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Abstract
The freight transport industry is an important field in which to achieve the goal of carbon emission reduction within the trans-
portation industry. Analyzing the spatial–temporal characteristics and regional differences in the freight transport industry’s 
carbon emissions efficiency (CEE) is an essential prerequisite for developing a reasonable regional carbon abatement policy. 
However, few studies have conducted an in-depth analysis of the freight transport industry’s CEE from the perspective of 
geographic space. This study combines the super-efficiency slack-based measure (SBM) model and the window analysis 
model to measure the freight transport industry’s CEE in 31 Chinese provinces from 2008 to 2019. We then introduced a 
spatial autocorrelation analysis and the Theil index to analyze the spatial–temporal evolution characteristics and regional 
differences in the freight transport industry’s CEE in China. The results show that (1) the overall level of the freight trans-
port industry’s CEE is low, with an average of 0.534, which showed a weak downward trend during the study period. This 
indicates that the freight industry’s CEE has not improved, and there is a massive requirement for energy conservation and 
emission reduction. (2) From 2008 to 2019, CEE gradually shows a spatial distribution pattern of being “low in the west 
and high in the east,” with a significant, positive spatial correlation (all passed the significance level test at P < 0.01). This 
indicates that the spatial diffusion and inhibition of the freight transport industry’s CEE in adjacent areas cannot be ignored. 
(3) The overall differences in the freight transport industry’s CEE show a fluctuating upward trend from 2008 to 2019. The 
inter-regional differences of the three regions (east, central, and west) are the main contributors of the total differences. 
Therefore, narrowing inter-regional gaps in CEE is one of the main ways to improve the freight transport industry’s CEE.

Keywords Freight transport · Carbon emission efficiency · Spatial autocorrelation · Super-efficiency SBM window model · 
Theil index

Introduction

With the rapid growth of the world’s economy, global warm-
ing has seriously threatened human survival and sustainable 
social development (Wang and He 2017). Since China’s eco-
nomic reform and its opening up, its economy has developed 
rapidly to become the world’s second largest in 2011. With 
its rapid economic growth, China’s carbon emissions have 
also increased significantly. According to the  CO2 Emis-
sions and Fuel Combustion Highlights 2009 Edition, China’s 
energy-related carbon emissions surpassed those of the USA 
in 2007, becoming the world’s largest emitter of greenhouse 
gas (GHGs) (IEA 2009). To reduce carbon emissions and 
encourage global GHG emissions to peak as early as possi-
ble, most countries have adopted the Paris Agreement. China 
has pledged to adopt strong measures to continuously reduce 
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carbon emissions and achieve the peak by 2030 (Wang et al. 
2021).

The transportation industry is essential for economic 
development yet is a crucial contributor to carbon emis-
sions (Van Fan et al. 2018), producing about one-quarter of 
the total worldwide carbon emissions (IEA 2019). In China 
in 2019, according to national statistics, the transportation 
industry’s energy consumption accounted for 9.02% of the 
total energy consumption, while its direct carbon emissions 
accounted for approximately 10% of the total emissions. 
Following the 13th Five-Year Plan for the Development of 
a Modern Comprehensive Transportation System issued 
in 2016 (Ministry of Transport of the People’s Republic 
of China), which proposed to promote energy-saving and 
the low-carbon development of the transportation industry, 
the 14th Five-Year Plan, issued in 2021, further proposed 
to comprehensively promote said industry’s green and low-
carbon transformation and implement the objectives of car-
bon peak and carbon neutralization. Therefore, the transport 
industry has become a key industry in which China can ful-
fill its carbon emission reduction commitments (Peng et al. 
2020), and its energy conservation and emission reduction 
have become important research issues (Li et al. 2019; Liu 
et al. 2021; Peng et al. 2020; Wang and He 2017).

However, few scholars studied energy conservation and 
emission reduction of the freight transport industry. In 
recent years, China’s freight transport industry has devel-
oped rapidly, owing to the fast growth of economic aggre-
gates. In 2019, China’s freight turnover reached 19,939.4 
billion tkm, an 80.8% increase from 2008 (China Statisti-
cal Yearbook 2020). Relevant studies show that in 2013, 
the GHG emissions of China’s freight industry accounted 
for about 8% of the country’s total GHG emissions, and it 
is predicted that by 2050, its GHG emissions will be 2.4 
times those of 2013 (Hao et al. 2015). The report Research 
on Strategy and Policy of China’s Freight Transportation 
Energy Conservation and Emission Reduction, issued 
by the Energy Conservation and Emission Reduction 
Research Group of the Chinese Academy of Engineering, 
also pointed out that the carbon dioxide emissions of Chi-
na’s freight transportation industry were 675 million tons 
in 2014, accounting for 61% of those of China’s transpor-
tation industry and predicted that the carbon emissions of 
the said industry would reach 1.04 and 1.27 billion tons in 
2030 and 2050, respectively. Therefore, the freight trans-
port industry has become a significant contributor to the 
fast growth of transport carbon emissions and is thus a 
key focus area for emission reduction in China. Accord-
ingly, the sustainable development of both the transporta-
tion industry and society must consider minimizing the 
impact of freight transport on the environment. Simultane-
ously, since sustainable energy conservation and emission 
reduction are closely related to the improvement of energy 

utilization and CEE in the production process (Jebaraj and 
Iniyan 2006), it is of great practical importance to study 
the freight transport industry’s CEE.

Since there is significant disparity in natural resources, 
geographical location, and market environment across 
China’s various regions, regional economic development 
is unbalanced, which also leads to substantial disparity in 
regional energy utilization and CEE. Freight transport is 
a derivative demand of economic development. Therefore, 
along with the regional differences in economic develop-
ment, there is regional heterogeneity in the freight trans-
port industry’s energy use and CEE. Studying the spa-
tial–temporal  distribution characteristics and regional 
differences in the freight transport industry’s CEE in 
different regions will not only reveal the changes in the 
distribution of CEE in different areas, but will also enable 
further exploration of the causes of regional differences, to 
ultimately provide a basis for developing regional carbon 
abatement policies.

Accordingly, this study selected 31 regions in China as 
research areas in which to explore the spatial–temporal 
distribution characteristics and regional differences in Chi-
na’s freight transport industry’s CEE from 2008 to 2019. 
First, we used the super-efficiency slack-based measure 
(SBM) window model to calculate the CEE and analyzed 
the spatial characteristics of CEE using a spatial autocor-
relation analysis. Second, we used the Theil index to ana-
lyze the total, inter-regional, and intra-regional differences 
in the freight transport industry’s CEE to understand the 
degree of regional differences in China and identify the 
main contributors to the total differences. Finally, some 
useful policy implications are provided for the improve-
ment of the freight transport industry’s CEE in different 
regions of China, aiming to provide a reference for govern-
ment departments to draft freight transport’s CEE policies 
to achieve the goal of carbon emissions peak and carbon 
neutralization.

Compared with previous studies, the main contributions 
of this study are as follows: (1) different from previous stud-
ies using the single-factor method or traditional data envel-
opment analysis (DEA) method to evaluate the efficiency of 
carbon emission, this study calculated the CEE of China’s 
freight transportation industry by using a calculation method 
combining super-efficiency SBM model and the window 
analysis model. (2) Based on the perspective of geographi-
cal space, this study undertook an in-depth analysis of the 
temporal and spatial characteristics and regional differences 
in the freight transport industry’s CEE at the provincial and 
regional levels. It provided a more comprehensive perspec-
tive for the government to understand the Chinese freight 
transport industry’s CEE, which could help regional and 
provincial decision-makers draft differentiated strategies 
for improving the freight transport industry’s CEE.
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Literature review

Prior research has mainly focused on analyzing the trans-
portation industry’s driving factors and reduction strate-
gies regarding carbon emissions (Isik et al. 2020; Mustapa 
and Bekhet 2016; Zhang et  al. 2019), the relationship 
between the transportation industry’s development and 
carbon emissions (Li et al. 2019; Wang et al. 2019), and 
the transportation industry’s energy and environmental 
efficiency (Wei et al. 2021; Zhu et al. 2020). However, 
the aforementioned studies considered the transporta-
tion industry as an entire system and did not distinguish 
between passenger and freight transport. Regarding freight 
transport, Tian et al. (2014) studied the characteristics of 
freight carbon emissions in various provinces, Luo et al. 
(2016) conducted research on the driving forces of car-
bon dioxide emissions from freight transport in China, and 
Hao et al. (2015) estimated the GHG emissions of freight 
transport in China from the perspective of life cycle and 
scenario-based predictions. Other studies have calculated 
and analyzed the GHG emissions of China’s road freight 
industry (Fu et al. 2020; Li et al. 2013). However, these 
studies only calculated and analyzed carbon emissions 
without considering the efficiency of carbon emissions.

The calculation methods of carbon emissions and 
energy efficiency mainly include single-factor and total-
factor indicator methods. Single-factor indicator meth-
ods, such as energy and carbon emissions intensity, only 
measure part of the carbon emissions performance; that 
is, they cannot comprehensively evaluate the entire pro-
duction system’s carbon emissions and energy efficiency 
(Feng and Wang 2018). Therefore, the DEA method, based 
on total-factor indicators, has become the primary evalu-
ation method of carbon emissions and energy efficiency 
(Zhang and Wei 2015). This method is also widely used 
in transportation systems. For instance, Cui and Li (2014) 
and Zhou et al. (2013) used the DEA method to calcu-
late the transport industry’s carbon emissions and energy 
efficiency. However, the traditional radial DEA model 
does not consider relaxation variables, and the model’s 
calculation deviation is large (Liu et al. 2016). Therefore, 
Tone (2001) extended the traditional DEA method and 
proposed an SBM model that considered slack variables 
to reduce measurement bias. Chu et al. (2018) and Park 
et al. (2018) applied the SBM model to the transportation 
system to effectively measure the transportation industry’s 
carbon emissions and energy efficiency and showed that 
it was more suitable for scenarios that had undesirable 
outputs. However, the ordinary SBM model’s maximum 
value is 1, while decision-making units (DMUs) that have 
an efficiency value of 1 cannot be effectively distinguished. 
In the super-efficiency SBM model, since the efficiency 

value of the evaluated DMU is obtained by referring to 
the frontier composed of other DMUs, the efficiency value 
of the effective DMU will be greater than 1, so the effec-
tive DMU can be distinguished (Cheng 2014). Therefore, 
the super-efficiency SBM model is widely applied to esti-
mate carbon emissions and ecological efficiency (Bai et al. 
2021; Tang et al. 2021). However, the super-efficiency 
SBM model only performs static analysis on cross-sec-
tional data and cannot dynamically analyze time series. 
The DEA window model dynamically measures the effi-
ciency of DMUs based on the moving average method. It 
takes all DMUs in a certain width period as a reference set 
so as to multiply the number of DMUs in the reference set. 
For instance, assuming there are n DMUs and t  periods, 
the total number of DMUs is n × t . If the window width 
is set to d , the number of DMUs in each window is n × d , 
which is d times the number of DMUs in each time (Cheng 
2014; Peykani et al. 2021). Therefore, the combination of 
the super-efficiency SBM and window DEA models not 
only solves the problem of undesired output and distin-
guishes effective DMUs, but also effectively increases the 
number of DMUs (thus solving the efficiency evaluation 
problem regarding panel data) and makes the calculation 
results more reliable and accurate (Song et al. 2016).

Given the disparity in the resource, technology, and eco-
nomic levels, there is a notable disparity in the development 
level of transportation and freight transport among the dif-
ferent regions of China. However, most study outcomes on 
the transportation system’s carbon emissions have regarded 
each area independently and ignored the spatial interaction 
among various areas. Lesage and Pace (2009) believe that 
the region’s characteristics are not spatially independent and 
will be affected by its neighbors. Some research results have 
also shown that the transportation system’s carbon emissions 
have spatial agglomeration and regional differences charac-
teristics (Bai et al. 2020; Peng et al. 2020). However, prior 
studies on the transportation industry’s carbon emissions and 
energy efficiency have not considered the two major geo-
graphical characteristics of spatial correlation and regional 
differences. Moreover, they have neglected the influence of 
spatial factors on the freight transport industry’s CEE. As 
freight transport is a key contributor to the transportation 
industry’s carbon emissions, an in-depth analysis of freight 
transport’s CEE from the point of spatial correlation and 
regional differences is necessary.

In sum, there are few studies on the carbon emissions of 
freight transport, and most of them focus on the calculation 
and analysis of carbon emissions, while only a few explore 
the freight transport industry’s CEE. In addition, previous 
research has mainly used the traditional DEA model or the 
super-efficiency SBM model to measure CEE. The combi-
nation of the super-efficiency SBM and window analysis 
models can consider the undesired output, distinguish the 
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effective DMUs, and increase the number of DMUs to solve 
the problem regarding panel data and make the calcula-
tion results more accurate. Finally, most prior studies have 
treated each province or region as an independent individual 
and ignored the spatial interaction and regional differences 
between them; thus, they have failed to conduct an in-depth 
analysis of CEE from the perspective of geographical space. 
However, the spatial correlation and regional differences 
among the regions are of great significance for government 
departments aiming to formulate carbon emissions reduction 
policies. Thus, we adopt the super-efficiency SBM window 
model, spatial autocorrelation analysis, and the Theil index 
to analyze the spatial–temporal evolution and regional dif-
ferences in China’s freight transport industry’s CEE. This 
topic has theoretical and practical significance, as it can be 
a reference for drafting carbon reduction policies for the 
freight transport industry.

Methodology

Calculation of the freight transport industry’s 
carbon emissions

There are two main methods for estimating the transport 
system’s carbon emissions. The first is to estimate the emis-
sions according to the industry terminal energy consumption 
and carbon emissions factor data, that is, the “top-down” 
calculation method. The second is based on vehicle mileage, 
fuel consumption per unit mileage, and carbon emissions 
factor, that is, the “bottom-up” calculation method. Because 
the energy consumption data of the freight transportation 
industry cannot be directly obtained, this study adopted the 
second method by referring to the research methods of Ou 
and Xu (2020), Wang (2012), and Tian et al. (2014). This 
study estimated the carbon emissions of freight transport 
based on the turnover of goods in different transportation 
modes, the energy consumption of unit turnover, and the car-
bon emission factors of various energy sources, as follows:

First, the freight transport industry’s energy consumption 
can be estimated based on the freight turnover of different 
transportation modes and the energy consumption per turno-
ver unit of transportation tools. The calculation is shown in 
Formula (1):

where h and l represent the mode and means of transport, 
respectively; Eh,l signifies the energy consumption of trans-
port means l in transport mode h ; Vh,l indicates the freight 
turnover of transport means l in transportation mode h ; and 
CFh,l denotes the energy consumption per turnover unit of 
transport means l under transportation mode h.

(1)Eh,l = Vh,lCFh,l

Second, we calculated the carbon emissions of different 
transportation modes according to the energy consumption 
obtained by Formula (1). The calculations are shown in For-
mulas (2) and (3):

where Ch,l signifies the carbon dioxide emissions of trans-
port means l in transport mode h , Eh,l has the same mean-
ing as Formula (1), and fh,l is the carbon emissions factor 
of the fuel or electricity consumed by transport means l in 
transport mode h . C denotes the total emissions of the freight 
transport in each administrative region.

Calculation of the freight transport industry’s CEE

By combining and analyzing the research results regard-
ing the efficiency measurement methods from the literature 
review, we introduced the super-efficiency SBM window 
model to measure the CEE of provincial freight transport 
in China. The super-efficient SBM model is used to better 
distinguish the effective DMUs. The main limitation of this 
model is that a value of 0 should be avoided in input–output 
data. If the input or output index in the relevant model is 0, 
the DMU or relevant index that does not meet the conditions 
must be deleted. The input and output index values of the 
measured data in this study are not 0; therefore, they do not 
need to be processed. The model is shown in Formula (4):

where � denotes the CEE of freight transport; xik, yrk , 
and brk are the input and desirable and undesirable output 

(2)Ch,l = Eh,lfh,l

(3)C=
∑
h

∑
l

Ch,l

(4)
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indicators of the k th DMU, respectively; m,q1 , and q2 denote 
the number of input and output indicators of each DMU, 
respectively; and s−

i
 , s+

r
 , and sb−

t
 are the slack variables. R is 

the constraint.
The DEA window analysis model needs to evaluate the 

CEE by setting the window width to select different refer-
ence sets. Referring to the research results of Halkos and 
Tzeremes (2009), Wang et al. (2013), and Wu et al. (2020), 
we set the width of the window to 3 to obtain a reliable and 
stable CEE value. Accordingly, by using the super-efficiency 
SBM window model, we obtained the CEE of each window 
in the 31 Chinese regions. With the exception of only one 
CEE value in 2008 and 2019 and two values in 2009 and 
2018, each region has three efficiency values from 2010 
to 2017. Then, by calculating the average annual CEE of 
each area, new results for the CEE of the 31 regions were 
obtained.

Spatial autocorrelation analysis

Spatial autocorrelation analysis is used to distinguish spatial 
correlation patterns and can effectively distinguish the spa-
tial correlation model (spatial agglomeration, discrete or ran-
dom distribution model) of the CEE of freight transport in 
relation to geographical location. It includes global and local 
spatial autocorrelation. Global spatial autocorrelation is the 
overall analysis of the geographic spatial distribution char-
acteristics of CEE and the spatial correlation mode between 
regions. It is commonly measured using global Moran’s I. 
The calculation is shown in Formula (5):

The value of I  ranges from − 1 to 1. −1 < I < 0 and 
0 < I < 1 indicate a spatial negative and positive correla-
tion distribution, respectively. When I is close to 0, there is 
no spatial correlation. n denotes 31 Chinese provinces; wij is 
shown in Formula (6); and xi and xj indicate the CEE of the 
freight transport in the i and j regions, respectively.

Global Moran’s I cannot determine the specific aggrega-
tion region or the correlation mode of the CEE of a specific 
area. Therefore, the Moran scatter plot and local spatial 

(5)I =

n
n∑
i=1

n∑
j=1

wij(xi − x)(xj − x)

n∑
i=1

n∑
j=1

wij

n∑
i=1

(xi − x)2

(6)

wij =

{
1, if share a common border or a single common point

0, else

(7)x =
1

n

n∑
i=1

xi

autocorrelation should be combined to identify the specific 
location of agglomeration and determine the correlation 
mode of the CEE between regions. Local Moran’s I is com-
monly used for the local spatial autocorrelation index, and 
its calculation is shown in Formula (8):

where Ii > 0 indicates that the study area presents “high-
high” (HH) or “low-low” (LL) clustering, while Ii < 0 
signifies that the study area shows “high-low” (HL) or 
“low–high” (LH) clustering. The meanings of the other vari-
ables are the same as in Formula (5).

Theil index

Theil (1967) proposed the Theil index based on the con-
cept of entropy in information theory. It was initially used 
to measure the degree of income inequality between regions 
and was later developed as an important index to evaluate 
area disparities. This study utilized the Theil index to assess 
the area differences of freight transport’s CEE. The calcula-
tion is shown in Formula (9):

where T  is the Theil index of China’s freight transport 
industry’s CEE, n denotes 31 Chinese provinces, xi indicates 
the CEE of the freight transport in province i , and x repre-
sents the average value of the CEE of all provinces.

According to China’s three major economic regions 
(eastern, central, and western China), the Theil index can 
be decomposed into intra- and inter-area components, as 
shown in Formula (10):

where Tw and Tb indicate the intra- and inter-area Theil 
index, respectively. The calculations are shown in Formulas 
(11) and (12):

where k represents the three economic regions; nk indi-
cates the number of provinces in the k th region; n denotes 
31 Chinese provinces; xk indicates the average CEE of 

(8)Ii =

n(xi − x)
n∑
j=1

wij(xj − x)

n∑
i=1

(xi − x)2

(9)T =
1

n

n∑
i=1

xi

x
ln(

xi

x
)

(10)T = Tw + Tb

(11)Tw =

3∑
k=1

nk

n

xk

x
Tk

(12)Tb =

3∑
k=1

nk

n

xk

x
ln(

xk

x
)
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freight transport in the k th economic area; x denotes the 
average value of the national CEE of freight transport; and 
Tk is the Thiel index of the CEE of freight transport in the 
k th economic region.

Variable selection and data sources

Research area

The statistical caliber of China’s road and water transport 
changed in 2008, while data fluctuated greatly, and some 
data were not available due to the impact of the COVID-19 
pandemic in 2020. Therefore, to maintain data consistency, 
this study examined the spatial characteristics and regional 
differences in the freight transport industry’s CEE in 31 
Chinese provinces based on data from 2008 to 2019. Hong 
Kong, Macau, and Taiwan were excluded due to missing 
data. By referring to relevant studies (Feng and Wang 2018; 
Feng et al. 2017), this study divided the samples into three 
regions (east, central, and west) according to geographical 
adjacency (Table 1).

China has five main modes of freight transport: roads, 
railways, waterways, air, and pipeline. Owing to the par-
ticularity of pipeline transport, relevant data are difficult to 
obtain. Meanwhile, the proportion of air freight turnover 
in the total freight turnover is small—accounting for only 
0.13% in 2019 (China Statistical Yearbook 2020)—and 
the airline mileage of each province cannot be accurately 
counted. Therefore, this study only considered roads, rail-
ways, and waterways as its three modes of transportation.

Data sources for the freight transport industry’s 
carbon emissions

The data on the freight turnover of the three transport modes 
were from the China Statistical Yearbook (2009–2020). The 
freight turnover of the diesel and electric locomotives in 
railway freight transport was calculated according to the pro-
portion data on their completed workloads from the China 
Railway Yearbook (2009–2020). The freight turnover of the 
diesel and gasoline vehicles in road freight was calculated 
based on the proportion data on their completed workloads 
from the China Motor Vehicle Environmental Management 

Annual Report. According to the average values, the propor-
tion of the completed workloads is 75% for diesel vehicles 
and 25% for gasoline vehicles. The energy consumption 
data per turnover unit of the different means of transport 
were from Ou and Xu (2020), the China Railway Yearbook 
(2009–2020), and China Transportation Yearbook. The 
missing data were calculated based on the target value of the 
13th Five-Year Development Plan for Transportation Energy 
Conservation and Environmental Protection. The carbon 
emission factors of fuel and electricity were derived from 
the Provincial GHG Inventory Guidelines, and the electricity 
carbon emission factor was calculated on the annual average 
value. The specific data are shown in Tables 2 and 3.

Index selection and data source for the CEE 
estimation

In addition to research methods, variable selection is another 
key issue in the evaluation of freight transport’s CEE. Refer-
ring to prior studies, combined with the actual situation of 
freight transportation and data availability, the variables of 
this study were selected as follows:

Input variables

Considering that capital and labor are the essential, core 
input elements in economic principles (Zhu et al. 2020) and 
the development of the freight transport industry cannot pro-
ceed without consuming energy, we selected capital, labor, 
and energy as the input variables. Since there are no statisti-
cal data on the capital stock of the transportation industry, 
by referring to the existing literature (Chen et al. 2018; Cui 
and Li 2014; Lei et al. 2021), we replaced capital stock with 
fixed asset investments. Bian and Yang (2010) also con-
firmed the rationale for using fixed asset investments as an 
input variable. However, freight transport is a subsystem 
of the transportation industry, and there are no statistical 

Table 1  The three regions and their provinces

Region Provinces

East Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan
Central Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan
West Inner Mongolia, Chongqing, Sichuan, Guizhou, Yunnan, Guangxi, Tibet, Shaanxi, Gansu, Qinghai, 

Ningxia, Xinjiang

Table 2  Energy carbon emission factors

Energy types Diesel oil Gasoline Kerosene

Carbon emission factors (kg/kg) 3.0960 2.9251 3.0179
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data on fixed asset investments. Therefore, we used fixed 
asset investments in transportation, warehousing, and postal 
services as the capital inputs. Meanwhile, the fixed asset 
investment price index was used to convert the data into con-
stant prices in 2008 to eliminate the impact of price changes. 
By drawing from the literature (Sun et al. 2018), we used 
the sum of employees in the road, railway, and waterway 
transportation industries as the labor input for the freight 
transport industry. We used the energy consumption data of 
the freight transport that were calculated using Formula (1) 
as the energy input.

Output variables

Song et al. (2016) and Liu and Lin (2018) believe that the 
freight turnover is a comprehensive indicator of the freight 
transport industry’s output and also reflects society’s cargo 

traffic services. Therefore, this study selected freight turno-
ver as a desirable output variable for freight transport. When 
consuming energy, the freight transport industry inevitably 
produces various pollutants such as carbon dioxide—the 
main target for emission reduction by the government (Lv 
et al. 2019). Therefore, in combination with the purpose of 
this study, carbon dioxide was selected as an undesirable 
output variable.

Results and analysis

The overall characteristics of CEE

Based on the super-efficiency SBM window model that con-
sidered undesired outputs and the selected index data, we 
estimated the freight transport industry’s CEE in 31 Chinese 
provinces from 2008 to 2019. The calculation results are 

Table 3  Electricity carbon emission factors

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Electricity carbon emission factor (kg/kWh) 1.131 1.028 1.003 0.980 0.973 0.971 0.974 0.963 0.941 0.922 0.903 0.895

Fig. 1  Average national-level 
and provincial-level CEE
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presented in Table 5 in the Appendix. Figure 1 displays the 
average CEE of the Chinese provinces from 2008 to 2019.

The average CEE of freight transport in the provinces is 
between 0.338 and 1.038, while the national average value 
is 0.534. This shows that China’s freight transport indus-
try’s overall CEE level is low, so there is plenty of room for 
energy conservation and emission reduction. This result is 
very similar to the results of the transportation industry’s 
CEE in 2004–2016 and 2010–2016 calculated by Peng et al. 
(2020) and Zhao et al. (2022), respectively. This also proves 
the accuracy of the measurement results.

Figure 1 shows that among the 31 provinces, only 11 
(35.48%) have higher average efficiency values than the 
national average. Only Shanghai’s CEE average is greater 
than 1, which is above the efficiency frontier, indicating 
that the resource allocation of Shanghai’s integrated freight 
system is relatively reasonable. The average freight emis-
sion efficiency values for the other 10 provinces, including 
Tianjin, Beijing, and Hainan, are above the national aver-
age, indicating that these areas have a relatively reasonable 
allocation of resources and a small gap between input and 
output. However, there remains ample space for further 
improvement.

Figure 2 displays the spatial distribution of the freight 
transport industry’s average CEE in the provinces, which 
was generated using quantile classification in ArcGIS 10.2 

software. Figure 2 shows that the freight transport industry’s 
CEE presents a gradually increasing distribution pattern 
from west to east. The Xinjiang, Qinghai, Tibet, and other 
western regions show low CEE, while Beijing, Tianjin, and 
the southeast coastal areas show high CEE. This indicates 
that the freight transport industry’s CEE in China has the 
characteristics of spatial agglomeration and regional differ-
ences, which need to be further analyzed.

Spatial–temporal evolution characteristics of CEE

Temporal evolution characteristics

Figure 3 shows the changing trend of the mean value, 
standard deviation (SD), and coefficient of variation (CV) 
of CEE over time. Overall, the CEE of freight transport 
shows a weak downward trend from 2008 to 2019. Spe-
cifically, the average CEE shows a fluctuating upward 
trend from 2009 to 2014 and 2018 to 2019, as well as a 
downward trend from 2015 to 2018, and is the highest 
in 2014. Meanwhile, the SD and CV also show a fluctu-
ating trend. First, the SD presents a fluctuating upward 
trend in 2008–2011, 2013–2014, and 2015–2019 and 
reaches its maximum in 2014. This indicates that in the 
three given periods, the absolute difference in the freight 
transport’s CEE shows an increasing trend and reaches 

Fig. 2  Distribution of freight 
transport industry’s average 
CEE
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the maximum in 2014. Second, the SD shows a downward 
trend in 2012–2013, indicating that the absolute difference 
in the CEE shows a downward trend in 2012–2013. The 
CV’s variation trend is consistent with the SD. The overall 
trend shows that the significant difference in the freight 
transport’s CEE has not improved but shows an increas-
ing trend.

Then, we analyzed the temporal evolution characteristics 
of the CEE of freight at the regional level. Figure 4 shows 
the changing trends of freight transport’s CEE nationwide 
and the three regions from 2008 to 2019.

Regarding the specific regions, freight transport’s CEE 
has obvious gradient characteristics of being “low in the 
west and high in the east.” Freight transport’s CEE in the 
eastern region is significantly higher than that in the central 
and western regions, and the difference between the regions 
tends to increase. This gradient feature is consistent with the 
research results of Tang et al. (2019) regarding the environ-
mental efficiency of the freight transport industry, as well as 
those of Bai et al. (2021) regarding the ecological efficiency 
of the logistics industry. From 2008 to 2019, except for the 
apparent decline and increase in 2013 and 2014, the CEE of 
the eastern region is stable and fluctuates around 0.70. The 
average CEE of the central and western regions is relatively 
low, at 0.457 and 0.430, respectively, and shows a down-
ward trend, while a declining trend is evident in the western 
region. This indicates that the freight transport industry’s 
energy conservation and emission reduction strategies in the 
central and western areas have not been well implemented, 

the resources have not been optimized, and the output effi-
ciency is low.

There are three possible causes for freight transport’s 
high CEE in the eastern area. First, the east area’s economy 
is developed and coupled with the inclination of policies 
and capital investment so that its technical level is con-
tinuously improved, the comprehensive freight system’s 
resource allocation is reasonable, and the energy utiliza-
tion rate is high. Second, the eastern coastal areas are less 
dependent on road freight transport, compared with the 
central and western regions; however, their dependence on 
waterways is rather high, and the freight structure is rela-
tively reasonable. Therefore, freight transport’s CEE is rel-
atively high in the eastern region. However, because of the 
backward economic development and technological levels 
of central and western areas, as well as the unreasonable 
allocation of resources in the freight transport industry’s 
structure and system, the freight transport industry’s CEE 
is relatively low, and the pressure of carbon emissions 
reduction is significant. For instance, in 2019, the road 
freight volume in Shanghai accounted for 41.8% of the 
total freight volume, while that in Guizhou and Qinghai 
accounted for 91.4% and 77.8%, respectively (China Sta-
tistical Yearbook 2020). Furthermore, the road freight vol-
ume of these two provinces is also much higher than that 
of Shanghai. Third, the eastern region has issued a series 
of policies to reduce carbon emissions from transportation 
and improve its CEE. For example, since 2015, the Shang-
hai Municipal Development and Reform Commission has 

Fig. 3  The evolution trend of 
the national average, standard 
deviation, and coefficient of 
variation
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annually issued a notice on Shanghai Municipality’s Key 
Work Arrangements for Energy Conservation and Emis-
sion Reduction and Addressing Climate Change, which 
focuses on energy conservation and emission reduction 
in key industries, including the transportation industry. In 
addition, Shanghai has also issued the Shanghai Imple-
mentation Plan for Promoting Transport Structural Adjust-
ment (2018–2020) to promote “road-to-railway, sea-rail 
intermodal transport, etc., to accelerate the adjustment of 
the city’s transportation structure, and to create a green 
transportation system.”

In addition, Fig. 4 shows that during the observation 
period, freight transport’s CEE both in the eastern and cen-
tral regions, as well as nationwide, fluctuated significantly 
in 2013 and 2014, when it reached the trough and peak, 
respectively. This may be because 2013 was a mid-term 
assessment year of the 12th Five-Year Plan for National 
Environmental Protection, and the completion of indica-
tors in 2013 lagged behind the progress requirements; 
therefore, the situation was very serious. In response, the 
State Council issued the 2014–2015 Energy Conserva-
tion, Emission Reduction, and Low-Carbon Development 
Action Plan, which required strengthening energy conser-
vation and carbon reduction in the transportation indus-
try. Therefore, freight transport industry’s CEE shows a 
noticeable uptick in 2014 and reaches the peak.

Spatial evolution characteristics

According to the CEE calculation results in Table 5 in 
the Appendix, we used ArcGIS 10.2 software to select 
the efficiency values in 2008, 2012, 2015, and 2019 to 
create a spatial distribution evolution map of the freight 
transport industry’s CEE. Figure 5 shows that, overall, the 
regions that have similar CEE are gradually concentrated. 
High-efficiency areas are mainly concentrated in the 
eastern and southeastern coastal areas, and low-efficiency 
areas are mainly concentrated in the northwestern and 
southwestern regions. Thus, the spatial distribution 
characteristics are “low in the west and high in the east.” 
For example, the CEE of freight transport in Shanghai, 
Hainan, Beijing, and Fujian is high, while that in Yunnan, 
Tibet, Sichuan, and Xinjiang is low. Therefore, there 
are apparent spatial differences and agglomeration 
characteristics in freight transport’s CEE among the 
regions in China.

Comparing 2008 and 2019, the freight transport’s 
CEE in seven of the 11 provinces in the eastern region 
shows an increasing trend, indicating that the eastern 
region had a positive spatial effect. Guangdong, Hainan, 
and Fujian have a relatively high growth rate, indicating 
their focus on resource allocation, low-carbon emissions, 
and management technology development to improve 

Fig. 4  The average CEE trends 
nationwide and in the east, 
central, and west from 2008 to 
2019
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freight transport and economic development, while also 
enhancing CEE. However, freight transport’s CEE in most 
of the central and western areas presents a downward trend. 
Guizhou, Ningxia, and Gansu show a significant decline, 
with Guizhou showing the largest decline. The main reason 
for this may be that, following the implementation of the 
Western Development Strategy, energy-intensive industries 
in the western region have flourished, foreign investment 
has also increased rapidly, and the proportion of secondary 
industries has continued to increase, which has caused 
significant increases in these regions’ freight turnover and 
energy consumption. However, the low-carbon technologies 
and management levels in these areas are relatively low, 
which results in a serious waste of resources and declining 
CEE. The proportion of coal consumption in Guizhou 
is relatively large, and, after 2010, with the accelerated 

development in the western region and the continuous 
promotion of Guizhou province’s policy to strengthen 
industry, the proportion of high-carbon emission fossil 
energy increased further, while the emission reduction 
technology and energy use efficiency were lower (Lu et al. 
2018), resulting in a significant decline in CEE.

Spatial autocorrelation analysis

The global spatial autocorrelation analysis

According to Formula (5), and based on the spatial adja-
cency weight matrix, we calculated the global Moran’s I of 
freight transport’s CEE using GeoDA software. The results 

Fig. 5  Spatial distribution of freight transport’s CEE in 2008, 2012, 2015, and 2019
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are listed in Table 4 and show that the global Moran’s I is 
positive and passes the 1% significance test; therefore, the 
CEE shows an obvious spatial positive correlation. Mean-
while, the global Moran’s I of the CEE increases from 0.361 
in 2008 to 0.425 in 2012 and then decreases to 0.359 in 
2019. This shows that the spatial positive agglomeration 
trend of freight transport’s CEE first increases and then 
decreases slightly.

The local spatial autocorrelation analysis

It is impossible to determine the local spatial agglomeration 
between the provinces with the global Moran’s I. Therefore, 
this study used the Moran scatter plot and local indicators 

of spatial association (LISA) cluster map to compare and 
analyze the local spatial dependence of freight transport’s 
CEE in 31 Chinese provinces. Figures 6 and 7 illustrate the 
Moran scatter plot and the LISA cluster map, respectively, 
of the freight transport industry’s CEE in 2008, 2012, 2015, 
and 2019.

Figure 6 shows that the number of provinces in the 
HH and LL quadrants in 2008, 2012, 2015, and 2019 
accounted for 77%, 87%, 87%, and 81% of the national 
total, respectively. Moreover, Tianjin, Shanghai, Jiangsu, 
Zhejiang, and Fujian in the eastern region have always 
belonged to the HH quadrant, whereas provinces such as 
Tibet, Xinjiang, Ningxia, and Qinghai in the northwest 
region have always belonged to the LL quadrant. This 
indicates an unbalanced development pattern of freight 

Table 4  The global Moran’s I 
of the freight transport’s CEE in 
2008–2019

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Moran’s I 0.361 0.301 0.318 0.357 0.425 0.420 0.339 0.426 0.415 0.393 0.391 0.359
Z value 3.452 3.051 3.010 3.221 4.085 3.838 3.289 3.791 3.839 3.702 3.666 3.424
P value 0.001 0.003 0.003 0.002 0.001 0.000 0.003 0.000 0.000 0.001 0.000 0.002

Fig. 6  Moran scatter plot of 
freight transport’s CEE in 2008, 
2012, 2015, and 2019
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transport’s CEE, and there is a relatively high spatial 
dependence in local areas. Specifically, Hebei changed 
from the LH cluster in 2008 to the HH cluster in 2012 by 
strengthening both the carbon emissions technology level 
and the driving role of the neighboring provinces and 
has since remained a continuous HH cluster. However, 
Shandong changed from the HH cluster in 2008 to the 
LH cluster in 2012. Guizhou and Gansu changed from 
the HL-type agglomeration in 2008 to the LL-type 
agglomeration in 2012, Jilin changed from the LL-type 
agglomeration in 2015 to the LH-type agglomeration in 
2019, and the agglomeration types of the other provinces 
remained relatively stable.

To determine whether the four cluster types (HH, 
HL, LH, and LL) were statistically significant, we used 

the LISA cluster map (see Fig. 7) for further analysis. 
Figure 7 shows that at the 5% significance level, there 
were mainly HH and LL clusters in 2012, 2015, and 2019, 
except for Guizhou and Gansu, which were in the HL 
cluster in 2008. Among them, the provinces in the HH 
agglomeration are all located in the eastern coastal regions, 
including Jiangsu and Zhejiang. These provinces have a 
positive radiation effect and a strong driving effect on the 
surrounding provinces and can further improve the CEE 
by strengthening provincial cooperation. The provinces 
in the LL cluster are majorly distributed in western 
areas, including Tibet, Sichuan, Gansu, and Yunnan. 
The economic and technological levels of these regions 

Fig. 7  LISA cluster map of freight transport’s CEE in 2008, 2012, 2015, and 2019
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are underdeveloped, while the environmental protection 
systems are not sound enough, leading to low CEE. Based 
on their resource advantages, these regions can improve 
their CEE by updating their equipment, improving their 
environmental protection systems and energy utilization 
efficiency, and strengthening regional cooperation.

Regional difference analysis of CEE

To further analyze the regional differences in freight 
transport’s CEE and the changes in the contribution of intra- 
and inter-regional differences to the total difference, we 
calculated the Theil index of freight transport’s CEE from 
2008 to 2019 according to Formula (9). We decomposed the 
Theil index into intra- and inter-regional Theil indexes of 
the east, central, and west economic zones and calculated 
the contribution of the two indexes to the total difference. 
The results are shown in Table 6 in the Appendix and 
Figs. 8 and 9.

The Theil index of freight transport’s CEE shows a 
fluctuating upward trend from 0.0377 in 2008 to 0.0602 
in 2019. This indicates that because of the disparity in 
the economic development, resources, and geographic 
locations of the various provinces, the national freight 
transport industry still shows uneven development 
characteristics, and the overall difference in the freight 

transport industry’s CEE is still expanding. Figure  8 
shows that the inter-regional and overall Theil indexes 
have the same trend of change and present a fluctuating 
upward trend during the study. This suggests that the gap 
in the CEE among areas is still widening. In addition to 
the apparent rise in 2014, the intra-regional Theil index 
remains stable and fluctuates around 0.02, indicating that 
the difference in the CEE in each region remains stable 
and neither increases nor decreases. In addition, Fig. 8 
shows that the overall and inter-regional Theil indexes 
present an apparent upward trend in 2014, which is 
consistent with the CEE trend. Owing to the introduction 
of relevant policies, the CEE of some regions rapidly 
increases in 2014 and slowly increases in other areas, 
leading to the widening of differences in the CEE, both 
nationwide and inter-regionally.

The average contribution rates of the inter- and intra-
regional differences to the total differences during the 
study period are 54.81% and 45.19%, respectively. This 
indicates that the differences between regions are the 
major component of the differences in the freight transport 
industry’s CEE. Figure 9 shows that in terms of specific 
trends, the contribution rate of intra-regional differences 
to the total differences shows a downward trend from 
50.30% in 2008 to 41.91% in 2019. Simultaneously, the 
contribution rate of inter-regional differences to total 

Fig. 8  The overall, inter-
regional, and intra-regional 
Theil index change trends
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differences shows an upward trend from 49.70% in 2008 
to 58.09% in 2019. This is because there are significant 
differences among the regions in terms of the natural 
resources, economic development, carbon emissions 
reduction technology, and the freight transport industry’s 
development. Therefore, it is necessary to explore 
differentiated carbon reduction policies for the freight 
transport industry based on the different characteristics 
of each region, so as to gradually reduce the regional 
differences in the freight transport industry’s CEE and 
achieve coordinated development among the regions.

Conclusions and policy implications

This study explores temporal and spatial characteristics as 
well as regional differences in the Chinese freight transport 
industry’s CEE. Its aim was to analyze the spatial agglom-
eration characteristics of the provinces’ CEE and identify the 
causes of regional differences in CEE, which could provide 
the government with useful information to formulate dif-
ferentiated carbon emission reduction policies for freight 
transportation. The major conclusions and policy implica-
tions are as follows:

(1) The overall level of the Chinese freight transport indus-
try’s CEE is low, while the unbalanced development of 
the freight transport industry was prominent during the 
study period. The freight transport industry’s CEE pre-
sents the spatial distribution features of “low in the west 
and high in the east.” In terms of changing trends, the 
overall CEE showed a weak decreasing trend, while the 
significant difference showed an increasing trend. The 
eastern region’s CEE had a steady development trend, 
the central and western regions showed a decreasing 
trend, and the western region declined significantly.

This indicates that the state has recently issued a series 
of policies to achieve energy conservation and emission 
reduction of the transportation industry and improve its 
CEE. However, these policies have not shown the effect 
of energy conservation and emission reduction in the 
freight industry, whose CEE has not improved. Therefore, 
the government should pay more attention to energy 
conservation and emission reduction in the freight 
industry and promptly draft special energy conservation 
and emission reduction schemes and strategies to realize 
the sustainable development of China’s freight industry. 
Simultaneously, differentiated emission reduction policies 
should be formulated according to each region’s resource, 

Fig. 9  The contribution of 
inter-regional and intra-regional 
differences to the overall dif-
ferences
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economic, and technological levels. For the eastern 
coastal provinces, attention should be paid to enhancing 
management efficiency and low-carbon technology, 
improving the energy consumption structure, and 
strengthening the use of clean energy. Provinces in the 
central and western areas should focus on strengthening the 
utilization of energy-saving technologies and optimizing 
traditional industries to improve energy efficiency.

(2) The freight transport industry’s CEE had a stable spa-
tial positive correlation. The Moran scatter plot shows 
that more than 80% of the provinces belonged to the 
HH and LL clusters. The LISA cluster map shows that 
the CEE has significant spatial agglomeration charac-
teristics. The HH clustering areas were primarily clus-
tered in the eastern coastal regions; the LL clustering 
areas were mostly concentrated in the central and west-
ern regions.

This indicates that neighboring provinces with high 
CEE have strong cooperation and connections in space, 
thereby forming obvious diffusion and driving effects. 
Provinces with low CEE have an inhibiting effect on 
neighboring provinces. Therefore, the government should 
take into account the spatial interaction of adjacent regions 
when formulating carbon emission reduction policies for 
the freight industry, encourage provinces with resources 
and low-carbon technology advantages to take the lead in 
development, and use the space-driven effect to promote 
the improvement of the freight transport industry’s CEE in 
surrounding provinces.

(3) The freight transport industry’s CEE showed clear 
differences, while the overall differences presented a 
fluctuating upward trend. The decomposition results 
of the Theil index showed that the differences in the 
freight transport industry’s CEE originated from inter-
regional differences between the three major regions 
(east, central, and west), while the degree of influence 
of inter-regional differences on the overall difference 
gradually increased.

This indicates that the development of China’s freight 
industry is not coordinated across different regions. Nar-
rowing the CEE gap between different regions is one of 
the main ways to improve the freight transport industry’s 
CEE. Therefore, future policies should focus on reducing the 
inter-regional differences in the freight transport industry’s 
CEE. On the one hand, while promoting eastern provinces’ 
CEE to the forefront of production, the government should 
increase its investment in funds and technology to focus on 
supporting the development of freight transport in the west-
ern provinces. On the other hand, the government should 
focus on establishing regional cooperation mechanisms to 
promote inter-regional exchange and cooperation and enable 
the proliferation and demonstration effects of the eastern 
region, which has a greater CEE.

In addition, the contribution of the freight transport 
industry’s structural optimization to improve CEE should 
be given full play (Chang and Lai 2013). All regions 
should thoroughly implement the Outline for Building a 
Powerful Transportation Country; optimize the structure 
of freight transport and promote the orderly transfer of 
bulk cargo and medium- and long-distance freight trans-
portation to railway and water transportation; and promote 
the development of railway–waterway, highway–railway, 
highway–waterway, and other multimodal transportation. 
Simultaneously, the government should deepen the multi-
modal transport demonstration project and the urban green 
distribution demonstration project, promote the advanced 
transportation organization model, and accelerate the 
transformation and upgrade of the road freight industry.

This study also had the following limitations, which 
may be overcome in further research:  first, this study 
focused on the CEE of the entire freight industry but has 
not explored the CEE of freight sub-sectors such as the 
road, railway, and waterways, which can be studied in the 
future. Second, due to the unavailability of data, this study 
did not cover changes in the freight transport industry’s 
CEE during the COVID-19 pandemic. Therefore, special 
research on the impact of the COVID-19 pandemic on the 
carbon emissions of the freight industry should be con-
ducted in the future.
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Appendix

Table 5  Calculation results of the freight transport industry’s CEE

Region 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mean

East Beijing 0.914 0.898 0.914 0.877 0.860 0.836 0.807 0.767 0.727 0.783 0.795 0.648 0.819
Tianjin 0.881 0.995 1.006 1.111 0.944 0.809 0.809 0.734 0.693 0.669 0.674 0.618 0.829
Hebei 0.525 0.449 0.460 0.496 0.563 0.621 0.677 0.646 0.618 0.631 0.618 0.564 0.572
Liaoning 0.651 0.641 0.630 0.623 0.635 0.648 0.663 0.653 0.690 0.712 0.695 0.702 0.662
Shanghai 0.985 0.983 1.052 1.052 1.078 0.967 1.148 1.003 0.993 1.045 1.050 1.098 1.038
Jiangsu 0.620 0.620 0.626 0.649 0.659 0.658 0.641 0.565 0.538 0.555 0.535 0.566 0.603
Zhejiang 0.599 0.616 0.657 0.684 0.693 0.722 0.728 0.719 0.687 0.655 0.665 0.674 0.675
Fujian 0.626 0.624 0.640 0.642 0.637 0.622 0.623 0.649 0.659 0.651 0.665 0.758 0.650
Shandong 0.600 0.550 0.529 0.516 0.483 0.401 0.438 0.435 0.411 0.388 0.376 0.388 0.460
Guangdong 0.543 0.509 0.524 0.519 0.572 0.506 0.618 0.615 0.697 0.729 0.712 0.799 0.612
Hainan 0.755 0.779 0.800 0.846 0.858 0.747 0.879 0.850 0.837 0.798 0.786 0.967 0.825

East mean 0.700 0.697 0.712 0.729 0.726 0.685 0.730 0.694 0.686 0.692 0.688 0.708 0.704
Central Shanxi 0.460 0.502 0.542 0.544 0.528 0.530 0.515 0.479 0.474 0.518 0.495 0.451 0.503

Jilin 0.418 0.407 0.397 0.384 0.362 0.342 0.340 0.303 0.307 0.316 0.319 0.323 0.352
Heilongjiang 0.492 0.484 0.473 0.467 0.443 0.416 0.383 0.355 0.362 0.382 0.408 0.422 0.424
Anhui 0.637 0.597 0.614 0.628 0.662 0.751 1.047 0.688 0.656 0.605 0.609 0.585 0.673
Jiangxi 0.466 0.361 0.370 0.394 0.453 0.398 0.433 0.416 0.392 0.360 0.379 0.339 0.397
Henan 0.525 0.487 0.474 0.484 0.505 0.402 0.423 0.397 0.370 0.358 0.390 0.366 0.432
Hubei 0.534 0.491 0.503 0.513 0.499 0.450 0.468 0.462 0.447 0.430 0.424 0.478 0.475
Hunan 0.428 0.407 0.395 0.382 0.387 0.408 0.443 0.419 0.393 0.363 0.357 0.404 0.399

Central Mean 0.495 0.467 0.471 0.474 0.480 0.462 0.507 0.440 0.425 0.417 0.422 0.421 0.457
West Inner Mongolia 0.477 0.449 0.442 0.458 0.505 0.496 0.500 0.471 0.412 0.436 0.438 0.475 0.463

Chongqing 0.521 0.523 0.527 0.523 0.554 0.528 0.519 0.507 0.507 0.507 0.505 0.563 0.524
Sichuan 0.394 0.391 0.389 0.380 0.368 0.378 0.354 0.344 0.343 0.345 0.348 0.377 0.368
Guizhou 0.594 0.631 0.604 0.555 0.495 0.435 0.400 0.372 0.368 0.353 0.342 0.363 0.459
Yunnan 0.372 0.374 0.373 0.363 0.355 0.332 0.323 0.314 0.312 0.302 0.300 0.340 0.338
Guangxi 0.476 0.465 0.465 0.449 0.460 0.462 0.502 0.497 0.472 0.454 0.459 0.482 0.470
Tibet 0.283 0.313 0.326 0.332 0.365 0.390 0.400 0.408 0.401 0.373 0.381 0.309 0.357
Shaanxi 0.445 0.435 0.426 0.407 0.405 0.412 0.391 0.375 0.377 0.376 0.373 0.389 0.401
Gansu 0.627 0.580 0.591 0.570 0.513 0.542 0.517 0.476 0.452 0.458 0.460 0.495 0.524
Qinghai 0.379 0.387 0.392 0.401 0.402 0.453 0.440 0.409 0.413 0.419 0.412 0.425 0.411
Ningxia 0.531 0.497 0.483 0.489 0.515 0.463 0.490 0.484 0.452 0.383 0.344 0.334 0.455
Xinjiang 0.422 0.427 0.429 0.421 0.416 0.409 0.386 0.357 0.353 0.358 0.362 0.380 0.393

West Mean 0.460 0.456 0.454 0.446 0.446 0.442 0.435 0.418 0.405 0.397 0.394 0.411 0.430
National Mean 0.554 0.544 0.550 0.553 0.554 0.533 0.558 0.522 0.510 0.507 0.506 0.519 0.534
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