tion from the Earth’s atmosphere and the Earth’s surface. 
OMI can pass wavelengths in the range of 270–500 nm, with 
an orbital swath width of 2600 km and a spatial resolution 
of 13 km × 24 km. The product used in this study is the 
OMI OMNO2d  NO2 cloud–screened tropospheric column 
concentration level 3 product, which is obtained by quality 
control on the basis of level 2 product and generates the 
 NO2 tropospheric column concentrations by area weight-
ing to produce gridded data with a spatial resolution of 
0.25° × 0.25°. The production criteria for the cloud-screened 
column concentration product are zenith angle < 85°, surface 
reflectivity < 30%, cloud cover < 30%, and 10 < cross-orbit 
position < 50.

Meteorological data

The meteorological data used in the study were obtained 
from the fifth-generation European Centre for Medium-
range Weather Forecasts atmospheric reanalysis product 
(ERA5) of the European Centre for Medium-Range Weather 
Forecasts (Hersbach 2016). We chose eight meteorological 
estimates with moderate resolution (0.125° or 0.25°), includ-
ing the atmospheric boundary layer height (BLH), rela-
tive humidity (RH), 2 m atmospheric temperature (TEM), 

Fig. 1  Overview of the study area. a The distribution of major cities in China. b The annual OMI  NO2 column concentration and the distribution 
of  NO2 monitoring stations in 2020
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u-components and v-components of the 10 m wind, surface 
pressure (SP), total precipitation (TP), evaporation (ET), and 
wind speed (WS) and wind direction (WD) was calculated 
from the u-components and v-components of the 10 m wind.

Population data

The WorldPop dataset was developed by the WorldPop pro-
ject (https:// www. world pop. org), which provides annual 
gridded population data for the period 2000 to 2020, and this 
study used the global population dataset for 2005 to 2020 
with a spatial resolution of 1 km. The WorldPop dataset uses 
a random forest model to reallocate population numbers to 
the grid. The input variables for this model are the most 
recent official census data and a spatial auxiliary dataset. 
The spatial auxiliary dataset includes settlement locations 
and ranges, satellite nighttime lighting data, land cover data, 
and road and building maps. The estimated grid population 
is then finally adjusted to form the final dataset based on the 
UN Population Division’s total national estimates for the 
target year (Tatem 2017).

Method

Data integration

The spatial resolution of the datasets used in the study dif-
fered, so the spatial resolution of the ERA5 reanalysis prod-
uct was chosen to represent all data in this study. The OMI 
data were interpolated to this resolution using bilinear inter-
polation, and all ground station measurements contained in a 
single grid were averaged as the ground  NO2 concentration 
of the grid. ERA5 data were sampled to be simultaneous to 
the daily satellite passage time. WorldPop data were calcu-
lated as the sum of the population in the 0.125° × 0.125° grid 
by partition statistics. Finally, the monthly average of all data 
was calculated as the input to the model.

Random forest model

The random forest (RF) model is a machine learning theory 
proposed by Breiman (2001). The basic idea of the algo-
rithm is to construct a certain number of decision trees and 
combine them according to certain criteria to generate a 
random forest. Due to the existence of a multilayer random 
process, the random forest can generate hundreds or even 
thousands of decision trees randomly and ensure that the 
decision trees constructed each time may be different due to 
randomness, which can be used to simulate multiple nonlin-
ear relationships to form complex models.

Random forest regression first randomly selects the sam-
ple data by a put-back method to generate K random training 

sets, and the unselected part of the data forms the test sample 
set. For each training set, a fixed number of n (n < p) vari-
ables are randomly selected from p variables as branching 
nodes of the classification tree to build a regression tree, and 
each training set generates a corresponding regression tree. 
The model finally obtains the predicted values by taking the 
mean of the regression trees.

Model accuracy evaluation

We evaluated the performance of the random forest model 
by using mean absolute error (MAE), root mean square 
error (RMSE), and R-Square (R2). MAE is the mean abso-
lute error and ranges from 0 to positive infinity; the smaller 
the value is, the smaller the error. RMSE is similar to MAE 
in that the smaller the value is, the higher the accuracy of 
the model prediction. R2 has a value range between 0 and 1; 
the closer the value is to 1, the better the model fit is. MAE, 
RMSE, and R2 are calculated by Formula (1–3), where ŷi is 
the estimated value of the i-th sample of the model, yi is the 
true value of the i-th sample, y is the mean of the samples, 
and n is the total number of samples.

Population exposure assessment

NO2 population exposure was obtained by weighting the 
ground-level  NO2 concentration and the population. Since 
the WorldPop dataset calculates the annual population of 
China, we estimated the annual  NO2 population exposure 
in China at the prefecture-level city scale. The annual  NO2 
population exposure level can be calculated by Formula (4).

where Ej is the  NO2 exposure of a city in year j, Popij and 
NO2ij are the population and  NO2 concentration of the i-th 

(1)MAE =
1

n

n∑
i=1

||ŷi − yi
||

(2)RMSE =

√√√√1

n

n∑
i=1

(
yi − ŷi

)2

(3)R2 = 1 −

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − y)2

(4)Ej =

n∑
i=1

�
Popij × NO2ij

�

n∑
i=1

Popij

80260 Environmental Science and Pollution Research (2022) 29:80257–80271

https://www.worldpop.org


1 3

grid in a given year j, respectively, and n is the number of 
all grids in the city.

Theil‑Sen trend analysis

Theil-Sen median trend analysis is able to capture the tem-
poral trend of each grid. Therefore, the results are able to 
reflect the multiyear trend of  NO2 population exposure. In 
addition, the method does not require the sample to obey a 
certain distribution, which makes it highly resistant to data 
errors (Sen 1968). The trend is calculated by Formula (5).

where SR is the slope of the fit, Ei is the  NO2 population 
exposure in year i , and Ej is the  NO2 population exposure 
in year j . When SR>0, it indicates an increasing trend of the 
 NO2 population exposure level, and vice versa, a decreas-
ing trend.

Mann–Kendall test method

The Mann–Kendall test is a nonparametric test to deter-
mine the significance of changes in a given variable (Ken-
dall 1955) and is calculated as follows: for the time series 
{ Ei }, i = 2005, 2006,…… 2020 , the Z statistic is defined 
as Formula (6).

In Formulas (7–9), Ei and Ej are the  NO2 population 
exposure levels in year i and year j , n represents the length 
of the time series, and sgn is the sign function. In this paper, 
we determine the significance of the trend of  NO2 popula-
tion exposure change at the 95% confidence level and then 
grade the Z value results into highly significant change 
( |Z| > 2.58 ), significant change ( 2.58i|Z| > 1.96 ), weakly 

(5)SR = Median

(
Ej−Ei

j−i

)
2005 ≤ i ≤ j ≤ 2020

(6)Z =

⎧⎪⎨⎪⎩

S−1√
s(S)

S > 0

0 S = 0
S+1√
s(S)

S < 0

(7)S =

n−1∑
j=1

n∑
i=j+1

sgn(Ej − Ei)

(8)sgn(Ej − Ei) =

⎧⎪⎨⎪⎩

1 Ej − Ei > 0

0 Ej − Ei = 0

−1 Ej − Ei < 0

(9)s(S) =
n(n − 1)(2n + 5)

18

significant change ( 1.96e|Z| > 1.65 ), and no significant 
change ( 1.65|Z| > 0).

Hurst index analysis

The Hurst index can quantitatively describe the persistence 
of variables over a time series (HURST 2013); here, we used 
the Hurst index to analyze the persistence characteristics of 
 NO2 population exposure. The Hurst index is calculated by 
Formulas (10–13): for the time series { Ei }, i = 1, 2,…… n , 
and for any positive integer � ≥ 1 , there is the sequence:

For the standard deviation S� and range E� , if E�∕S� ∝ �H , 
then the time series is said to have the Hurst phenomenon, 
and H is the Hurst index. When 0.5 < H < 1, the  NO2 popula-
tion exposure is persistent, and vice versa, it is nonpersistent.

Result

Model accuracy

We constructed a random forest model to predict 
ground-level  NO2 concentrations by combining satellite, 
meteorological, population, and ground station data. In 
the model parameters, n_estimators was 100, max_depth 
was 30, max_features was 4, min_samples_split was 15, 
and min_samples_leaf was 15. In the model construction 
process, 70% of the data were randomly selected as the 
training set for model training, and 30% of the data were 
used as the test set to evaluate the accuracy of the model. 
Figure 2 shows the correlation between the model-sim-
ulated and measured  NO2 concentrations in the training 
and test datasets. There was a significant correlation 
between the model-simulated concentration and the 
measured concentration. The MAE, RMSE, and R2 of 
the model test dataset were 4.16 µg/m3, 5.79 µg/m3, and 
0.79, respectively, which were less different from the 
accuracy of the training dataset. Additionally, the R2 of 
the model was greater than 0.75 in both the training and 
test datasets, indicating that the model performs well in 

(10)E� =
1

�

�∑
i=1

E� � = 1, 2,…… n

(11)X(i,�) =
i∑

i=1

(E� − E�) 1 ≤ i ≤ �

(12)E� = max X(i,�) − min X(i,�) � = 1, 2,…… n

(13)S� =

�
1

�

�∑
i=1

(Ei − E�)
2 � = 1, 2,…… n
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simulating ground-level  NO2 concentrations. In addition, 
we evaluated the model by using fivefold cross-validation, 
and the MAE, RMSE, and R2 of the model cross-validation 
were 4.3 µg/m3, 5.82 µg/m3, and 0.77, respectively. The 
cross-validation results indicated that the random forest 
model has no overfitting phenomenon. Compared with the 
validation results in the model test dataset, the cross-vali-
dation R2 decreased by 0.02, RMSE increased by 0.03 µg/
m3, and MAE increased by 0.14 µg/m3. The cross-validation 
results were basically consistent with the validation results 
in the model test dataset, which proved that the model was 
stable and reliable. Therefore, the simulated ground-level 
 NO2 concentration from the random forest model can be 
used to analyze the spatial and temporal variations in  NO2 
concentration and population exposure in China.

Temporal and spatial changes in ground‑level  NO2 
concentrations

We studied the spatial and temporal variations in annual 
ground-level  NO2 concentrations in China. The annual  NO2 
concentration was calculated from the monthly  NO2 con-
centration predicted by the model. Figure 3 shows the dis-
tribution of the national annual  NO2 concentration in 2005, 
2010, 2015, and 2020, and  NO2 showed spatial aggregation 
features.  NO2 pollution was most serious in northern China, 
not only due to the high  NO2 concentration but also due to 
the large area of high  NO2 concentration, covering seven 
provinces and municipalities directly under the central gov-
ernment, including Henan, Hebei, Shandong, Beijing, and 
Tianjin. Within the region,  NO2 pollution was concentrated 
in the south-central part of Hebei Province and the northern 
part of Henan Province. High  NO2 concentrations in other 
regions were mostly found in cities with developed regions 
and their surrounding areas. For example, high  NO2 concen-
trations in the southwest were located in the western part of 
Chongqing and Chengdu, and those in the northwest were 

located in Lanzhou and Xi’an. These are both provincial 
capitals or the main urban areas of municipalities directly 
under the central government. The situation in southern 
China was very similar to that in the west. High  NO2 con-
centrations were concentrated in large cities such as Shen-
zhen, Guangzhou, and other cities in Guangdong Province. 
In contrast, the areas of high  NO2 concentrations in eastern 
China were more dispersed. These areas included Shanghai, 
the southern part of Jiangsu Province, and the northern part 
of Zhejiang Province. This may be because the urbanization 
and industrialization levels of cities in eastern China differed 
less, causing  NO2 pollution levels to be relatively similar.

Temporally, the distribution of  NO2 concentrations in 
China showed a trend of first increasing and then decreasing. 
From 2005 to 2010, the annual  NO2 concentration increased. 
Compared to 2005, the increasing trend of  NO2 concentra-
tion in eastern and northern China was obvious in 2010, such 
as Henan, Hebei, Shandong, Jiangsu, and Zhejiang Prov-
inces. Furthermore,  NO2 pollution increased in some cities 
in the west, such as Chengdu, Chongqing, and Lanzhou. 
From 2010 to 2015, the change in  NO2 concentration was 
slight, and there was a degree of decrease in  NO2 concentra-
tion in western China. The change in other regions was not 
obvious. From 2015 to 2020, the  NO2 concentration in China 
declined significantly. In 2020, the national  NO2 concentra-
tions decreased to low levels, and the extent of  NO2 pollu-
tion also decreased significantly, especially in the northern 
provinces of China, such as Henan and Shandong. Guang-
zhou and its surrounding cities contained concentrated areas 
of  NO2 pollution in southern China, but the change in  NO2 
concentration in this region was different from the overall 
change trend, which was always in a decreasing trend from 
2005 to 2020.

Because the  NO2 concentration differs significantly in 
different seasons, we selected the maximum and mean  NO2 
concentrations in different seasons to analyze the  NO2 con-
centration variations in China. The  NO2 concentration was 

Fig. 2  Correlation between 
the model-simulated  NO2 and 
measured  NO2 concentrations. a 
Training dataset. b Test dataset
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low in spring and summer, while it was higher in autumn and 
winter, as shown in Fig. 4. The lowest  NO2 concentration 
throughout the year occurs during the summer due to higher 
temperatures, which were conducive to the decomposition of 
 NO2. Central heating in winter produces a large amount of 
air pollutants, including  NO2, resulting in winter being the 
most serious season for  NO2 pollution. The  NO2 concentra-
tion showed a trend of increasing and then decreasing from 
the mean concentration change. The average  NO2 concentra-
tion in each season gradually increased from 2005 to 2012 
and was in the decreasing stage between 2013 and 2020. The 
maximum  NO2 concentration reflects the serious areas of 
 NO2 pollution. The maximum  NO2 concentrations in spring 
and summer in 2005–2020 gradually declined, while autumn 
had a fluctuating upwards trend. The maximum  NO2 con-
centration in winter has a degree of increase from 2005 to 
2019 and a significant decrease in 2020. This change was 

likely related to the COVID-19 epidemic. In addition, the 
maximum concentrations in autumn and winter were both 
higher than 40 µg/m3, indicating that  NO2 pollution was still 
serious in some regions in autumn and winter. Therefore, 
corresponding environmental protection policies need to be 
formulated for provinces with serious pollution in China, 
such as Henan and Hebei. Additionally, although  NO2 pol-
lution was very serious in some regions, it can be revealed 
from the variations in seasonal mean  NO2 concentrations 
that  NO2 concentrations in most regions of China were at 
a low level and  NO2 pollution was concentrated in a small 
number of regions.

Ground‑level  NO2 exposure assessment

We assessed  NO2 population exposure at the prefecture-level 
city scale. Figure 5 shows the  NO2 population exposure in 

Fig. 3  The annual  NO2 concentration in China over multiple years. a 2005; b 2010; c 2015; d 2020
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2005, 2010, 2015, and 2020. The spatial distribution of  NO2 
population exposure was similar to the distribution of  NO2 
concentration, with both having obvious spatial aggregation. 
The areas of high  NO2 population exposure in the northwest 
were centred on Lanzhou, Xi’an, and Urumqi. The areas 
of high  NO2 exposure in the southwest were centred on 
Chengdu and Chongqing, and the  NO2 population exposure 
of Chengdu was significantly higher than that of Chong-
qing. The central region had a relatively low  NO2 popula-
tion exposure, and only Wuhan had a significantly higher 
 NO2 population exposure than the other cities. In the eastern 
region, there were several cities with high  NO2 population 
exposure, such as Hangzhou, Nanjing, and Shanghai. Addi-
tionally, the surrounding cities also had high  NO2 popula-
tion exposure, indicating that the  NO2 concentration in this 
region was high and that the population distribution was 
also concentrated. Northern China is the region with the 
highest  NO2 population exposure, with more cities at high 
 NO2 population exposure, including Beijing, Tianjin, Shiji-
azhuang, Zhengzhou, and Jinan. The distribution of cities 
with high  NO2 population exposure in Henan and Hebei was 
generally similar to the areas of high  NO2 concentrations. 
Shandong Province had a relatively high  NO2 population 
exposure due to its dense population, but the  NO2 concentra-
tion in Shandong was lower than that in Henan and Hebei.

In terms of time, the  NO2 population exposure in China 
showed a significant increasing trend from 2005 to 2010. 
The rising trend was most obvious in the eastern and north-
ern cities, such as Shanghai and Hangzhou in the east and 
Shijiazhuang, Zhengzhou, Beijing, and Jinan in the north. 
These cities were mostly located in large urban agglomera-
tions, and the surrounding cities were also very densely 
populated. Therefore, in these two regions, cities with high 
 NO2 population exposure tend to be distributed in clusters. 
In the northwest region, the population distribution was rela-
tively concentrated due to the smaller population, so high 

 NO2 population exposure was usually in large cities, such as 
Lanzhou and Urumqi, while the  NO2 population exposure 
in the surrounding cities of these cities was relatively low. 
The two major cities in the southwestern region, Chongqing 
and Chengdu, also increased to some degree, but the  NO2 
population exposure in the surrounding cities did not change 
significantly. The  NO2 population exposure in the south-
ern region did not increase noticeably, and some cities even 
decreased to a certain extent. The  NO2 population exposure 
of some cities in central and southwest China decreased to 
a certain extent from 2010 to 2015, particularly in two cit-
ies, Wuhan and Chongqing. The  NO2 population exposure 
increased in Urumqi. The remaining cities in the country 
showed no significant change. The  NO2 population expo-
sure decreased significantly in almost all cities from 2015 
to 2020, and  NO2 pollution improved substantially in 2020. 
However, the  NO2 population exposure in Chengdu was still 
higher than 30 µg/m3, and the  NO2 population exposure in 
Urumqi did not change significantly, indicating that  NO2 
pollution was still serious in some cities in western China.

There were 33 cities with  NO2 population exposure 
greater than 30 µg/m3 in 2012, which was the largest num-
ber of cities in the period 2005–2020. Therefore, we chose 
2012 as the dividing year to study the  NO2 population expo-
sure trends in both periods. We calculated the  NO2 popula-
tion exposure trends based on Theil-Sen trend analysis and 
then analyzed the significance of the trends based on the 
Mann–Kendall test. Figure 6a shows the result of the M–K 
trend test for  NO2 population exposure in each city from 
2005 to 2012. During this period,  NO2 population exposure 
significantly increased in the majority of Chinese cities. 
Some areas, such as Qinghai, Tibet, northern Gansu, west-
ern Sichuan, and western Yunnan, did not change signifi-
cantly. These areas are mainly sparsely populated areas and 
have comparatively lower  NO2 concentrations. In addition, 
a few densely populated cities had no significant changes 

Fig. 4  Seasonal variations in 
 NO2 concentration. a Seasonal 
mean. b Seasonal maximum
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in  NO2 population exposure, such as Beijing, Shanghai, 
and Suzhou. Some cities in Guangdong Province, such as 
Guangzhou, Dongguan, and Foshan, showed a decrease or 
even a significant decrease.

Figure 6b shows the trend of  NO2 population exposure 
from 2013 to 2020. This period was dominated by a sig-
nificant decline in  NO2 population exposure, but the num-
ber of cities that experienced a decline was obviously less 
than the number of cities that rose in the previous period, 
and the decline was mostly concentrated in the central, 
eastern, and northern parts of the country. Among the 
regions showing a downwards trend, Wuhan, Nanchang, 
and Changsha in the central region are the centre, but 

Hefei did not change significantly in this period. In the 
eastern region, Hangzhou and Shanghai were the centres. 
The north has the greatest number of cities with a signifi-
cant downwards trend, including Beijing and Tianjin, the 
majority of cities in Henan and Shandong, and Harbin 
and Shenyang in the northeast. There was a clear differ-
ence in the west. The majority of cities in the west are 
dominated by no significant changes or weak downwards 
trends. Among the major cities in this region, Lanzhou 
and Urumqi in the northwest had a significant downwards 
trend. Chongqing and Chengdu, the two central cities in 
the southwest, showed a weak downwards trend or no 
significant change. We found that cities with downwards 

Fig. 5  NO2 population exposure in China for multiple years. a 2005; b 2010; c 2015; d 2020
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trends were mostly concentrated in the north, while south-
ern cities had fewer downwards trends.

The Hurst index measures the persistence of changes 
in  NO2 population exposure. Figure 7a shows the Hurst 
index of  NO2 population exposure from 2005 to 2012. The 
increase in  NO2 population exposure was mostly persistent 
between 2005 and 2012, especially in the southern cities. 
Because  NO2 concentrations were relatively low in southern 
China, the persistent increase in  NO2 population exposure 

indicated that the region has a strong population attraction 
and increasing population density that led to increasing  NO2 
population exposure. The north was also generally domi-
nated by a continuous increase, but the growth of most cities 
in Henan was noncontinuous, and the  NO2 concentrations 
of Henan showed an increasing trend during this period. 
Therefore, it may be that the population density in Henan 
Province decreased, resulting in a noncontinuous increase 
in  NO2 population exposure. Figure 7b shows the Hurst 

Fig. 6  Trends in  NO2 population exposure. a The trend from 2005 to 2012. b The trend from 2013 to 2020

Fig. 7  Hurst index of  NO2 population exposure. a The index of 2005–2012. b The index of 2013–2020
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index of  NO2 population exposure from 2013 to 2020. The 
declining trend in the north from 2013 to 2020 was mostly a 
continuous decline, and the western cities and a small num-
ber of southern cities exhibited noncontinuous changes. The 
decline in  NO2 population exposure in the north during this 
period was mostly due to policy factors, such as the enact-
ment of strict environmental protection laws in 2015, which 
reduced nitrogen dioxide emissions. The western region was 
mostly nonpersistent in this period, which is consistent with 
the results of the lack of a significant trend above. In addi-
tion, there was also an impact of the COVID-19 epidemic 
during this period, which may explain the discontinuous 
changes in a small portion of the southern region.

Discussion

In this study, we used a random forest model to retrieve 
ground-level  NO2 concentrations in China from 2005 to 
2020 and analyzed the changes in  NO2 population exposure 
over the years. The accuracy of the model result was high; 
the MAE, RMSE, and R2 of the model were 4.16 µg/m3, 
5.79 µg/m3, and 0.79, respectively, and the MAE, RMSE, 
and R2 of the model cross-validation were 4.3  µg/m3, 
5.82 µg/m3, and 0.77, respectively. Apart from the random 
forest model, we compared different regression methods, 
such as the commonly used linear regression, backpropaga-
tion neural network (BPNN), and support vector machine 
(SVM) models. Table 1 shows the results of the multiple 
model comparison. The random forest model has the small-
est error of all models, while the traditional linear model has 
the worst-fitting performance. The support vector machine 
model was the worst among deep learning models and has 
the longest computation time. The results of the comparison 
showed that the deep learning model has a clear advantage 
in large data simulations. All three deep learning methods 
perform better than the linear regression model. This indi-
cates that deep learning regression is usually better than the 
traditional statistical model in the case of complex param-
eters and a large amount of data. Previous research has used 
a variety of models to estimate ground-level  NO2 concen-
trations, such as the extra tree model, geographically and 
temporally weighted regression model, community multi-
scale air quality model, and land use regression model (Gu 
et al. 2017; Larkin et al. 2017; Qin et al. 2020, 2017). The 

R2 values for these models were between 0.51 and 0.7, and 
the RMSE values were all greater than 9 µg/m3. Compared 
to previous research, the random forest model used in this 
study significantly improved the accuracy of the simulated 
ground-level  NO2 concentrations, and the estimation results 
were more reliable. In addition, the random forest model 
is relatively simple to implement, with low computational 
overhead and strong interpretability of the model.

Figure 8 shows the amount of change in  NO2 concen-
tration and  NO2 population exposure for 2005–2012 and 
2013–2020, and we chose  NO2 concentration and  NO2 
population exposure in 2005 and 2013 as the reference. In 
the first period, the changes in  NO2 concentration and  NO2 
population exposure were generally similar in central and 
eastern China. Northern Shaanxi and south-central Inner 
Mongolia were the two regions with the highest increase 
in  NO2 concentration, and the increase in  NO2 population 
exposure in these two regions was also the highest in the 
country. Some differences in  NO2 concentration and  NO2 
population exposure were found in the western region. For 
example, the rise in  NO2 population exposure in Urumqi and 
its surrounding cities was significantly lower than the rise 
in  NO2 concentration. Additionally, the  NO2 concentrations 
in some regions of Tibet, Qinghai, and Yunnan increased, 
but the  NO2 population exposure decreased, indicating that 
the population density in these regions was low and that 
the increase in  NO2 concentration did not directly cause an 
increase in  NO2 population exposure. The changes in  NO2 
concentration and  NO2 population exposure were generally 
consistent in the second period.

The  NO2 concentrations and population exposure showed 
a significant increasing trend from 2005 to 2012, and the 
 NO2 population exposure persistently increased in most 
cities. During this period, industrial development in China 
was rapid. Industrial production increased from 7795.83 bil-
lion yuan in 2005 to 20,890.14 billion yuan in 2012, but the 
industries at this time were mostly rough industries, which 
seriously polluted the environment. Furthermore, the num-
ber of motor vehicles in this period rapidly increased from 
43.29 to 120 million. Vehicle exhaust emissions are also a 
major source of  NO2. Thus, the rapid growth of industry and 
vehicle ownership is responsible for the significant increase 
in  NO2 concentration and  NO2 population exposure during 
this period. Northern China, such as Henan and Hebei, has 
a large concentration of heavy industry and population, so 
the  NO2 population exposure is the highest in the country.

The  NO2 concentration and  NO2 population exposure 
showed a decreasing trend nationwide from 2013 to 2020. 
The decline over this period was mainly due to Chinese 
environmental protection policies, including the mandatory 
cleanup of coal and the extremely stringent environmental 
protection law enacted in 2015. These measures have sig-
nificantly limited pollutant emissions and increased penalties 

Table 1  Comparison of 
multiple models

Model MAE RMSE R2

LR 6.09 8.37 0.55
RF 4.16 5.79 0.79
SVM 5.15 7.38 0.65
BPNN 4.91 6.54 0.73
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for companies that violate the law on emissions. Meanwhile, 
the new regulations imposed strict requirements on govern-
ment management and incorporated the effectiveness of pol-
lution control into the government’s performance evaluation. 
Chinese ecological and environmental departments issued 
a total of 224.8 billion yuan in ecological funds from 2016 
to 2020 and environmental funds and initially established 
evaluation systems for air, water, and soil environmental 
protection. The  NO2 concentrations in 2020 were signifi-
cantly reduced compared to those in 2015. Although the 
COVID-19 epidemic also had some impact on the decrease 

in  NO2 concentrations, life in China largely normalized in 
the second half of the year, and the COVID-19 epidemic 
had a limited impact on the  NO2 concentrations throughout 
the year.

Conclusion

In this study, a random forest model based on OMI data and 
the ERA5 reanalysis product was constructed to retrieve the 
0.125° × 0.125° ground-level  NO2 concentrations in China 

Fig. 8  Quantified changes in  NO2 concentration and  NO2 population 
exposure. a  NO2 concentration changes from 2005 to 2012; b  NO2 
population exposure changes from 2005 to 2012; c  NO2 concentra-

tion changes from 2013 to 2020; d  NO2 population exposure changes 
from 2013 to 2020
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from 2005 to 2020. The MAE, RMSE, and R2 of the model 
were 4.16 µg/m3, 5.79 µg/m3, and 0.79, respectively. The 
model results showed clear spatial aggregation of the  NO2 
concentration, which was consistent with  NO2 population 
exposure. The average  NO2 concentration in each season 
tended to increase and then decrease, which was consistent 
with the trend of the annual  NO2 concentration. However, 
the maximum concentrations in autumn and winter still 
rose and were higher than the China environmental pollu-
tion standard, indicating that  NO2 pollution did not improve 
significantly in some areas during autumn and winter.

The cities with high  NO2 population exposure and areas 
with high  NO2 concentrations basically overlap. Although 
the  NO2 concentration was lower than that in Henan and 
Hebei Provinces, Shandong Province had a higher  NO2 pop-
ulation exposure due to its dense population.  NO2 population 
exposure increased significantly in most cities from 2005 to 
2012, and most of the increase during this period was per-
sistent. This result suggests that the increasing population 
density in southern China led to increased  NO2 population 
exposure, as the  NO2 concentration in southern China was 
relatively low. In contrast, the unsustainable increase in the 
 NO2 population exposure in the northern cities was likely 
due to the outflow of the population. Most cities experienced 
a significant decrease in  NO2 population exposure from 2013 
to 2020, but the number of cities that experienced a decline 
was significantly less than the number of cities that rose 
in the previous period. The main reason for the significant 
upwards trend in both  NO2 concentrations and  NO2 popula-
tion exposure from 2005 to 2012 was the rapid growth of 
industry and car ownership. The decline from 2013 to 2020 
is mainly due to Chinese environmental protection policies.

By 2020, the southern cities still maintained low  NO2 
population exposure, and the eastern and northern cities 
significantly improved  NO2 population exposure. However, 
the reduction in  NO2 population exposure in the western 
region was not significant. Urumqi, Lanzhou, and Chengdu 
still maintained high  NO2 population exposure, which indi-
cated that the major cities in the western region require more 
attention. In these cities with high  NO2 population exposure, 
the EPA could install more  NO2 concentration monitoring 
instruments to broadcast real-time  NO2 concentrations. Peo-
ple can avoid going to areas with high  NO2 concentrations 
by broadcasting. For  NO2 emission sources, the EPA could 
enforce factories to clean their emissions and encourage peo-
ple to replace their fuel-powered vehicles with new energy 
electric vehicles.

There were also some shortcomings in this study, such as 
some studies suggesting that OMI data are somewhat under-
estimated in urban areas (Qin et al. 2020), which may lead 
to underestimation of ground-level  NO2 concentrations in 
some regions. In addition, the uneven distribution of moni-
toring stations on the ground may also introduce errors into 

the model. In a follow-up study, we intend to use multiple 
satellite datasets or introduce more geographic auxiliary 
elements, such as road data, to improve the accuracy of the 
model and then study the human health effects from pro-
longed exposure to high  NO2 concentrations.
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