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Abstract
Good surface water quality is critical to human health and ecology. Land use determines the surface water heat and material 
balance, which cause climate change and affect water quality. There are many factors affecting water quality degradation, 
and the process of influence is complex. As rivers, lakes, and other water bodies are used as environmental receiving carri-
ers, evaluating and quantifying how impacts occur between land use types and surface water quality is extremely important. 
Based on the summary of published studies, we can see that (1) land use for agricultural and construction has a negative 
impact on surface water quality, while woodland use has a certain degree of improvement on surface water quality; (2) sta-
tistical methods used in relevant research mainly include correlation analysis, regression analysis, redundancy analysis, etc. 
Different methods have their own advantages and limitations; (3) in recent years, remote sensing monitoring technology has 
developed rapidly, and has developed into an effective tool for comprehensive water quality assessment and management. 
However, the increase in spatial resolution of remote sensing data has been accompanied by a surge in data volume, which 
has caused difficulties in information interpretation and other aspects.
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RA  Redundancy analysis
ERA  Extended redundancy analysis
CRA   Copula-based redundancy analysis
SLM  Spatial lag model
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OLS  Ordinary least squares
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Introduction

Healthy water quality is essential for sustainable agricultural 
production, human health, and ecological habitat stability 
(Riseng et al. 2011; Samways 2022). The availability and 
quality of water resources are related to the sixth envisaged 
goal (ensure access to water and sanitation for all and its 
sustainable management) of the United Nations Sustain-
able Development Goals (Huang et  al. 2021; van Vliet 
et al. 2017). The deterioration of surface water quality has 
become a global environmental problem, especially during 
the coronavirus disease 2019 (COVID-19), which has not 
been fully controlled (Chu et al. 2021). Improving the sur-
face water quality is the top priority to effectively recover 
the global economy and realize social sustainable develop-
ment (Sivakumar 2021; Somani et al. 2020). Water quality 
degradation can be attributed to many influencing factors, 
such as climate change, vegetation cover, river topography, 
and land use in catchment areas (Poff et al. 2006; Rodrigues 
et al. 2018; Williams et al. 2015; Zieliński et al. 2016). Land 
use has become the core part of many international policy 
discussions (Bayer et al. 2017). There are many studies on 
assessing and quantifying the relationship between surface 
water quality and land cover and land use change patterns 
(Camara et al. 2019; Carey et al. 2013). In the past 60 years, 
nearly 1/3 of the global land area has changed, and about 
3/4 of the land surface has been altered by human beings 
(Winkler et  al. 2021). The spatial distribution of water 
quality reflects the process of human social and economic 
activities and determines the surface hydrothermal and mass 
balance, and its change directly affects the biogeochemical 
cycle and alters the water, energy, and carbon cycles of land 
and atmosphere, leading to climate change (Ni et al. 2021).

Understanding how land use affects water quality is essen-
tial to ensuring human well-being quality affects each other 
which has been a research focus (Rimer et al. 1978; Wagner 
et al. 2019). Early studies often simply linked the health of a 

water body to the land use component of the watershed (e.g., 
percentage of land use) (Crosbie and Chow-Fraser 1999; 
Donohue et al. 2006). In addition to the influence of natu-
ral environment, including climate, water transparency, and 
water level changes, water environment is closely related to 
human activities. People’s land production and living activi-
ties (Wang et al. 2016) have a profound impact on the mate-
rial input process of surface, river, and lake ecosystems. In 
the meantime, the landscape pattern of land use will also 
affect the surface runoff, biological cycle, and geochemical 
cycle process, so that pollutants entering rivers and lakes 
have significant impact on water quality (Wagner and Fohrer 
2019). For instance, studies near sampling sites examined 
the effect of human use and transformation of the land on 
water quality (Manfrin et al. 2016) and confirmed the help-
ful impact of forests on water quality. Urban housing and 
agricultural-related land use are mainly related to negative 
impacts on the overall quality of surface water (Manfrin 
et al. 2016; Zhang et al. 2010). Land use change has a series 
of profound impacts on ecological process, surface runoff, 
and hydrological cycle, thereby affecting river water qual-
ity safety (Guo et al. 2021). As a result, determining water 
quality does require attention to human land use activities. 
To discuss the issue of how land use and water quality affect 
each other is of great significance to land use management 
planning and effective protection of water ecological envi-
ronment resources. In addition, it has been shown the criti-
cal value of local land planning and utilization in assessing 
watershed ecological water quality (Damanik-Ambarita et al. 
2018). Previous studies noted that the number of nitrogen, 
phosphorus, and fecal coliforms increased in farming area 
in Upper Okoni Basin, Georgia (Fisher et al. 2000). There-
fore, changing land use patterns leads to changes in runoff 
(Zhou et al. 2019), surface water supply output (Wu and 
Haith 1993), and water quality (Zhang et al. 2019), which 
is considered to be one of the main factors that change the 
hydrological system (Bateni et al. 2013; Jordan et al. 1997). 
Impervious urban land surfaces such as residential land, 
public facilities land, industrial land, and cement pavement 
boost stormwater runoff by reducing downstream bare soil 
volume (Damanik-Ambarita et al. 2018; Estes et al. 2009). 
Increased nitrogen and phosphorus inputs in farmland and 
construction land are the main cause of eutrophication 
(Broussard and Turner 2009; Karmakar et al. 2019, Paul 
and Meyer 2001).

Comprehensively, scientific consideration of water quality 
influences is essential to the implementation of effective river 
management strategies. Land use is often evaluated through 
field observations (Erba et al. 2015), satellite remote sensing, 
and “3S” technology (Geographic Information System (GIS); 
remote sensing (RS); Global Positioning System) (Leps et al. 
2015). In recent years, in “Land use-Water quality” assess-
ment using remote sensing data sources and “3S” technology, 
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it does not require on-site observation because evaluators 
can gain data online or through institutes (Chen et al. 2011, 
2021). Information on land use and water quality changes are 
usually captured by humans under the monitoring of satel-
lite remote sensing, and sensors are generally classified into 
high-, medium-, and low-spatial-resolution remote sensing 
data according to spatial resolution, and different resolution 
remote sensing means have their own advantages and disad-
vantages. Because the nexus between land cover/land use and 
water quality depend on hydrological properties, soil struc-
ture, and seasonal and historical land use patterns, it is diffi-
cult to work out the relationship accurately (Allan 2004; Rod-
rigues et al. 2018). At present, most studies are aimed at river 
reach (Wang et al. 2019b; Zhang et al. 2012), riparian zone 
(Shi et al. 2017), sub-basins (Fang et al. 2019), and other spa-
tial scales. The research methods mainly include correlation 
analysis (Wang et al. 2016), redundancy analysis (Shi et al. 
2017), Soil and Water Assessment Tool model (Yang et al. 
2016), Geographically Weighted Regression (GWR) model 
(Tu and Xia 2008), and multiple linear regression (Ding et al. 
2016); most of the existing research is remote sensing–related 
research, and some studies are very special on a geographical 
scale, and the method of predicting river basin water quality 
which is combined with land use model is still developing. 
Because environmental data are usually complex, nonlinear, 
and cluttered, it is difficult to clarify how the explanatory and 
response variables interact with each other.

As shown in Fig. 1, the study was conducted based on 
Web of Science database retrieval system. According to the 
keywords extracted from the title and abstract of the pub-
lication, we used VOS Viewer 1.6.15 platform for analy-
sis and got the keywords’ network visualization map in the 

publication related to land use and water quality. There are 
four clusters shown in the figure, where cluster 1 represents 
research hotspots related to water quality, cluster 2 repre-
sents research topics related to land use, cluster 3 repre-
sents the means used to monitor water quality and land use 
changes through a coupled network where the very key nodal 
element is remote sensing means, and cluster 4 represents 
some small structural bodies of related research. The pur-
pose of this paper is to show mechanisms of action between 
water quality and land use practices and the latest develop-
ment in recent years. This paper introduces three sections. 
The “Effects of land use on water quality” section shows the 
water quality, pollution sources, impact of human activities 
on land use patterns, the effect of deteriorating water qual-
ity, and how to understand the relationship between land use 
and water quality. The “Influence of land use on water qual-
ity change from the perspective of remote sensing” section 
describes how relevant studies on the interaction between 
land use and water quality are carried out under different 
spatial resolutions. The “Conventional method of land use 
impact on surface water quality index” section reviews the 
methods used by relevant studies on land use affecting water 
quality and causing degradation to understand and clarify 
the impact relationship.

Impact of land use on water quality

Population growth has led to increased demand for eco-
nomic development worldwide, such as human residential 
land and food production. To provide shelter and food for 
humans, much land has been artificially converted into 

Fig. 1  Schematic results of 
literature retrieval

56889Environmental Science and Pollution Research (2022) 29:56887–56907



1 3

building and farmland (Du et al. 2018; Schmalz et al. 
2015; Smucker and Detenbeck 2014). In the context 
of decreasing arable land area and decreasing fertility, 
humans apply excessive amounts of pesticides and fer-
tilizers to maintain crop growth rates and yields, which 
leads to increased intensity of arable land use and negative 
effects on regional water and environmental health (Chen 
et al. 2021). Rapid global changes including urbanization, 
population, socio-economy, energy demands, and climate 
have put unprecedented pressure on water resources and 
the associated systems. In response to population growth 
around the world, humans have built a large number of 
hydraulic structures to supply irrigation power and water 
resources (Bertone et al. 2016; Strehmel et al. 2016; Lu, 
2020), yet in recent years the exponential growth of light 
and heavy industries around the world has consumed 
large amounts of water resources (Courtonne et al. 2016; 
Kosolapova et al. 2021). With the analysis of published 
research (Table 1), we found that among the many stud-
ies on the relationship between land use types and water 
quality, the three land use types of agricultural land, forest 

land, and urban land have the highest frequency, so this 
paper focuses on these three land use types.

As shown in Fig. 2, we found that agricultural land and 
construction land have severe great negative impact on the 
water environment in general, while forest land was con-
sidered to have a less detrimental effect on surface water 
quality. In small-scale buffers, agricultural land usually 
brings relatively large adverse impact on water quality, but 
in large-scale buffers, agricultural land has some improve-
ment on water quality. Forest lands are often considered 
to be a barrier to water quality degradation effect to a cer-
tain extent. Construction land is the concentrated area of 
human activities. With the increase of buffer zone, imper-
vious surface runoff also increases. Industrial wastewater 
and domestic sewage discharge cause certain pollution to 
the water environment. The use of pesticides and fertilizers 
is the main factor of pollution to the water environment 
in agricultural land uses. In the small-scale buffer zone, 
nitrogen, phosphorus, and other elements are less absorbed 
by the soil in the migration process, resulting in a large 

Table 1  Impact of different land 
use types on water quality

Reference Land use types

Agricultural Urban Forest Grassland Meadow Bare land Other

White (1976) √ √
Richardson (1979) √
Oakes et al. (1981) √
Nichol (1993) √ √ √ √
Mattikalli and Richards (1996) √ √
Jordan et al. (1997) √
Rai and Sharma (1998) √ √
Perry et al. (1999) √ √
Roman et al. (2000) √
Sliva and Williams (2001) √ √ √
Tong and Chen (2002) √ √
Little et al. (2003) √ √
Ngoye and Machiwa (2004) √ √ √ √
Pintar et al. (2006) √
Li et al. (2008) √ √
Eugene and Rabalais (2009) √
Singh et al. (2010) √ √ √
Tu (2011) √ √ √
Carroll et al. (2013) √ √ √
Ding et al. (2015) √ √ √
Chen et al. (2016) √ √ √
Hua (2017) √ √
Melland et al. (2018) √ √
Liu et al. (2018) √ √ √
Kondraju and Rajan (2019) √ √
Song et al. (2020) √
Qiao et al. (2020) √ √ √
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number of pollutants directly entering the water body in 
a short time.

Impact of agricultural land on water quality

Stoate et  al. (2009) claimed that agricultural land does 
negatively affect water quality which comes from planting, 
application inputs (fertilizers, agricultural chemicals), and 
agricultural irrigation. Many studies have shown that with 
the increase of agricultural land area and the decrease of 
water quality, habitat and biological combination, row crops, 
and other forms of intensive planting have a strong impact 
on river conditions (Dillon and Kirchner 1975; Wang et al. 
2019a). It has been shown that as more land is reclaimed for 
agriculture, sediment, dissolved organic matter (DOM), total 

nitrogen (TN), and total phosphorus (TP) yields in surface 
water bodies in the area will increase (Ni et al. 2021). The 
ecological quality of highly agricultural rivers tends to be 
poor as evidenced by a decline in various ecological indices 
and riparian stability (Lacher et al. 2019). Previous studies 
in many countries have found that watersheds with a large 
proportion of farmland can emit more nitrogen and phospho-
rus (Gu et al. 2015; Neill 1989). Nitrogen and phosphorus 
fertilizers are often applied in large quantities during the 
growth of crops, and the phosphorus fertilizers that are not 
absorbed by crops are flushed into rivers by rainfall splash-
ing, water infiltration leaching, and runoff, which in turn 
cause nitrification and denitrification reactions between dif-
ferent forms of nitrogen (Camara et al. 2019; Jaworski et al. 
1992; Li et al. 2020). The large increase in dissolved organic 

Fig. 2  Influence mechanism of land use on water quality
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carbon export from the region’s rivers has been associated 
with the expansion of agricultural land area, but few scholars 
have quantified how land use affects organic carbon trans-
port, concentration, and quality (Guzha et al. 2018; Wilson 
and Xenopoulos 2009). In addition, excessive nitrogen and 
phosphorus in farmland enter the water through runoff, and 
the increase of these nutrients accelerates eutrophication, 
leading to the decrease of microorganisms, algae, aquatic 
higher plants, and various invertebrates and vertebrates 
(Yang et al. 2020).

Although there are uncertainties in measuring and pre-
dicting the impact of farmland and agricultural activities, 
we have learned unequivocally that agricultural production 
does lead to an increase in nutrients in the region’s waters, 
thereby accelerating eutrophication in the waters. Excessive 
application of chemical fertilizers and pesticides can also 
be harmful to water quality; for instance, the increase of 
pesticide and fertilizer application was associated with the 
increase of nutrient emissions and the extinction of under-
water aquatic vegetation in the Mississippi River (Turner 
and Rabalais 1991), the Chesapeake Bay Basin (Boynton 
et al. 1982; Kemp et al. 1983), the Odense Fjord catchment 
(Molina-Navarro et al. 2018), and the Chaohu lake basin 
(Yang et al. 2020). In 1981, British scholar OAKES et al. 
explored and studied the distribution of solute extracted 
from farmland in major aquifers in the UK from 1975 to 
1980 and concluded that nitrate concentration was signifi-
cantly correlated with agricultural production practices 
(Oakes et al. 1981). Agricultural nonpoint source pollution 
is now widely recognized as a critical nutrient input to sur-
face waters due to sources of intensive fertilizer applications 
(Huang et al. 2021). Improper agricultural practices, such 
as over-tillage, result in the destruction of soil particles and 
the flow of sediment into surrounding water bodies through 
surface runoff (Hu et al. 2019). Scholars have also found that 
untreated agricultural wastewater was discharged directly 
from intensively cultivated rice farmland into environmen-
tal surface water bodies, leading to further deterioration of 
water quality (Minh et al. 2020).

The proportion of animal husbandry in agriculture is 
much higher than planting in some regions. Livestock excre-
ment contains large amounts of nitrogen, phosphorus, and 
other fertilizer components, and livestock barn sewage may 
be discharged directly into rivers, lakes, and other water 
bodies (Samways 2022). In addition, the accumulation of 
manure in the field and the storage of livestock barn sewage 
in ponds can cause water pollution through surface runoff 
and underground seepage of rainwater (Cesoniene et al. 
2019). In summary, the combined results show that there is 
a significant negative correlation between agricultural land 
use and agricultural production activities and surface water 
quality compared to forest land and urban land use. For 
example, in Thailand, the relationship between water quality 

of the Menghe River and agricultural land (especially paddy 
field) in the basin is the most significant, and biochemical 
oxygen demand (BOD) and TP contents are significantly 
positively correlated with the proportion of agricultural land 
area, indicating that agricultural land plays a “source” role 
in the pollution load of BOD and phosphorus in river water 
(Tian et al. 2020). Farming is the key source of nitrogen and 
phosphorus pollution in the Pearl River Basin, followed by 
urban sewage, aquaculture, and rural sewage. The study of 
Taihu Lake Basin and Honghu Lake Basin with the highest 
proportion of agricultural land showed that the output capac-
ity of TN, TP, chemical oxygen demand (COD),  Cr+, and 
other pollutants from forest land, urban land, and agricul-
tural land has increased significantly (Li et al. 2020). To stop 
the continuous deterioration of water quality, local people 
may actively regulate the ecosystems of water bodies such as 
rivers at the expense of productive agricultural land (Mishra 
et al. 2021; Trodahl et al. 2017).

Impact of urban land on water quality

Water quality degradation is most typical in areas with 
more pronounced human activity and rapid land use 
change, especially in areas experiencing rapid urbanization. 
With continuous rapid growth and urbanization, the rapid 
expanding construction land area and industry exert great 
impacts on the eco-landscape, water, and the soil (Dewan 
and Yamaguchi 2009; Lacher et al. 2019). Pollution con-
centrations have a direct impact as nutrients, metals, 
medicines, and toxic substances invariably end up flowing 
into rivers. In general, rapid urbanization often results in 
significant regional land use/cover changes, mainly in the 
form of increased impervious surfaces (Delphin et al. 2016; 
Wang et al. 2020). Impervious surfaces cause changes in 
many ecological processes, such as increased surface run-
off, increased soil erosion, and increased non-point source 
pollution, which is one of the main factors contributing 
to the deterioration of the water environment (Lin et al. 
2020). If the percentage of impervious surface in an area 
reaches 10–15%, then river water quality and common 
pollutants in aquatic ecosystems, such as nitrogen, phos-
phorus, and heavy metals, will increase significantly, lead-
ing to a decline of water body health (Brabec et al. 2002; 
Dong et al. 2020; Klein 1979; Tasdighi et al. 2017). This 
particular land use will primarily result in negative water 
quality impacts, which negatively affect water resources by 
increasing runoff and facilitating the dispersion of nonpoint 
source pollutants (Li et al. 2018; McGrane 2016).

As urbanization accelerates, the natural landscape is 
destroyed and modified, and peak flows and runoff sub-
sequently increase dramatically, changing the spatial and 
temporal patterns of surface runoff and the hydrological 
cycle processes in urban areas and affecting the water 
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balance within the region (Han and Jia, 2017; Pankaj, 
2021). Due to the differences in sewage treatment tech-
nology and nutrient removal efficiency, sewage discharge 
may also lead to spatial and temporal changes in nutrient 
fluxes in urbanized basins. This heterogeneity results in 
differences in the effects of land use types within different 
catchment units on water quality (Fashae et al. 2019; Hale 
et al. 2015; Xian et al. 2016). Heavy rains and other events 
in urban areas often lead to a large amount of water rap-
idly passing through the watershed carrying with it more 
nutrients, sediments, and pollutants (Zhao, 2018). Riv-
ers and rivers in densely populated drainage areas usually 
have high solute levels, including nitrogen and phosphorus 
(Marti et al. 2004; Lu 2020). In urban areas, point pol-
lution sources, such as sewage farm, have caused huge 
amounts of nutrient load for receiving waters (Xian et al. 
2019). In studies that recognize and understand how land 
use practices impact water quality, larger effluent loads 
may be a confounding factor for other land uses.

Like agricultural land, urban land is generally con-
sidered to be a key contributor to water quality changes 
in watersheds (Shi et  al. 2017; Pankaj, 2021). Human 
behaviors associated with urbanization (e.g., increased 
industrialization and housing development) can affect the 
water quality of regional surface water bodies. Therefore, 
the consistency of land use types in urban areas is one of 
the focal points of water quality research concerns. Some 
relationships are difficult to explain as many parameters, 
including water storage capacity, evapotranspiration, inter-
ception, runoff, and emission, are related to the fate and 
erosion mode of water pollutants. At the same time, large 
amounts of industrial wastewater and domestic sewage 
generated by human activities in dispersed urban areas 
exacerbate water degradation (Ding et al. 2016; Dong 
et al. 2020), which reflects that with the improvement of 
population, economy, and urbanization in the basin, the 
sewage collection and treatment facilities in the dispersed 
urban areas have not kept up with the expansion speed 
and scale of the city and population, causing serious pres-
sure on river water quality. Moreover, the construction of 
reservoirs and dams to meet the demand of urban popula-
tion’s water consumption has not only changed the water 
resources storage in the basin and reduced the efficiency 
of water resources utilization, but also affected the natu-
ral degradation process of pollutants (Lu 2020). Harmful 
substances that should have been naturally degraded in 
wetlands and rivers are stored, multiplied, and fermented 
in artificial dams, leading to deterioration of water quality 
(Xu et al. 2020). Thus, urban construction has put lots of 
pressure on China, which has a severe shortage of water 
resources per capita, and artificial efforts to change the 
spatial and temporal distribution of water resources are 
counterproductive.

Impact of forest land on water quality

Due to the fixation and adsorption of pollutants by forests, 
which serve as sinks for river nutrients, the total phosphorus 
and total nitrogen levels in the watershed tend to decrease as 
the area of forested land increases. Since terrestrial vegeta-
tion absorbs bioavailable phosphorus, the soil nutrient level 
in the basin may decrease. In accordance with the age and 
type of vegetation, the assimilation rate of nutrients may be 
different. Forests are more effective in removing nutrients 
from basin soils than shrubs and grasslands because their 
leaves and roots are more developed (Lintern et al. 2018). 
Many studies have shown that after rainwater passes through 
the forest canopy layer, the content of its chemical compo-
sition changes significantly through the canopy exchange 
(Jachniak et al. 2019). For example, the showering of rain-
water on the surface exudates of plant bodies and the absorp-
tion of rainwater ions by branches and leaves, as well as the 
washing of solid sediments such as dust and particles on the 
surface of branches and leaves by rainwater, cause changes 
in the content of nutrients in the penetrating rain and trunk 
stem flow (Rolando et al. 2017; van Dijk and Keenan 2007; 
Vermaat et al. 2021). However, afforestation may also cause 
diffuse pollution in the process of building and managing 
forest land (Duffy et al. 2020). Although nutritive materials 
are usually applied to nutrient-poor soil areas at the time 
of the initial afforestation, the impact of its applications is 
generally weaker than agricultural land (Wang et al. 2021).

Some woodlands obviously have purification effect, 
examples including riparian forest, alluvial forest, and 
hedgerow farmland (Ranjit and Puneet 2019; Gong et al. 
2021). Riparian forests and forest roots have filtration and 
capture nutrients such as nitrogen, potassium, phosphorus, 
and metallic element (Jachniak et al. 2019). Generally, 
woodland is considered a “sink” landscape with pollutant 
interception function, which can reduce the negative impact 
of non-point source pollution on water quality (Cecilio et al. 
2019). Compared to non-forested land and farmland water-
sheds, the soil of forested land also has a good agglomerate 
structure and is more conducive to microbial growth, and 
the leaf litter layer of the forest makes the forest ecosys-
tem a powerful purifier of atmospheric rainfall (Xu et al. 
2021). Thus, maintaining a large distribution of forestry 
land, aggregation, and good connectivity in the basin with 
strong control effects, control of pollutants entering the 
river, and the distribution of forestry land in the riparian 
zone (below 100 m) are all important factors in maintaining 
good river water quality (Townsend et al. 2012, van Dijk 
and Keenan 2007).

Consistent with studies emphasizing the ability of wood-
lands to reduce nutrient and sediment content in regional 
water bodies (Ranjit and Puneet 2019), many studies have 
revealed a positive relationship between forest cover and 
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water quality. Forests are generally considered to be helpful 
to protect land, facilitate infiltration, reduce rapid surface 
flow, and limit sediment flow and turbidity. Considering 
some land with high carbon stock and associated phospho-
rus transform risks (Rolando et al. 2017), we found that 
interactions between carbon land and forest land may be 
related to a broad European context. The Irish Forestry Ser-
vice has adapted its environmental protection regulations in 
recent years to reduce the potential impacts of afforestation 
in hydrologically fragile areas, including the management 
of acid-sensitive and low production sites. In combination 
with other measures, this has led to a reduction in arable land 
requiring nitrogen and phosphorus inputs (especially peat) 
during major changes in afforestation or drainage (Ding et al. 
2016; Jachniak et al. 2019).

Influence of land use on water quality 
change from the perspective of remote 
sensing

Since the 1970s, satellite remote sensing data has become 
popular for land use and water resource management, as it 
provides an effective tool for comprehensive water quality 
and land use assessment and management. The size of the 
most detailed unit that can be identified on a remotely sensed 
image is usually expressed in spatial resolution, which is 
an indicator of the detail of surface targets through image 
resolution. The size of spatial resolution reflects the level 
of spatial detail and the ability to separate it from the back-
ground environment (Zhang et al. 2020). Different satellite 
data sources (Images with different spatial resolutions) have 
different sizes of meaningful units that can be identified. 
In other words, their primitive scales are different. This is 
because the spatial resolution of each target on the images 
does not depend totally on the absolute size of its resolu-
tion and is related to its contour, size, relative brightness, 
and structure with respect to surrounding objects (Gong 
et al. 2006). For example, in the land cover classification 
of remote sensing images, fine spatial resolution can reduce 
the boundary mixing elements and improve the classification 

accuracy to a certain extent; however, higher resolution may 
lead to an increase of spectral variability within the category 
and thus reduce the classification accuracy. Current scholars 
use satellite remote sensing images to monitor water quality 
parameters of surface water environment, such as turbidity, 
salinity, chlorophyll concentration, TN, TP, BOD, COD, SS 
(suspended solid), and DOM. In addition, remote sensing 
images of different spatial resolutions can also be used to 
monitor and classify land use patterns and surface cover 
types at different scales.

As shown in Table 2, the lower the spatial resolution, 
the more the number of mixed pixels. The larger the area of 
mixed pixels is, the more serious the leakage is and the more 
inaccurate the interpreted water body is. Excessive spatial 
resolution will cause too much detail information, interfere 
with the resolution of water, and increase the amount of data 
and workload, which is not conducive to the extraction of 
water information (Ming et al. 2008). In addition, in regions 
with flat terrain, regular boundaries, and large water area, 
the influence of spatial resolution on the extraction effect 
is smaller (Fisher et al. 2018). In areas with rugged terrain, 
blurred boundaries, and small water area, the error of water 
extraction results increases with the decrease of spatial reso-
lution. For different applications, when selecting the spatial 
resolution of images, it is necessary to comprehensively con-
sider the accuracy requirements, economic costs, labor costs, 
and time costs (Chen et al. 2021; Zhang, 2016).

Application of high‑spatial‑resolution remote 
sensing data

When the spatial resolution of the images reaches the 
meter level, most of the surface targets such as tree, car, 
road, and house will appear precisely on the image. With 
the outstanding high spatial resolution, high-definition 
remote sensing images can realize fine earth observation 
and obtain geometric structure, texture size, spatial lay-
out, and other characteristic information of feature targets, 
with good conditions and foundation for interpretation and 
analysis (Villegas and Torres 2020). However, how to make 
best use of the potential of more accurate spatial resolution 

Table 2  Advantages and 
disadvantages of three spatial 
resolution 

Spatial resolution Advantages Disadvantages

High (i) Exactitude earth observation
(ii) Better representation

(i) Large amount of data, complex spectral 
information, low separability

(ii) “Homogeneity and Heterogeneity”
Moderate (i) High data volume and variety

(ii) Mature interpretation technology
(iii) Convenient access

(i) Interpretation accuracy is easily affected
(ii) Classification accuracy is not high
(iii)Mixed pixels exist for images

Coarse (i) High temporal resolution
(ii) Global coverage
(iii) Continuous observation

(i) Poor spatial consistency
(ii) Low spatial detail
(iii) Weak feature recognition
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capability is important to improve the classification preci-
sion and velocity of target extraction (Gong et al. 2006). At 
present, scholars have accelerated the application of high-
resolution images, especially high-spatial-resolution images, 
in urban environment, precision agriculture, transportation 
and road facilities, forestry measurement, military target rec-
ognition, and disaster assessment (Zang et al. 2021). People 
often choose data because of the limitation of the scale or 
resolution of existing data. Multispectral and high-spatial-
resolution datasets are growing in number (IKONOS, Quick-
Bird, GeoEye-1, WorldView-1/2, GF-2, etc.); selecting the 
proper data from multiple data sources has become a new 
challenge in many industries; e.g., forest monitoring (Zhang 
et al. 2020), land use survey (Fisher et al. 2018), and other 
fields have gradually replaced low- and medium-resolution 
remote sensing data and become the preferred data source 
for research (Chen et al. 2011). Under the background of 
increasing similar remote sensing data, how to find suit-
able remote sensing data to meet the application require-
ments has become a subject worthy of study. For a specific 
application, remote sensing data with different basic quality 
parameters have different application potential. Many schol-
ars have used IKONOS, QuickBird, and WorldView series 
data to extract information of urban water bodies, land use 
types, mangroves, and vegetation tree species. The results 
of those studies show that high-resolution data have higher 
accuracy in extracting information (Alphan and Celik 2016). 
Therefore, researchers often use a basic quality parameter of 
remote sensing data to uniquely determine the application 
potential of high-spatial-resolution remote sense datasets 
(Villegas and Torres 2020).

As the observation scale becomes finer and objects 
become more detailed, the complexity of objects increases 
rapidly, which leads to increased intra-class variability while 
reducing inter-class differences; creates more challenges for 
classifying; and extracts information from images (Zang 
et al. 2021). The spectral resolution of high-spatial-resolution 
remote sensing image is relatively low and contains a lot 
of detail information, making the spectral distribution very 
complex and reducing the identifiability of features in the 
spectral bands. The difference of spectral information of sim-
ilar ground objects increases, and the spectral information of 
different ground objects overlaps with each other, making the 
intra-class variance larger and the inter-class variance smaller 
and resulting in a large number of “Homogeneous Hetero-
geneous” and “Homogeneous Heterogeneous” phenomena, 
which greatly reduces the classification accuracy of images 
(Gong 2006). The application potential of higher spatial res-
olution remote sense datasets is often affected by multiple 
basic quality parameters of the data, which is the result of 
the interaction of multiple basic quality parameters (Sekrecka 
and Kedzierski 2018). The application potential of remote 
sensing data is simply defined by the corresponding basic 

quality parameters of remote sensing data. The information 
provided by high-resolution satellite images is composite, 
complex, and diverse. There is no clear cognition and guid-
ance for data applications, making it difficult for data users 
to better select remote sensing data products that are suitable 
for specific applications (Wang et al. 2020). Researchers can 
only qualitatively give the conclusion of whether the data 
can meet its application but cannot further explain to what 
extent the data can meet the application requirements. There-
fore, it is necessary to comprehensively consider the cor-
relation between basic quality parameters and then build an 
application-oriented application potential evaluation model 
of higher spatial resolution remote sense datasets to predict 
the application potential (Peng et al. 2019).

Application of medium spatial resolution remote 
sensing data

In remote sensing applications, the spatial resolution of 
10–120-m satellite data is generally considered medium 
resolution data. Although the spatial and temporal resolu-
tion of remote sensing images has been improved to a cer-
tain extent, high-resolution remote sensing images have also 
been widely used in many ways, but the medium-resolu-
tion remote sensing images are still the main data source 
of research and application because of convenient access 
and relatively mature interpretation technology. The clas-
sification accuracy is not high because the accuracy of 
medium-resolution image interpretation is affected by spatial 
resolution, spectral characteristics of ground objects, and 
other factors (Ouma 2016). The field survey data with high 
accuracy can only obtain data in some areas due to data 
confidentiality and cost, making the data difficult to obtain 
in many applications and research. Overall, the computer 
classification accuracy of medium-resolution remote sens-
ing images is relatively low, and the classification results are 
suitable for medium-scale applications and research, such as 
land use cover, plant communities, forest pests and diseases, 
flood disaster assessment, and carbon sources/carbon sinks, 
but not for micro-applications and research with high accu-
racy requirements such as land use change monitoring and 
engineering design in smaller regions (Estoque et al. 2015).

Mixed pixels mainly refer to the type of ground objects 
in a certain pixel that is not single, and there are different 
types of ground objects. Mixed pixels are mainly distributed 
at the boundary of the ground class. As the brightness value 
of mixed pixels is not close to any representative category, it 
is easy to cause classification error. Undoubtedly, the exist-
ence of mixed pixels in medium-resolution remote sensing 
image is a key factor affecting the classification accuracy, 
especially in the classification and recognition of linear and 
fine ground objects, which are difficult to identify. In the 
process of interpretation and classification of land use types, 
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the problem of mixed pixel is often encountered (Phiri et al. 
2020). To solve this problem, the weight of ground objects 
in mixed pixel can be converted by certain methods, and 
then the weight of actual ground object area can be judged. 
When the spatial resolution is too low, there are more mixed 
pixels in the image, and the computer classification accuracy 
is relatively low. However, it may be due to data require-
ments and computational limitations, or satellite instruments 
(especially those publicly available) that prioritize spectral 
information (higher radiometric sensitivity) over higher spa-
tial and temporal resolution. Therefore, it is not true that 
the higher the spatial resolution, the higher the value of the 
application (Goldblatt et al. 2017). If the spatial resolution 
is too high, the same type of region may be divided into 
multiple types of pixels. For example, if the resolution is 
greater than 2 m, the afforestation woodland in the construc-
tion land and the small woodland in the village are likely to 
be identified as vegetation, thereby reducing the classifica-
tion accuracy. Therefore, the appropriate spatial resolution 
is the key to improve the automatic classification accuracy 
(Ouma 2016; Peng et al. 2006).

Application of coarse spatial resolution remote 
sensing data

Remote sensing data with large-scale and coarse spa-
tial resolution has become an important data source in 
global change research because of its long-term continu-
ous observation, high temporal resolution, and global 

coverage. For example, Moderate-resolution Imaging 
Spectroradiometer 500 m/1000 m resolution data and 
Missouri Emergency Resource Information System pro-
duction are often used for large-scale land use or water 
quality monitoring applications (Zhang et  al. 2009). 
The low-spatial-resolution remote sensing data can also 
provide information to reflect the characteristics of sur-
face, cloud, ocean color, phytoplankton, biochemistry, 
atmospheric temperature, and ozone. These character-
istics allow significant advantages in the research fields 
of sea surface temperature change, and greenhouse gas 
monitoring. Geostationary satellites can obtain large-
scale remote sensing data with ultra-high temporal reso-
lution for their fixed observation areas, but they can-
not cover polar regions, and polar orbit satellites can 
compensate for this shortcoming. Therefore, the remote 
sensing monitoring covering the world is not competent 
for a single platform or sensor; these low spatial resolu-
tion datasets have different data acquisition platforms, 
data acquisition strategies, and generation algorithms, 
resulting in poor spatial consistency between them. We 
can see from Table 3 that since 1998, most remote sens-
ing studies on land use and water quality have focused on 
medium-spatial-resolution remote sensing studies, and 
most of them use Landsat remote sensing platform data 
series, while the number of remote sensing studies at low 
spatial resolution is very small.

Table 3  Researches 
from remote sensing perspective 
at different spatial resolutions 
(see the list of Abbreviations 
above for the full spelling)

Platform/source Sensor Pixel size (m) Reference

IRS 1A/1B LISS-II 36.25 Rai and Sharma (1998)
Landsat 4/5 TM 30/120 Perry et al. (1999)
Landsat 5 TM 30/120 Little et al. (2003)
Landsat 5/7 TM/ETM + 15/30/120 Zhao et al. (2004)
Terra/Aqua MODIS 250/500/1000 Li (2004)
Landsat 4/5 TM 30/120 Li et al. (2008)
Terra/Aqua and ENVISAT MODIS and MERIS 250/500/1000 Zhang et al. (2009)
IRS 1C LISS-III 23.6 Singh et al. (2010)
ALOS PRISM 2.5 Zhao et al. (2012)
Landsat 5/7 TM/ETM + 15/30/120 Huang et al. (2013)
Landsat 4/5 TM 30/120 Bu et al. (2014)
Terra ASTER 15/30/90 Kawamura et al. (2015)
Landsat 5 TM 30/120 Chen et al. (2016)
Landsat 5/8 TM/OLI 15/30/100/120 Hua (2017)
Sentinel 2A MSI 10/20/60 Kondraju and Rajan (2019)
SPOT 6 HRGs/HRS/VGT 1.5/6 Song et al. (2020)
Landsat 5 TM 30/120 Lei et al. (2021)
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Conventional method of land use impact 
on surface water quality index

As the impact of land use/cover change on the ecological 
environment is intensifying, scholars at home and abroad 
have conducted studies on the comprehensive impact of 
regional land use change on the ecological environment. 
As a whole, the current research methods and steps are 
Data collection–Model building–Analysis–Prediction, 
to achieve a scientific and reasonable explanation of 
land use/cover change, its driving factors, and driving 
mechanisms (Damanik-Ambarita et al. 2018). As shown 
in Table 4, scholars mainly use geostatistical and math-
ematical modeling analysis methods to analyze the quan-
titative relationship between land use and water quality. In 
general, the impact of land use/cover change on ecologi-
cal environment, especially on water ecological effect, 
has gradually gained attention, and the research direction 
has gradually shifted to the study of modern resources 
and environment, and combined with modern integrated 
disaster risk management research, but still mainly static 
research, dynamic simulation is not enough, and the lack 
of a unified index system, the research is not comprehen-
sive and systematic (Lin et al. 2014).

Correlation analysis

Correlation analysis refers to the analysis of two or more 
variables that correlate to each other. Correlation analysis 
originated, which is also the beginning of statistics (Gib-
bons and Chakraborti 2014). Correlation analysis addresses 
the following two issues: determining the statistical associa-
tion between two or more variables; and if an association 
exists, further analyzing the strength and direction of the 
association. The Pearson correlation coefficient, known as 
the product difference correlation coefficient, is the most 
commonly used correlation coefficient, which takes a value 
from − 1 to 1. The larger the absolute value, the stronger 
the correlation. The coefficient is calculated and tested as a 
parametric method and is suitable for correlation analysis of 
continuous variables.

The Pearson correlation coefficient is defined as the quo-
tient of the covariance and standard deviation between the 
two variables (Sorana and Lorentz 2006):

The above equation defines the overall correlation coef-
ficient, where ρ is often used as the representative symbol. 

(1)�X,Y =
cov(X, Y)

�X�Y
=

E[(X − �X)(Y − �Y )

�X�Y

Table 4  Application of different analytical methods

Research method Analysis method/model Application example Spatial scale

Correlation analysis Spearman’s correlation analysis; 
nonparametric Spearman rank 
correlation

Tu and Xia (2008), Ding et al. (2016)
Fisher et al. (2018), Li et al. (2020)

Riparian zone, watershed, and sub-basin

Analysis of variance Sonoda et al. (2011), Ujoh (2014), 
Fashae et al. (2019)

Pearson’s correlation Kibena et al. (2014), Little et al. 
(2003), Chen et al. (2021)

Cluster analysis Salahat et al. (2014), Wong (2005), 
Das et al. (2020)

Regression analysis Multivariate linear regression Fashae et al. (2019), Giri et al. (2018)
Chen et al. (2020), Zhang et al. (2020)

Riparian zone, river reach, basin, and 
sub-basin

Multiple regression analysis Woli et al. (2004), Zampella et al. 
(2007)

Chen et al. (2020), Nie et al. (2011)
Fadhil et al. (2021)

Spatial regression analysis Babcock et al. (2013), Wang et al. 
(2017)

Multilayer perceptron model Selle et al. (2008)
Stepwise multiple regression Forsius et al. (2017), Ren et al. (2003), 

Chen et al. (2020)
Redundancy analysis Classical redundancy analysis Li et al. (2018), Qiao et al. (2020), Wu 

et al. (2021)
Riparian zone, sub-basin

Mixed model analysis Linear mixed model Liu et al. (2013), Swaffer et al. (2018) Riparian zone, river reach, basin, and 
sub-basin
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Estimating the sample covariance and standard deviation, 
the sample correlation coefficient (sample Pearson coeffi-
cient) can be obtained, commonly expressed as r:

where X and Y  are the sample mean for Xi samples.
Spearman correlation coefficient can be calculated even 

if the original data are rank information. Spearman’s cor-
relation coefficient can also be calculated for data that obey 
Pearson’s correlation coefficient, but the statistical efficiency 
is lower than that of Pearson’s correlation coefficient (Sorana 
and Lorentz 2006). Its formula is:

here x′ is rank(x), and y′
i
 is rank(y). It is defined as Pearson 

correlation coefficient between rank variables:

where xi and yi are the original variables. Xj and Yi obtained 
by rank mapping. The mapping can be taken as the aver-
age of the descending position of each original data. Denote 
di = xi − yi. Its simplified formula is:

In practical problems, researchers often encounter prob-
lems in which multiple variables are studied, and in most 
cases, there is often some correlation between multiple vari-
ables. The large number of variables coupled with the cor-
relation between them inevitably increases the complexity 
of analyzing the problem. The main issue is to find a way 
to synthesize a few representative variables from multiple 
variables, which can represent the majority of information of 
the original variables but are not correlated with each other 
and can be further analyzed statistically on the basis of the 
new combined variables, and this requires principal compo-
nent analysis. Principal component analysis (PCA) is a mul-
tivariate mathematical analysis method that examines the 
correlation between multiple variables (Gniazdowski 2021; 
Zhang et al. 2011). For all the variables originally proposed, 
duplicate variables (closely related variables) were removed 
as redundant and as few new variables as possible were cre-
ated so that these new variables were two unrelated and that 
these new variables maintained the original information as 

(2)r =

n∑
i=1

(Xi − X)(Yi − Y)

�
n∑
i=1

(Xi − X)2

�
n∑
i=1

(Yi − Y)2

(3)rho =
Σ(x� − mx� )(y

�
i
− my� )√

Σ(x� − mx� )
2(y�

i
− my� )

2

(4)� =
Σi(xi − x)(yi − y)√
Σ(xi − x)2(yi − y)2

(5)� = 1 −
6Σd2

i

n(n2 − 1)

much as possible in terms of reflecting the information on 
the subject (Paul and Meyer 2001). In river water quality 
studies, the potentially relevant variables describing water 
quality are divided into fewer mutually independent princi-
pal components (Diamantini et al. 2018).

Trend analysis is used when detecting elemental trajec-
tories, and point source pollution is usually marked at a site 
and investigated using Spearman’s rank correlation coeffi-
cient analysis. The “footprint” is produced by advection and 
dispersion processes, resulting in concentrations decreasing 
with extent of the source. This approach can also be consid-
ered for monitoring water quality or assessing the effective-
ness of remedial measures. Spearman rank correlation coef-
ficient has some advantages, such as it is a non-parametric 
technology, meaning it is not affected by the overall distribu-
tion (Siddique and Mukherjee 2017). This method does not 
require regular data collection because it has some capacity 
to accommodate abnormal data values. The limitations of 
Spearman rank correlation coefficient is that when the data 
is converted to rank sum, it will lose information. If the data 
is normal distribution, Spearman rank correlation coefficient 
is not as strong as PCA (Zhang et al. 2022).

Regression analysis

The idea of regression analysis is a mathematical algorithm 
to determine the correlation between variables by using 
mathematical statistics and a large number of observation 
data (Lindley 1991). This idea is often adopted in issues 
involving multiple factors and variables, such as economic 
issues and the cost of raw materials (Aldrin 1997). The 
regression analysis method can characterize the association 
between parameters by a mathematical expression. With a 
dependent variable Y and n independent variables X1, X2,…, 
Xn, the relationship between the dependent and independ-
ent variables can be expressed as in Eq. (6) (You and Yan, 
2017):

where a0, a1, a2,…, an are constants, and ε is the error 
coefficient.

where y denotes the dependent variable. x1, x2, …, xx denote 
the independent variables.�0 , �1,…,�k are the unknown 
parameters, and �0 is the regression constant. From the 
results of correlation analysis, the interrelationships were 
calculated, and the significance of each multiple linear 
regression result was tested using P < 0.01 as the criterion, 
and the optimal model was selected based on the statistical 
characteristics (P, R2) (Li et al. 2020).

(6)Y = a0 + a1 ⋅ X1 + a2 ⋅ X2 +⋯ + an ⋅ Xn + �

(7)y = �0 + �1x1 + �2x2 +⋯ + �kxk
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Usually, computers are used to solve such problems and 
quickly discover the appropriate mathematical expression 
between variables, namely the regression equation, while 
ensuring the accuracy of the results and reflecting the prac-
tical value of the regression. In practice, most complex 
problems are nonlinear multiple regression (Gibbons and 
Chakraborti 2014). Linear regression has some important 
premises, such as independent variables and dependent vari-
ables must have a linear relationship, no appearance of any 
outliers, and no heteroscedasticity; samples should be inde-
pendent and identically distributed; error items should mean 
0; variance constant obeys normal distribution; and there is 
no multicollinearity and autocorrelation (Woli et al. 2004).

Stepwise regression is a variable selection method that is 
based on forward introduction and variable in and out. The 
core of the regression model is to remove the insignificant 
variables from the regression model and introduce new vari-
ables into the regression model. In recent years, some schol-
ars have developed a Bayesian hierarchical linear regression 
model, which can more effectively reveal the impact of land 
use and land cover on watershed water quality (You and 
Yan, 2017).

Redundancy analysis

Another direction in correlation analysis is to perform 
Redundancy Analysis (RA). In 1936, Hotelling proposed 
typical correlation analysis, which extended linear correla-
tion analysis to the correlation of two groups of variables 
(Hotelling 1992). The calculation principle of the redun-
dancy calculation analysis is shown in Fig. 3, whereby it 
means that when dealing with the relationship between two 
groups of variables, typical correlation analysis is performed 
first to find two groups of typical variables, and then a lin-
ear regression model is established with one set of original 
variables as the response variables and another set of typical 
variables as the explanatory variables (van den Wollenberg 
1977).

Redundancy analysis was used to determine the positive/
negative relationships between landscape features and water 
quality parameters, as well as the cumulative explanatory 
power of significant landscape indicators at different ripar-
ian buffer widths (Choi and Seo 2021). Redundancy analysis 
is a ranking method in ecology to explain the relationship 
between species information and environmental variables, 
which can synthesize the influence produced by multiple 
variables and effectively evaluate the influence of one set of 
variables on another. When evaluating the directional cor-
relation between many predictors and outcome variables, 
the regression model is often accompanied by dimension 
reduction techniques (Shen et al. 2015). After a series of 
transformations and screening, redundancy analysis method 

can effectively simplify the number of variables to create 
conditions for researchers to further simplify the analysis 
(Tong and Chen 2002).

The biggest advantage of redundancy analysis is that it 
not only independently maintains the contribution rate of 
each variable to plant community change but also minimizes 
the number of environmental variables. Redundancy anal-
ysis directly takes the environmental variables of interest 
as constraints into consideration in ranking analysis, thus 
greatly reducing the scale of environmental variables, which 
is called ranking method under constraints. In addition, 
extended redundancy analysis (ERA) has been developed 
in recent years and is widely used in the study of component 
regression models. Choi and Seo (2021) proposed copula-
based redundancy analysis (CRA) to improve the perfor-
mance of regression-based ERA; the results show that CRA 
is significantly better than regression-based ERA.

Multivariate spatial regression analysis

At present, the effect of ecological landscape on individual 
water quality indicators can be estimated with multiple 
regression models (Ding et al. 2016). To quantitatively study 
the relationship between water quality changes and land use 
indicators, a multiple stepwise regression analysis model 
was therefore used to establish the response of water bodies 
to land use patterns and water quality relationships within 

Fig. 3  Calculation principle of redundancy calculation analysis
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different buffer zones, and was used to identify the environ-
mental or landscape variable factors that best explained the 
water quality indicators. The formula is shown in Eq. (7).

Spatial regression analysis refers to the regression analy-
sis considering the relationship of the research object. Spa-
tial regression analysis models can be divided into spatial 
lag model (SLM) and spatial error model (SEM) (Guo et al. 
2016). Moreover, spatial regression analysis should first 
conduct spatial correlation test, and Lagrange multiplier is 
usually used for test; the model parameters are generally 
estimated by maximum likelihood estimation (Lee 2004).

The SLM and SEM model equation can be expressed as:

where y is the dependent variable, x is the independent vari-
able, t0 is the regression coefficient, β0 is the parameter, u is 
the intercept, λ is the spatial autoregressive coefficient, W is 
the weight, and ε is the error term.

In practical problems, the classical least squares regres-
sion is the most widely used model, which well describes the 
process of conditional mean distribution of dependent vari-
ables affected by independent variables. The ordinary least 
squares linear regression model assumes the same linear 
relationship between the dependent and independent vari-
ables in all spatial units in the study area and uses the least 
squares method to estimate the unknown parameters of the 
multiple linear regression equation. The matrix expression 
of the linear regression model takes the form:

where y is the dependent variable, X is the n × (p + 1) order 
regression design matrix of the independent variables, β is 
the parameter vector, and ε is the random error vector. Equa-
tion (11) has 2 basic assumptions: the independent variables 
are linearly independent, X is a full-rank matrix, and the 
sample size n is larger than the number of independent vari-
ables p. The random error term ε satisfies a normal distribu-
tion and is independently isotropic.

In general, the least square method is often used to fit 
the independent variables and dependent variables in cross-
sectional data; that is, the regression coefficient is independ-
ent of the geography of the sample data; the distribution of 
variables in space is random; and there is no obvious data 
aggregation characteristics like the upward graph. Partial 
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least squares regression is a predictive modeling method, 
which is related to PCA; it can overcome the shortcomings 
of classical regression analysis, thus achieving better simula-
tion and analysis results (Xie and Chen 2022). Unlike clas-
sical forms of data, the spatial heterogeneity of regression 
relationships can exist in some cases where spatial data are 
correlated.

To overcome the inability of the least squares method 
to describe spatial auto-correlation and the unsteadiness of 
spatial data, GWR model takes into account the spatial het-
erogeneity of the data into the regression model and analyzes 
the local characteristics of the data. The GWR model can be 
viewed as an enhanced general linear regression model that 
embeds the geographic sites of the data into the regression 
parameters (Brunsdon et al. 1999; Wang et al. 2017). GWR 
based on multiple linear regression and geographic location 
information, which fully considers the non-stationarity of 
space and uses local rather than global parameter prediction 
and simulation (Tu and Xia 2008), can better consider the 
spatial dependence and heterogeneity of dependent variables 
and independent variables, and make the regression structure 
more reliable. In addition, the overall trend is robust under 
the change of spatial scale (non-bandwidth) and spatial 
granularity (Dong et al. 2018). Its formula is:

where Wi is the n × n order diagonal matrix, which is a func-
tion of the distance from observation point i to the nearest 
neighboring observation point; Y is the n × 1 order observa-
tion vector of the dependent variable collected at n points; X 
is the n × k order independent variable matrix; βi is the n × 1 
order parameter vector corresponding to observation point 
i; εi is the n × 1 order error vector, which follows a normal 
distribution with constant variance.

In particular, GWR first expects the predictor variables 
to vary continuously in space in terms of their effects on the 
dependent variable. Thus, these relationships are assumed 
to be non-stationary, with the coefficients of each predictor 
variable varying from point i to the next point in a two-
dimensional geographic space defined by grid coordinates 
(u, v) (or coordinates on a sphere), such that the regression 
equation takes the form:

Study of different spatial scales under remote 
sensing perspective

Scale is an important concept in geography. In real data, 
different regression processes can be performed at different 
spatial and temporal scales, such as global and local scales, 

(12)WiY=WiX�i + �i

(13)
ŷ(ui,vi) = �0(ui,vi) + �1(ui,vi)x1 + �2(ui,vi)x2 +⋯ + �k(ui,vi)xk
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macro and micro scales, and short-term and long-term 
scales. The emergence of various phenomena is not only 
determined by one variable or one scale, and the analysis of 
land use in early studies was usually carried out based on a 
certain spatial scale.

In recent years, domestic and foreign scholars have 
started to analyze the relationship between river water qual-
ity and land use based on different spatial scales. Elsewhere, 
Rodrigues et al. (2018) analyzed the influence of land use on 
river water quality in the Córrego Água Limpa watershed, 
Brazil, based on the basin-wide scale. Shukla et al. (2018) 
analyzed the relationship between water quality and land 
use in the Ganga river basin, India, from two spatial scales: 
watershed and administrative area. Due to the differences in 
multi-scale patterns of land use, there is uncertainties in the 
study of river water quality in terms of land use patterns. The 
results (correlations) are affected by the size of the spatial 
analysis scale, but there are different conclusions on which 
scale of land use patterns can better explain the relationship 
(Fang et al. 2019). It is necessary to consider the analysis 
from different spatial scales. Ding et al. (2016) analyzed the 
relationship at different scales in the Dongjiang River basin 
and found that the watershed scale could better explain the 
effect of land use on river water quality than the buffer scale. 
However, Xu et al. (2020) studied at seven different spatial 
scales in the Huaihe River basin and found that a buffer zone 
with a radius of less than 20 km could better explain the 
effect of land use on changes in ammonia nitrogen and dis-
solved oxygen concentrations. It can be seen that when ana-
lyzing the relationship between river water quality and land 
use, there are differences in the appropriate spatial analysis 
scales for different watersheds. Therefore, it is necessary 
to compare different spatial scales in order to find a more 
significant analysis scale.

In addition, how exactly human activities on regional 
lands affect the quality of water bodies may vary at different 
spatial scales (Camara et al. 2019; Luo et al. 2018). When 
understanding the changes in water quality caused by land 
use practices, researchers use this method as it gives greater 
weight to land use (Kennen et al. 2008; Peterson et al. 2011). 
Watershed buffers such as riparian zones and hydrological 
sensitive areas (HSAs) are considered to be key influences 
on water quality in the region (Giri et al. 2018), whereby 
HSAs refer to regions with high runoff tendency in the basin 
(Faruque 2019; Qiu et al. 2014). HSAs mainly produce and 
transport pollutants to rivers and affect river hydrology, and 
although interesting, there are also shortcomings. Firstly, 
there is no unified method to determine the width of ripar-
ian zone. Secondly, given the hydrological connectivity of 
spatial changes in landscape, riparian zone is not an alterna-
tive indicator of hydrological sensitivity. Many multi-scale 
referred research focus on the following points, including 
comparison of buffers with the whole basin, comparison of 

multi-scale basins, and comparison of buffer extents (Kolpin 
1997; Shen et al. 2015).

Conclusions and discussion

Discussion

Remote sensing technology is of great value in monitor-
ing and studying land use/cover change as well as testing 
remote sensing empirical models to help water quality 
monitoring, assessment, and drawing spatial distribution 
of water quality parameters using geographic information 
systems. With the continuous development of multi-source 
satellite remote sensing data (multi-band, multi-platform), 
fusion methods, and technologies, the spatial and temporal 
resolution and continuity of satellite remote sensing data 
are further improved, the image quality is improved, and 
the potential value of satellite remote sensing data is fully 
utilized and played. Because of the differences in satellite 
and sensor characteristics and the applicability of specific 
element inversion algorithms (such as the algorithm based 
on thermal infrared remote sensing information inversion 
of surface temperature is only applicable to sunny condi-
tions), monitoring land use change and water cycle elements 
using only a single satellite platform is difficult to meet the 
requirements of resource management for spatial and tempo-
ral resolution, spatial and temporal continuity, and accuracy 
of monitoring elements (Kosolapova et al. 2021). At present, 
remote sensing monitoring is only one of the applications 
of remote sensing technology in surface water environmen-
tal monitoring, and the uncertainty is high. In the future, 
multi-period satellite remote sensing images can be acquired 
based on Google Earth Engine platform to accurately extract 
river–lake-reservoir and related land use information to con-
duct time series analysis to obtain water quality changes 
and serve as the scientific basis for taking corresponding 
measures (Wagner et al. 2019; Wagner and Fohrer 2019).

In the future, it is critical to combine PCA, typical cor-
relation analysis, and multiple regression analysis, so that 
future studies can still carry out regression modeling when 
there are multiple correlations between the independent and 
dependent variables, or even when the number of samples 
is less than the number of variables. Regression modeling 
is performed even when the number of samples is less than 
the number of variables. Regression modeling can be used in 
the case of multiple correlations between independent vari-
ables and dependent variables, or even the value of samples 
is lower than the value of variables. If we want to effectively 
calculate and analyze the relationship between the influenc-
ing elements of Carrying Capacity of Water Resources 
(CCWR) and the index, we should require a large number of 
data on the influencing factors of CCWR, which is generally 
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difficult to achieve at this stage. Therefore, it is necessary 
to establish a water resources information collection system 
to collect data. In the future, it is necessary to obtain more 
information about various aspects affecting the CCWR to 
obtain a more comprehensive description of the index value 
of it. In the future, more methods such as machine learning 
and artificial neural network can be used to estimate the 
mechanisms of influence between water quality and land use 
(Zhang, 2014). In contrast to traditional methods of building 
regression equations, machine learning algorithms have been 
used to estimate water quality to predict concentrations of 
water quality indicators in different watersheds with differ-
ent land use practices (Bhattarai et al. 2021). Surface water 
quality problems arise with the development of human soci-
ety, and land use has an important impact on the change of 
water environment and water quality. Similarly, the change 
of water environment is inseparable from the development of 
population, economy, politics, and technology in the basin. 
In order to accurately and quantitatively discuss how land 
use and its changes affect surface water bodies, more com-
prehensive considerations are needed in the future to serve 
as a scientific basis for taking appropriate measures.

Conclusions

This paper summarizes the published studies and concludes 
that (1) land use change has a series of profound effects 
on ecological process, surface runoff, and hydrological 
cycle. It then affects the safety of river water quality. Dis-
cussing the mechanisms of influence between water quality 
and land use is of great significance to land use manage-
ment planning and effective protection of water ecologi-
cal environment resources. (2) Different spatial resolution 
remote sensing data sources have their own advantages and 
limitations. Based on the statistical results of literature, the 
medium-spatial-resolution remote sensing data sources are 
widely used in the study of the relationship between land 
use and water quality. (3) Correlation analysis, regression 
analysis, and redundancy analysis in multivariate statistical 
methods have been widely used in exploring the relationship 
between land use and water quality. Studying the relation-
ship between land use and water quality variables can reduce 
the cost of river water quality monitoring. The estimation of 
these relationships can provide a prediction basis for river 
water quality and reduce the need for periodic sampling pro-
cess of most rivers.

It is difficult to accurately understand the mechanisms 
of influence between water quality and land use because it 
relies on many influencing factors. The study on the influ-
ence mechanism of land use on water quality indicators 
has become a hot topic of scholars in China and abroad. 
The research on the relationship between the two by using 
remote sensing data and GIS has gradually increased. The 

periodicity and quantification of remote sensing technol-
ogy can be used to solve some over-generalization prob-
lems and provide modern technical support for dynamic 
monitoring. In the future, more in-depth dynamic moni-
toring combined with remote sensing images is needed 
to overcome the overrun phenomenon in the traditional 
monitoring data acquisition and processing.
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