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Abstract
Mitigating the effects of environmental deterioration requires a focus on not just CO2 emissions from energy consumption, 
but also environmental pollution from industry sectors. To reach this goal, recent studies have extended ecological footprint 
(EF) analysis to identify the ecological drivers of various key industry sectors. The role of the phosphorus (P) industry on 
the EF within the environmental Kuznets curve (EKC) framework for China is the emphasis of this study. Autoregressive 
distributive lag (ARDL) as well as the impulse response function and robustness analysis were used to consider a time from 
1985 to 2018. The study verifies the EKC hypothesis for China in both the long and the short run, and indispensable deter-
minants are proposed to be included to assure the model’s fitness and robustness when conducting EF analysis of industry 
sectors. Energy consumption–based carbon emissions have been verified as the dominant contributor to EF, but P use and 
urbanization have a significant lagged positive influence on EF in the short run. P exports, in particular, have been highlighted 
as a critical driver of the EF of China’s P industry. The conducted frequency domain causality test reinforced the above 
findings and demonstrated bidirectional causality at different frequencies. This work suggests that formulating plausible P 
export policies to alleviate the conflict between the output of China’s P industry and the environmental sustainability of this 
industry are necessary. In this context, “multidisciplinary, multidimensional, and practical solutions” are most desirable for 
sustainable P management.
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Introduction

The inclusive environmental degradation indicator “Eco-
logical Footprint (EF)” contains three types of pollution 
(air, water, and soil), and is developed and used widely 

to offer insights into environmental degradation, demand 
for natural resources, and environmental pressure from 
economic activities (Arshad Ansari et al. 2020). Although 
EF has some limitations as recently acknowledged by the 
Global Footprint Network (GFN),1 it is still a widely used 
modelling tool that provides useful insides into the driv-
ers of environmental degradation (Destek and Sinha 2020; 
Salemdeeb et al. 2021) helping countries to appraise their 
ecological resources (Solarin et al. 2019) derived from 
measurable, comprehensive, and easily understandable 
EF assessments (Ulucak and Lin 2017). EF analysis fur-
ther contributes to policy-making, monitoring, and pro-
vides guidance on how to increase the sustainability of 
human activities (Arshad Ansari et al. 2020). Besides, 
recent analysis of multi-sectoral ecological sustainability 
issues facilitates the formulation of integrated strategies 
that incorporate policies, communities, research and inno-
vation, and industrial action to address ongoing environ-
mental degradation (Wang et al. 2021).
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Quantifying the ecological and economic impacts from 
climate change, greenhouse gas (GHG) emissions, urbani-
zation, and other drivers is challenging. Past studies have 
provided useful discussions on the nexus of natural resource 
use (mostly fossil fuel resources), emissions, and associated 
environmental degradation by using the hypothesis of the 
environmental Kuznets curve (EKC) in different countries 
and regions. Findings from these studies help contribute to 
the improvement of environmental quality (Ahmed et al. 
2020; Danish et al. 2020b; Li and Haneklaus 2021). Several 
useful findings can be observed from recent studies. Firstly, 
these studies encouraged countries to increase their share 
of renewable energy solutions based on the findings related 
to the EF-energy nexus. The increasing shift from nonre-
newable to renewable energy solutions has contributed to 
the improvement in ecological sustainability, and has thus 
fulfilled different important gaps and meanings in environ-
mental economics (Destek and Sinha 2020). Secondly, EF 
analysis contributes to the availability and access to informa-
tion through media pluralism and promotes greater aware-
ness of environmental consciousness in the public. This 
enables people to jointly make efforts that contribute to 
sustainable environmental practices and standards (Langnel 
and Amegavi 2020). Thirdly, more and more recent empiri-
cal studies extended to different industry sectors that are 
contributing practical solutions that help the policy-making 
process within the EKC hypothesis. This again helps to cre-
ate attention among policy makers and opinion leaders from 
academia and beyond. A recent example are the studies on 
the nexus of tourism and EF (Ozturk et al. 2016; Lee and 
Chen 2021; Sharif et al. 2020), hydropower and EF (Pata and 
Aydin, 2020), nuclear energy and EF (Danish et al. 2020a), 
and the natural gas industry–induced EKC (Li et al. 2021). 
Finally, in terms of variables selection, most of the recent 
EKC studies tend to focus on EF which includes diversified 
pollutants as the indicator of environmental degradation. 
Some indispensable variables such as economic growth, 
urbanization, trade, and resource use are usually included.

In this work, we focused on phosphorus (P) associated 
with finite phosphate rock (PR) resources that are para-
mount for P fertilizer (PF) production, and thus global food 
security as we know it today (Chen and Graedel, 2016; Li 
et al. 2019a). Moreover, due to P-related eutrophication and 
the associated impairment of fresh waterbodies, an exten-
sive understanding of diversified ecological barriers in the 
P industry is vital to ensuring China’s ecological sustain-
ability (Liu et al. 2016; Yan et al. 2021; Yuan et al. 2018). 
This work contributes to the existing literature by explicitly 
showing the key industry analysis of EF to the specific natu-
ral resources industry and investigate the nexus of “P-EF” 
within the EKC hypothesis in China. P utilization consti-
tutes P use (PU) and P exports (PE) to display consequen-
tial effects on environmental degradation by incorporating 

indispensable determinants of economic growth, energy 
consumption–based carbon emissions, and urbanization. 
The autoregressive distributed lag (ARDL) model is used 
to indicate the long-run and short-run effects of P utilization 
on EF. Following Guan et al. (2020), the robustness analysis 
is shown by the long-run cointegration regression models 
of dynamic ordinary least squares (DOLS), fully modified 
ordinary least square (FMOLS), and canonical cointegrating 
regression (CCR), as well as the frequency domain causality 
test. At large, the study aims to focus on the P industry with 
the ultimate objective of fostering “multidisciplinary, multi-
dimensional and practical solutions” to reduce the negative 
externality impact of the P industry in China and in exten-
sion elsewhere.

Existing literature on this topic is reviewed and analyzed 
in “Literature review.” The model specifications and econo-
metric models are introduced in “Model specification and 
data.” “Empirical results” provides the study’s results and 
discussion. Conclusions, implications, and limitations are 
presented and discussed in “Conclusions, implications, and 
limitations.”

Literature review

Key industry sectors analysis of EF

Key industry sectors’ EF analysis at reginal or national level 
have gained increased attention from academics and poli-
cymakers as practical and quantifiable measurement tools 
for policy solutions to mitigate environmental degradation. 
Industry sectors analysis of EF is relevant as it provides 
meaningful insides to policy makers. Table 1 shows the 
summary of literature reviews on industry sectors conducted 
for this work that included EF analysis by testing the EKC 
hypothesis to indicate the impact of industry development 
on ecological degradation.

The association between tourism development and EF 
has gained attention in many studies and provides evidence 
for policy implications from tourism induced EKC analy-
sis. Liu et al. (2022), for example, used the ARDL model 
to reveal the long-run cointegration association between 
tourism and EF in Pakistan during 1980–2017 within the 
theoretical EKC framework for sustainable tourism industry 
policy decision-making purposes. Sharif et al. (2020) pro-
vided a fresh insight into the investigation of the role of tour-
ism development in China’s EF, suggesting that economic 
growth stimulates environmental degradation, and tourism 
exert a positive externality on EF in China. The variables 
of the two studies are very similar with a previous study by 
Ozturk et al. (2016) that investigated the effect of tourism 
development on EF in 144 countries. Key variables such as 
real income, energy use, trade, and urbanization were always 
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tested in the tourism-EF nexus. Moreover, Lee and Chen 
(2021) revealed the association of tourism development and 
EF by incorporating factors of country risk ratings, and the 
political risk rating under the EKC framework, suggesting 
that ecological resources suffer negative externality from the 
increase of tourism revenues for the selected 123 countries.

Other important industry sectors such as finance, agri-
culture, biomass energy, natural gas energy, nuclear energy, 
human capital, social-political factors, and hydropower 
energy are also included in an active scientific discussion 
and are summarized in Table 1. Pata and Aydin (2020), for 
instance, explored the relationship between hydropower 
energy consumption, per capita of income, and EF under 

the EKC hypothesis for the top six hydropower-consuming 
countries in the world by using cointegration models cov-
ering the period of 1965–2016. The results indicated that 
there is no evidence that hydropower energy consumption 
and economic growth do not have a positive role in mitigat-
ing the EF. Danish et al. (2020a) analyzed the role of nuclear 
energy consumption on CO2 emissions under the EKC 
framework by using the ARDL model to show the long- and 
short-run dynamics covering the period from 1971 to 2018 
in India. China’s natural gas industry–induced EKC hypoth-
esis was further investigated by Li et al. (2021). The authors 
also discussed implications of addressing the PM2.5 emis-
sions issue via developing a more comprehensive natural 

Table 1   Summary of ecological footprint (EF) analysis of different industry sectors within the EKC framework

Sectors Authors Countries/Region Included variables

Tourism-EF Liu et al. (2022) Pakistan Tourism, EF, foreign direct investment, 
Energy, trade

Lee and Chen (2021) 123 countries Tourism revenue, EF, GDP, country risk 
ratings

Kongbuamai et al. (2020a) ASEAN countries Tourism, EF, GDP, energy consumption, 
natural resources

Kongbuamai et al. (2020b) Thailand Tourism, EF, GDP, energy consumption, 
tradeopeness

Katircioglu et al. (2018) 10 tourist countries Tourism development, EF, GDP urbani-
zation

Finance-EF Abbasi et al. (2021) Pakistan Financial development, energy use, 
economic globalization index (EGI), 
GDP per capita, and technological 
innovation

Destek and Sinha (2020) 11 newly industrialized countries Financial development, EF, GDP, energy 
consumption

Saud et al. (2020) One belt one road initiative countries Financial development, EF, globalization
Baloch et al. (2019) One belt one road initiative countries EF, GDP, financial development, energy 

consumption, foreign direct invest-
ment, urbanization

Agriculture-EF Udemba (2020) India EF, GDP, FDI agriculture, energy use, 
population

Abdunnur (2020) Indonesia EF, fisheries production, agriculture 
production, urban development

Pata (2021) BRIC countries EF, CO2, renewable energy, globaliza-
tion, agriculture

Biomass energy-EF Wang et al. (2020) G7 countries EF, biomass energy production
Yasmeen et al. 2022 52 Belt & Road panel count EF, biomass energy consumption,

Nuclear energy-EF Danish et al. (2020) China EF, nuclear energy, CO2

Electricity-EF Langnel and Amegavi (2020) Ghana EF, electricity consumption, GDP 
urbanization

Social-political factors-EF Ahmed et al. (2020) India EF, human capitals energy consumption, 
GDP

Khan et al. (2022) 18 Asian developing countries EF; poverty; income inequality; GDP; 
forest area; inflation

Charfeddine and Mrabet (2017) 15 MENA countries EF, fertility rate, life expectancy, politi-
cal institutional index

hydropower energy-EF Pata and Aydin (2020) Top six hydropower-consuming coun-
ties

EF, hydropower energy consumption, 
GDP
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gas industry in China. Interestingly, a subject of extensive 
investigation is the analysis of the nexus between poverty, 
income inequality, and EF within the theoretical EKC frame-
work. An example study is the work of Khan et al. (2022) 
that concluded that poverty has a positive association with 
EF and widening income inequality has a detrimental and 
harmful effect on environmental sustainability of 18 Asian 
developing countries during 2006–2017. More importantly, 
these kind of industry analysis using EF studies resulted in 
useful insights for policymakers and academia alike. Yas-
meen et al. (2022), for instance, suggest practical and useful 
implications from the expanding deployment of advanced 
biomass production, foreign direct investment support, and 
stricter environmental-related policies that are proposed to 
secure China’s ecological sustainability.

Environmental impact of phosphorus industry 
in China

China is the largest PR-producing country in the world 
(USGS 2021), and approximately 70% of the PR mined 
in China is used for PF production (Shang et al. 2021). PR 
mining, but particularly, later compound fertilizer produc-
tion is energy-intensive. Ironically, humanity spends con-
siderable energy on mining PR for its P content in some 
regions while applying the finite resource generously with 
the result of creating nutrient or P pollution in other areas 
that can even threaten food security and environmental sus-
tainability from yet a different angle (Huang et al. 2019; 
Mekonnen and Hoekstra 2018). P is even considered as a 
long-term pollutant by some researchers (Li et al. 2020) 
since the current scale of global P flows from freshwater 
systems into the ocean has already transgressed the plan-
etary boundary (Huang et al. 2019), as a result of modern 
agricultural operations and PR mining (Chen and Graedel 
2016). In China, previous studies confirmed that large 
anthropogenic P inputs have caused widespread eutrophi-
cation of waterbodies, which compromise water quality 
and are detrimental for aquatic ecosystems (Bai et al. 2018; 
Huang et al. 2017; Jiang et al. 2019; Liu et al. 2012, 2021). 
Excessive fertilizer application, fertilizer production losses, 
and untreated sewage systems in China are pointed out to 
be potential causes for widespread eutrophication (Li et al. 
2019a; Wu et al. 2020).

Recent studies further identify the environmental impact 
from P by using the environmental P footprint (Jiang et al. 
2019; Li et al. 2019b; Shaw and Barnard, 2011). It is worth 
noting that these previous studies argue that China’s P foot-
print accounts for a large global proportion. Around 42% 
of total P exceedance footprint in the world was argued to 
come from China (Li et al. 2019b), and it is expected to keep 
increasing in the future. This increase largely results from an 
expected increase in the compounded consumption of meat 

and vegetables (Oita et al. 2020). Thus, it is urgent for China 
to take immediate actions to slow down the depletion of 
high-grade PR resources and reduce the overall P footprint 
(Jiang et al. 2019).

More importantly, previous studies have provided evi-
dence that confirm that P utilization is associated with eco-
logical degradation. According to a report released from a 
Chinese P company about the GHG emission during P pro-
cessing in 2019,2 total GHG emissions were estimated to be 
about 0.777 million tons of CO2 equivalent during PF pro-
duction from the phosphoric acid and ancillary production 
units. Figure 1 provides an overview of the different frac-
tions of the GHG emissions during PF production: (1) CO2 
emissions from the industrial production, (2) emissions from 
the net purchase of electricity and heat used, and (3) fos-
sil fuel combustion emissions. We can infer the large scale 
GHG emissions of the PF industry in China by considering 
the fact that the country has more than 100 PF companies. 
Chen et al. (2015) estimated GHG emissions from PF manu-
facturing in China. General GHG emission coefficients are 
estimated as 0.636 t of coal equivalent (tce)/t P2O5 produced. 
The estimated emissions are nearly two times higher than 
the emissions in developed countries. Moreover, Wu et al. 
(2020) also concluded that NPK compound fertilizer (15% 
P2O5) and diammonium phosphate (46% P2O5) production 
contribute even higher GHG emissions (CO2, CH4, and 
N2O). In addition, it can be argued that China’s emissions 
during P production are still significantly underestimated 
as only direct GHG emissions were considered in this esti-
mate, thus leaving out indirect GHG emissions from land use 
change and additional GHG emissions from transportation 
and hauling.

fossil fuel 
combustion 
emissions

12%

industrial 
production

52%

net purchase 
of electricity 

and heat used
36%

Fig. 1   Sources of GHG emissions of PF production in China

2  http://​www.​lomon​land.​com/​index.​php?​case=​archi​ve&​act=​show&​
aid=​296
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P-related producers are further significant contributors to 
different pollutants, such as sulfuric acid emissions (Saeid 
and Chojnacka 2014); industrial sources of fluoride which 
easily flow into the food chain with an air–water interaction 
(Vallero 2020); waste streams containing radium and other 
waste byproducts from PR mining and PF production (Gad 
2014); important sources for contamination of soils with 
heavy metals such as cadmium (McLaughlin et al. 2021), 
uranium (Haneklaus et al. 2017; Haneklaus 2021; Ye et al. 
2019), and cobalt-containing waste (Lison 2007). Finally, 
high agricultural PF use rates are associated with environ-
mental challenges for the environmental sources. P use not 
only has a considerable GHG footprint per cultivated area 
(Wu et al. 2020) but only 10–20% of the P fertilizer applied 
to soil is actually absorbed and utilized by crops (Hata et al. 
2010). Most of the rest becomes immobilized in the inor-
ganic and organic fractions of the soil and is thus unavail-
able to crops. It can then even flow into waterbodies leading 
to water pollution issues. The Global P loads to freshwater 
exceeds the assimilation capacity in 38% of the global land 
area, and about 30% of the anthropogenic P loads derive 
from China (Mekonnen and Hoekstra 2018).

To summarize, recent existing studies have extended 
the empirical investigation of the nexus of “Energy (or 
resource)-EF” to indicate the effect of different industry 
sectors on EF and reveal inconclusive outcomes and impli-
cations for practical policy decision-making. Besides, the 
key variables of real income, energy use, and urbanization 
(or trade) are always incorporated in the theoretical EKC 
framework to ensure the effectiveness of empirical findings. 
We could show that China’s P industry matters significantly 
for ecological degradation, and it is thus relevant to better 
understand the P-EF nexus within the EKC framework.

Model specification and data

Given the aforementioned analysis, we provide a framework 
of the P-EF nexus that generalizes the key determinators of 
economic growth: energy consumption–based carbon emis-
sions and urbanization incorporating P utilization (P use and 
P exports). Following Anwar et al. (2021) and Danish et al. 
(2020b), the estimation function is specified as follows:

EF denotes China’s environmental degradation indicator 
and can be considered as a critical indicator for designing 
policies to fight climate change (Salemdeeb et al. 2021). 
Additionally, economic development is represented as real 
income per capita (GD) (Danish et al. 2019). Incorporating 
its squared term (GD) aims to validate the theoretical EKC 
equations. ECO denotes energy consumption–based carbon 

(1)EFt = f (GD,GD2,ECO,PU,PE,U)

emissions which were calculated using BP statistics from 
CO2 emissions derived from primary energy use. Urbaniza-
tion (U) is incorporated to test the role of its inflows being 
an important determinant of environmental quality. The 
positive or negative effect of U on EF are controversial from 
unanimous findings by previous studies (Salman et al. 2022). 
Most importantly, we aimed to obtain the P industry as the 
key industry to be required to achieve sustainable resources 
management policy and encourage economic growth along 
with the reduction in problems of environmental degradation 
in China. The econometric model is as follows:

To get the direct elasticities of coefficients and to ease 
the process of estimating, the current study considered the 
natural log of the variables. The empirical logarithmic trans-
formation (LN) form can be expressed as follows:

The study uses an available annual dataset for China from 
1985–2018. Table 2 presents detailed variables and sources. 
Table 3 provides the preliminary statistics. The scatter 
matrix graph presents the correlations among the logarith-
mic form of the variables, revealing that economic growth, 
ECO, PU, and PE, as well as U directly and indirectly cause 
environmental degradation in China (Fig. 2), suggesting that 
EF is more correlated with key factors of energy consump-
tion and economic development, while real GDP is strongly 
linked to urbanization.

Econometric methods

Unit root test

The reliability and effectiveness of the empirical results 
depend on the stationarity property of time-series data. 
Dickey-Fuller generalized least regression (DF-GLS) is 
proposed by Elliott et al. (1996) to improve the reliabil-
ity of small-sample sizes. DF-GLS test do not allow con-
sidering structural break dates and we used the Zivot and 
Andrews (1992) structural break unit root test to validate 
the stationarity of the variables with structural break (Eqs. 
(4)–(6)).
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Dtrendt is the associated trend transition factor, whereas 
Dumt is a dummy variable for the mean shift occurrences per 
each potential break-date (BD) (Eq. (7)).

ARDL model

To investigate the long-run cointegration relationship between 
the variables, the literature provides several economet-
ric approaches such as FMOLS introduced by Phillips and 
Hansen (1990) and DOLS introduced by Stock and Watson 
(1989) for cointegration analysis. In more recent studies, 
ARDL is widely used because of its advantage of allow-
ing a small-sized sample to indicate both long- and short-
run dynamics. The method can further accommodate serial 

(6)

Δ�t = �1 + �2t + ��t−1 + �Dumt + �Dtrendt +

r∑
i=0

�iΔ�t−i + �t

(7)
Dum

t
=

{
1…… . If t > BD

0…… .. otherwise

Dtrend
t
=

{
t − BD… . If t > BD

0………… otherwise

correlation and endogeneity among the variables by using 
reasonable lag selection and robustness estimates, while not 
allowing all variables to be integrated with the same order 
in comparison with Johansen’s cointegration technique. The 
empirical equation of the ARDL for this study is shown in 
Eq. (8):

where Δ represents the first difference operator and �1t the 
random error terms. The short-run coefficients of the model 
are denoted by ∅1–∅7 . �1–�7 are the long-run coefficients. 
ECMt−1 denotes the error correction term and γ is the adjust-
ment coefficient. The F-test is employed for bound tests to 
examine the combined significance of the lagged levels in 
the equations. The null hypothesis ( H0 ) is given by Eq. (9):
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Table 2   Summary of detailed 
variables and source

GFN, Global Footprint Network; NBS, National Bureau of Statistics; WDI, World Development Indicators
a https://​www.​footp​rintn​etwork.​org/​licen​ses/​public-​data-​packa​ge-​free/.
b https://​datab​ank.​world​bank.​org/​repor​ts.​aspx?​source=​world-​devel​opment-​indic​ators.
c https://​www.​bp.​com/​conte​nt/​dam/​bp/​busin​ess-​sites/​en/​global/​corpo​rate/​xlsx/​energy-​econo​mics/​stati​stical-​
review/​bp-​stats-​review-​2021-​all-​data.​xlsx.
d https://​www.​qianz​han.​com/.
e https://​www.​ifast​at.​org/.

Indicators Abbrev Unit Source

Ecological footprint EF In global hectares GFNa

Economic growth GD Constant 2010 US dollars WDIb

Energy consumption-based 
carbon emissions

ECO million t BP statisticsc

P use PU t NBSd

P exports PE Thousand t of grand total P2O5 IFAe

Urbanization U % WDI

Table 3   Preliminary statistics of 
logarithmic variables

LNEF LNGD LNECO LNPU LNPE LNU

Mean 0.8529 7.7626 8.4837 6.5428 6.2116 3.6725
Maximum 1.3122 8.9020 9.1376 6.7397 8.5885 4.0694
Minimum 0.3926 6.5683 7.7449 6.0376 2.5096 3.2661
Std. dev 0.3292 0.7399 0.5178 0.1881 1.8026 0.2697
Skewness 0.1293 -0.0315 0.0295 -1.1957 -0.4020 -0.1137
Kurtosis 1.4697 1.7511 1.3598 3.6075 2.1435 1.6144
Jarque–Bera 2.9104 1.8895 3.2551 7.3562 1.6675 2.3823
Obs 29 29 29 29 29 29
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Thus, the short-run association can be expressed as 
Eq. (10):

FMOLS, CCR, and DOLS

FMOLS estimates include a completely asymptotic ordi-
nary mix which permits for standard Wald testing by uti-
lizing the asymptotic inference of Chi-square and employ 
the precursory assessment of the symmetric and of the 
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residuals of the long-run covariance matrices. The esti-
mates are shown in Eq. (11):
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Fig. 2   Scatter matrix graph of the logarithmic variables
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Scalar estimator �̂1.2 can be indicated as follows:

Unlike FMOLS, CCR also requires a consistent estimate of 
the contemporaneous covariance matrix ̂Σ . CCR estimates can 
be given by the following:

The DOLS estimates also have the same asymptotic dis-
tribution with FMOLS and CCR estimates, and remedies 
for a few of the bias result from the endogeneity issue 
(Månsson et al. 2018). DOLS technique involves augment-
ing the cointegrating regression with lags and leads of ΔXt 
so that the resulting cointegrating equation can be shown 
as follows:

It is worth noting that robustness analysis is necessary to 
test the reliability of FMLOS, CCR, and DOLS estimates, 
efficiency of parameters, and nuisance free parameters for the 
estimated chi-square tests.

Frequency domain causality test (FDCt)

This analysis is motived by Abbasi et al. (2021), and fre-
quency domain causality test (FDCt) that was proposed 
by Breitung and Candelon (2006) based on the previous 
method of Hosoya (1991) are employed in this section to 
capture the causality effects of economic growth, energy 
consumption–based carbon emissions, P utilization, and 
urbanization on EF at different frequencies in China for 
robustness analysis purposes. The FDCt can display non-
linear causal effects to effectively eliminate seasonality 
changes in the smaller sized time sequences and enables the 
classification the long-, medium-, and short-term causali-
ties across determinants at different frequencies (He et al. 
2021). This FDCt with Hosoya (1991) method can be dem-
onstrated as the following econometric process:

A two-dimensional time-series vector ||xt, yt|| with Rt can be 
obtained from a VAR analysis framework in Eqs. (18)–(19):

where �t denotes the error term vector and the moving aver-
age (MA) simulation was calculated using Eq. (20) after veri-
fying the stationary property of time sequences:

(15)�̂1.2 = �̂11 − �̂12Ω̂
−1
22
�̂21

(16)
[
�

�̂1

]
=

(
T∑
t=1

Z∗
t
Z∗

�

t

)−1 T∑
t=1

Z∗
t
�∗
t

(17)�∗
t
= �t −

(
Σ̂−1Λ̂2

∼

� +

[
0

Ω̂−1
22
�̂21

])�

ût
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where Ω11 and � represent the coefficient pattern and white 
noise, respectively. Afterwards, the spectral density of xt based 
on the representation is given by the following:

According to Hosoya (1991), an estimate of the causality 
that incorporates frequency ( � ) can be determined using the 
following:

where if |||Ω12

(
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)||| ≠ 0 , y is validated to affect x at 
frequency(ω). If Rt =

||xt, yt|| is verified to be cointegrated, 
�(L)Rt = �t can be defined as Eq. (23) and can be simplified 
as shown in Eq. (24):
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angle matrix correlated with E
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= I. Then, Hosoya 

(1991) proposed the causality association of the stationary 
time sequences as shown in Eq. (25):

Thus, the Hy→x(�) = 0 indicate that the null hypothesis of 
y does not forecast x at different frequencies.

The FDCt at frequency ( � ) between xt and yt was further 
introduced by Breitung and Candelon (2006) in the following 
form:

Empirical results

Unit root tests and lag lengths selection

Table 4 presents variables for the first difference of the 
variables test that were checked for stationarity using unit 
root test techniques. The literature provides multiple tests 
for stationarity; however, in this study, while the empiri-
cal study employs a relatively small-sized dataset sample, 
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the Dickey-Fuller generalized least regression (DF-GLS) 
test was used to identify the stationary features of all vari-
ables with the natural logarithm as better performance 
for testing the stationary of small sample–sized datasets. 
The results of the DF-GLS and Zivot-Andrews’ (1992) 
structural break tests on the first difference of the vari-
ables support the idea that all data series are stationary. 
Thus, all the variable series were verified to be integrated 
of order I (1). We also provided more reliable results from 
Zivot-Andrews (ZA) structural break tests to detect the 
break point (Ty). We could only observe that LNU has a 
break year in 1996, which was argued as transitioning 
from a steady phase of ascension (1979–1995) to a rather 
fast promotion phase (1996–2010) (Chen et al. 2013). 
The dependent variable of LNEF, regressors of LNGD, 
LNECO, and LNPE have break points in 2001 and 2002, 
which can be explained by the related environmental laws 
and regulations that started to be implement since 2000 
in China. LNPU has a break year in 2004 that might be a 
result of the attention and resulting industrial best prac-
tice solutions from agriculture on P efficiency and P pol-
lution in China.

Results from ARDL

Bound tests for cointegration and diagnostic test

The results of bound tests for cointegration for the 
selected ARDL model (1, 3, 3, 1, 2, 2, 3) have been 
reported in Table 6. The results indicate that F-statis-
tic values are higher than the critical value of the upper 
bound, and statistically significant at the 1% level. For 
the diagnostic test (Table 7), heteroscedasticity, Ramsey 
Regression Equation Specification Error Test (RESET), 

J-B normality, and serial correlation were conducted. The 
outcome supports that serial correlation and heteroske-
dasticity does not exist in the selected model and rejects 
the hypothesis of normal distribution, suggesting that the 
selected ARDL model is generally sufficient to provide 
the magnitude of elasticity required for the analysis con-
ducted here. In addition, the RESET is used to testify the 
accuracy and stability of the model.

The cumulative sum of recursive residuals (CUSUM) and 
cumulative sum of squares of recursive residuals (CUSUM 
of squares) are employed to test the stability of the models. 
Figure 3 displays the graphs of the CUSUM and cumulative 
sum of recursive residual square (CUSUMQ) that are within 
the 5% critical bounds within the 95% confidence interval, 
implying parameter consistency and stability of the selected 
ARDL (1, 3, 3, 1, 2, 2, 3) model. The data suggests that 
the obtained results can be efficiently used to estimate the 
long-run and short-run association between the EF nexus 
and other variables by using the confirmed goodness and 
fitness ARDL model.

Long‑and short‑run estimation of the ARDL

Table 8 presents the results of ARDL estimate of long-run 
and short-run coefficients to indicate the nexus of EF and 
per capita GDP, energy consumption–based carbon emis-
sions, PU, PE, U for China in 1985–2018. We can observe 
that the statistical significance of the CointEq(− 1) sug-
gests convergence of the dynamics from the short-run 
to the long-run equilibrium that significantly validates 
the stability of the ARDL model, implying that deviation 
from the short run towards the long run are corrected 
back by as high as 78.62% and will take time to reach the 
long-run equilibrium.

Table 4   Unit root test results 
by DF-GLS and ZA structural 
break test

a, b, c represent the significance of 1%, 5%, and 10%, respectively
Lag lengths selection are crucial for cointegrating models. Table 5 shows the result for lag order selection, 
and five criteria: likelihood ratio (LR), final prediction error (FPF), Akaike information criterion (AIC), 
Schwarz information criterion (SC), and Hannan-Quinn information criterion (HQ) that supports the maxi-
mum lag length of 3 for conducting cointegration in the next steps

DF-GLS ZA structural break

Level 1st Level 1st

t-stat t-stat t-stat Ty t-stat Ty

LNEF  − 0.2089  − 2.999a  − 4.9576a 1996  − 3.6838a 2001
LNGDP  − 0.3565  − 2.551b  − 3.5489 2006  − 4.9077b 2011
LNGDP2  − 0.4260  − 2.2963b  − 4.0537 2002  − 4.5791b 2011
LNCO2  − 0.5638  − 2.1794b  − 5.4936 2003  − 3.9920a 2002
LNPU 0.7215  − 4.1137a  − 1.49566 2013  − 5.7889b 2004
LNPE  − 0.9094  − 7.3120a  − 4.9694a 2013  − 5.3252b 2002
LNU  − 0.186  − 2.0121b  − 3.0926 2013  − 7.8198a 1996

73469Environmental Science and Pollution Research (2022) 29:73461–73479



1 3

In the case of economic growth, the results of the ARDL 
indicate that the long-run coefficient between economic 
growth (real income per capita) and EF are positive and 
significant (Fig. 4), while the square term of real income per 
capita has a statistically significant and negative relationship 
with EF both in the long and short run. Our findings are 
consistent with the previous EKC hypothesis argument by 
Danish et al. (2020b) and Lee and Chen (2021) for China 
and confirm one more time the existence of the EKC when 
incorporated with the P industry in the long- and short-run 
scenario for China. Specifically, if the per capita income 
rises by 1%, this will cause the EF to increase by 7.18% 
which has a smaller impact than the previous conclusion 
from Danish et al. (2020b) (11.841%). This result highlights 
that economic growth is the most important driver for eco-
logical degradation in China over the sample period, and in 
line with the EKC hypothesis argument that as a country’s 
economic growth increases, it tends to shift towards more 
stringent environmental policies. Thus, we can continue to 
use the theoretical EKC framework to indicate the elasticity 
of other determinants on EF for China.

Regarding the energy consumption sector, the findings 
reveal a long-run 1% increase of ECO stimulates a 0.226% 
increase of EF and a higher short-run contribution on eco-
logical degradation of 0.51%, implying that long-run envi-
ronmental degradation is highly correlated with energy con-
sumption, and that short-run effects stimulate much more 

environmental deterioration in China. It was further found 
that changes in the long-run urbanization have a negative 
and statistically significant influence on EF.

In terms of EF analysis of China’s P industry, the ARDL 
results for the long-run relationship between EF and PU 
are statistically significant and negative, and if it rises by 
1% this will cause the EF to decrease by 1.725% in the 
long run, and in the short-run estimation, we can observe 
that the first lag of PU has a positive effect on ecological 
degradation changes. If PU rises by 1%, this will cause the 
EF to increase by 0.89%, suggesting that the response to 
the contemporary change of EF is embodied in the pre-
vious year’s P use. The long-run negative role of PU on 
environmental degradation is shown by the relationship 
of natural resources use and EF in China as explained by 
Danish et al. (2020b). The effect of PU on environmental 
degradation might be explained by (1) a series of poli-
cies to promote sustainable P management and increase 
PU efficiency, and (2) PU that is always connected with 
the development of the agricultural economy. Our findings 
indicate that although rapid development of the agricul-
ture economy leads to increasing P consumption, the major 
contributor to environmental degradation is found in the 
industrial sectors. With regards to the nexus of PE and EF, 
our findings indicate that PE is an important source to the 
ecological degradation for China in the long run. Specifi-
cally, in the long run, a 1% increase in PE will lead to a 
0.044% increase of EF. This result verifies the specifica-
tion that the large-scale increase of PE possibly caused by 
expansion of production capacity significantly exacerbates 
negative externality in all the supply chain of the P industry 
and leads to a significant increase of EF. Besides, the rise 
of PE indicates the depletion of higher grade PR resources 
that results in increased demand of input resources such 
as energy and water which all have an impact on environ-
ment degradation. Furthermore, it is evident that Chinese P 

Table 5   The result of lag 
selection technique

Lag LogL LR FPE AIC SC HQ

0 171.8825 NA 5.66e-14  − 10.6376  − 10.3139  − 10.5320
1 550.7862 562.2442 3.51e-23  − 31.9217  − 29.3313  − 31.0773
2 630.5712 82.3587 8.23e-24  − 33.9078  − 29.0508  − 32.3245
3 750.5512 69.6658* 5.41e-25*  − 38.4872*  − 31.3635*  − 36.1650*

Table 6   Bounds test for 
cointegration results

Model F-stat Conclusion

EF
t
= f (GD,GD2,ECO,PU,PE,U) ARDL (1, 3, 3, 1, 2, 2, 3) 9.2072 Cointegration

Critical values 1% 2.50% 5% 10%

Lower bounds I(0) 2.88 2.55 2.27 1.99
Upper bounds I(1) 3.99 3.61 3.28 2.94

Table 7   Results of the diagnostic tests

Diagnostic test F-stat P-value Result

Breusch-Godfrey LM 14.5885 0.1999 √
Breusch-Pagan-Godfrey 1.3995 0.3098 √
J-B test 0.7660 0.6818 √
Ramsey RESET 1.6122 0.2399 √
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companies that rely more on exports are generating higher 
environmental costs.

In the case of urbanization, a 1% increase of the long-run 
change in the urbanization rate leads to a 3.666% decrease 
of the EF for ARDL results, while a 1% increase of the 

contemporaneous change in the short-term urbanization rate 
leads to a 3.286% decrease of the EF. More importantly, 
our findings reveal that the 1st and 2nd lag of urbanization 
significantly contributed to the ecological degradation with 
0.58% and 0.98%, respectively, suggesting a short-run posi-
tive impact on EF in the previous 1 and 2 years. The result 
of the long-run coefficient is again consistent with the results 
from Danish et al. (2020b). Our results support the argument 
that urbanization shows productive land resources utilization 
more precisely, and thus helps controlling natural resources 
depletion (Danish et al. 2020b). The positive externalities 
from urbanization might derive from the return to econo-
mies of scale and public services supply, i.e., waste manage-
ment policy and more environment-friendly infrastructure 
(Danish et al. 2019). Besides, urban citizens tend to have a 
better awareness and tendency to take initiatives to protect 
the environment (Danish et al. 2020b). Most importantly, 
this urbanization is a key driver for using more and more 
advanced technologies (i.e., the deployment of 5G infra-
structure) to create smart green cities in China. A good 
example may be the fast transformation from fossil-fueled 
vehicles to new energy vehicles (electric, fuel cell, or plug-
in hybrid) in Chinese cities and that by 2035 half of all new 
vehicles sold in China will indeed be new energy vehicles3.

The presented analysis further provides the static fore-
casting performance of ARDL. Mean absolute error (MAE), 
root mean square error (RMSE), symmetric mean absolute 
percent error (SMAPE), and Theil inequality coefficients 
(TIC) are used to indicate the accuracy of the static forecast 
results. Figure 5 confirms that the selected ARDL model 
introduced smaller values of MAE, RMSE, and MAPE, and 
TIC that are closer to 0, implying that above estimates show 
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Fig. 3   Graphs of the stability test from CUSUM/CUSUMQ stability test

Table 8   Results for long-run and short-run relationship

Variable Coefficient Std. Error t-Statistic Prob

Long run
LNGD 7.1802 0.7718 9.3027 0.0000
LNGD2  − 0.3387 0.0380  − 8.9205 0.0000
LNECO 0.2264 0.0679 3.3365 0.0087
LNPU  − 1.7254 0.1853  − 9.3122 0.0000
LNPE 0.0435 0.0167 2.6027 0.0286
LNU  − 3.6657 0.3045  − 12.0389 0.0000
C  − 25.8270 2.8378  − 9.1010 0.0000
Short run
DLN (GD) 2.8698 0.8636 3.3230 0.0089
DLN (GD(− 1))  − 1.0001 1.1372  − 0.8794 0.4020
DLN (GD(− 2))  − 6.1223 0.9583  − 6.3891 0.0001
DLN(GD2)  − 0.1260 0.0599  − 2.1054 0.0645
DLNGD2 (− 1) 0.0213 0.0778 0.2736 0.7905
DLNGD2 (− 2) 0.3212 0.0616 5.2146 0.0006
DLNECO 0.5081 0.0436 11.6632 0.0000
DLNPU  − 0.0747 0.0592  − 1.2609 0.2390
DLNPU (− 1) 0.8905 0.1220 7.3017 0.0000
DLNPE  − 0.0043 0.0045  − 0.9654 0.3596
DLNPE (− 1)  − 0.0317 0.0050  − 6.3379 0.0001
DLNU  − 3.2860 0.3267  − 10.0583 0.0000
DLNU (− 1) 0.5848 0.2895 2.0202 0.0741
DLNU (− 2) 0.9752 0.2550 3.8247 0.0041
CointEq (− 1)  − 0.7862 0.0687  − 11.4432 0.0000

3   https://​www.​wefor​um.​org/​agenda/​2020/​11/​china-​bans-​fossil-​fuel-​
vehic​les-​elect​ric/.
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excellent static forecasting performances in assessing the 
elasticity of EF for GD, ECO, PU, PE, and U. This again 
indicates that the ARDL model has excellent fitness and 
goodness to forecast the EF value during the regarded period 
from 1985 to 2018.

Impulse response function (IRF) analysis

In this section, we used impulse response function (IRF) 
analysis to further indicate dynamic impacts of GD, ECO, 
PU, PE, U, on EF over a 12-year period. The 95% confidence 
interval bands are computed by the newly developed boot-
strapping approach with 999 repetitions.

Figure 5 shows the results of the IRF graphs for the nexus 
of EF and other variables. The response of EFs to per capita 
income and its square term are positive starting from the 5th 
year and the intensity of the response increased and peaked 
during the 7–8th year. After that, it declined significantly 
showing the characteristic EKC pattern that validates our 
result from the ARDL model. When a standard deviation 
impact of ECO and EF is provided, a positive response to 
ECO in both the short and long run can be observed. The 
response of the short-run effect has a much stronger effect 
on EF than long-run effects do, which is consistent with the 
result from the ARDL, reconfirming that the response of EF 
would obtain the equilibrium drift in both short- and long-
time periods, but short-run impacts show stronger effects 
on EF. In the cases of the EF-PU and EF-PE nexus, the 
response of EF will be significantly stronger towards PE than 
PU, implying that P exports have stronger effects on EF than 
PU. It further shows that EF is more sensitive to the changes 
of PE in short periods (1–3 year period) and in long-run 

periods (6–10-year period). Besides, a positive one standard 
deviation impact of urbanization exerts a significant nega-
tive impact on EF from the third year and a positive effect 
starting from the 9th year. This means that the reaction of 
EF to urbanization differs greatly during different stages of 
urbanization in China.

Robustness analysis

To ensure the robustness of the ARDL results, we used 
the long-run cointegration methods of FMOLS, CCR, and 
DOLS for comparing the long-run relationship with the 
ARDL findings. The output of the estimates is shown in 
Table 9. All the statistical results are consistent with the 
signs of their coefficients but show different effects of mag-
nitude for the results of the ARDL. This means that the out-
comes of elasticity of EF for GD, ECO, PU, PE, and U from 
the ARDL are useful and suitable to indicate the impact 
on environmental degradation in positive or negative ways 
in the long run. More importantly, our result supports the 
idea that DOLS have better performance when applied to 
the robustness check in this study.

This study further uses the FDCt that was motivated 
by work from Abbasi et al. (2021) to ascertain the link-
age between GD, GD2, ECO, PU, PE, and EF in China 
for robustness analysis. As shown in Fig. 6, The occur-
rence of the bidirectional granger causality relation-
ship between GD, GD2, ECO, PU, PE, U, and EF were 
investigated at frequencies 2–3, 1–2, and 0–1. These fre-
quencies show a short, medium, and long-term causal 
association, and 0–1 and 1–2 is defined as permanent 
and medium causality, while 2–3 is known as temporary 
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causality effect. A bidirectional granger causality rela-
tionship was verified between real income per capita 
and EF, suggesting that the economic development has 
a long-term ecological degradation drift, and ecologi-
cal degradation pressure potentially affects economic 
growth in the medium term, and several factors of EF 
such as industrial pollutants emissions are argued to 
restrain economic growth in China as well (Rao and Yan, 
2020). In addition, the FDCt results validate ECO as an 
essential driver of environmental degradation at differ-
ent frequencies, whereas EF affects the energy consump-
tion in the medium term. Urbanization in the long- and 

short-term affects environmental sustainability via dif-
ferent negative and positive effects.

Furthermore, P exports have a favorable influence on 
the environmental sustainability in the long and short 
term, suggesting P industry influence mainly embodied 
in P exports sector, and a one-way granger causality flows 
from EF to PU in the short and medium term, instead of 
flows from PU to PE are verified from the FDCt results. 
This result suggests that the acceleration of environmen-
tal stress might promote stringent policies of P use man-
agement in China`s agricultural sector in the short-and 
medium term.

-2%

-1%

0%

1%

2%

3%

4%

1 2 3 4 5 6 7 8 9 10 11 12

Response of LNGP to LNEF

-40%

-20%

0%

20%

40%

60%

1 2 3 4 5 6 7 8 9 10 11 12

Response of LNGD2 to LNEF

-6%

-4%

-2%

0%

2%

4%

1 2 3 4 5 6 7 8 9 10 11 12

Response of LNECO to LNEF

-2%

0%

2%

4%

6%

1 2 3 4 5 6 7 8 9 10 11 12

Response of LNPU to LNEF

-40%

-20%

0%

20%

40%

1 2 3 4 5 6 7 8 9 10 11 12

Response of LNPE to LNEF

-1.2%

-0.8%

-0.4%

0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

1 2 3 4 5 6 7 8 9 10 11 12

Response of LNU to LNEF

Fig. 5   Graphs of the IRF test results

73473Environmental Science and Pollution Research (2022) 29:73461–73479



1 3

Conclusions, implications, and limitations

Conclusions

Based on the empirical results of the P-induced EKC 
framework, we can conclude that the per capita income 
and EF are associated with the inverted U-shaped EKC 
hypothesis form in 1985–2018 in China. Specifically, it 
could be shown that the deterioration of the environmen-
tal quality decreases after a certain level of per capita 
income has been reached if key determinants of energy 
consumption–based carbon emissions and urbanization 
are incorporated in the analysis of the EF in China’s 
P industry. With regards to the model selection, our 
robustness analysis confirmed that the selected ARDL 
model has excellent fitness and goodness performance, 
and that this model can serve to provide reliable quanti-
tative results for EF analysis of China’s P industry. This 
study further provides empirical results that contribute 
to the P-EF nexus analysis. Specifically the following 
conclusions can be drawn from this study:

(1)	 The empirical results indicate a strong long-run coin-
tegration relationship between GD, GD2, PU, PE, and 
U to EF at 78.62% speed of adjustment. The indis-
pensable variables of real GDP, energy consumption, 
urbanization (or trade) are suggested to be incorporate 
in any future EF analysis for different industry sectors 
to ensure the fitness, goodness, and robustness of the 
empirical findings.

(2)	 The results verify that a key to the understanding of the 
identified factors of ecological degradation is rooted 
in the long- and short-run ECO impact that resulted in 
an increase of 0.226% and 0.51%. This again implies 
that short-run effects of ECO on EF are confirmed to 
be significantly higher than long-run effects. ECO also 
affects the EF in the medium term because environ-

mental degradation stress might promote stricter poli-
cies to control carbon emissions in China.

(3)	 Our results validate the EF in China’s P industry mostly 
embodied in the P export sector instead of P use in the 
long run, and P exports are identified to have a 0.04% 
long-run effect on EF. The scale effect mostly depends 
on the characteristics of the energy as well as the low- 
and medium-quality PR resources used in P processing. 
The decreasing ore grades might even have neutralized 
the effort of improving PU efficiency in the agricul-
tural sector in recent years in China, as well as potential 
developments of cleaner P production technologies.

(4)	 The nexus of PU and EF is mainly derived from two 
aspects: PU has a lagged stimulation effect on environ-
mental degradation in the short run. Moreover, in the 
medium and short term, EF has a significant impact on 
PU, suggesting ecological pressure on PU as a result of 
the application of stricter policies and regulations used 
to control PU and to improve the overall efficiency.

(5)	 The other important factor is urbanization, and our 
results could confirm that different stages of urbaniza-
tion have different impacts on environmental degrada-
tion. Although it was re-confirmed that the EF decreases 
with rising urbanization in the long run, urbanization 
has a significant positive effect on EF in the short run.

Implications: towards greener and cleaner P exports 
from China

Although economic growth significantly drives higher-
grade natural resources (energy, mineral resources, water) 
depletion in China, it is obvious that sustainable economic 
development relies on integrating sustainable natural 
resources utilization and policies that reduce the effect 
of negative externality on the environmental sustainabil-
ity. More importantly, opinion leaders from academic and 
governmental organizations can put more emphasis on 

Table 9   The long-run 
relationship results from FMOS, 
CCR, and DOLS

FMOLS CCR​ DOLS

Variable Coefficient Prob Coefficient Prob Coefficient Prob

LNGD 1.0962 0.0000 1.0031 0.0000 6.1649 0.0000
LNGD2  − 0.0300 0.0000  − 0.0143 0.0000  − 0.2918 0.0000
LNECO 0.3273 0.0000  − 0.0234 0.0000 0.3830 0.0009
LNPU  − 0.4356 0.0000  − 0.5049 0.0000  − 1.5044 0.0000
LNPE 0.0181 0.0000 0.0645 0.0000 0.0665 0.0316
LNU  − 0.8994 0.0000  − 0.9617 0.0000  − 3.3421 0.0000
C  − 2.8965 0.0000  − 4.1666 0.0000  − 21.5545 0.0000
R2 0.9939 0.9772 0.9998
Adjusted R2 0.9924 0.9720 0.9989
S.E. of regression 0.0305 0.0587 0.0112
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changing more than just carbon emissions resulting from 
fossil fuel energy usage, but also by considering other eco-
logical degradation factors from different industry sectors, 
and promoting ecological sustainability initiatives from the 
experience of the industrial chain to boost the outcomes of 
achieving environmental benefits among sectors (Xia et al. 
2022).

In this context, the present study provides important 
implications highlighting the interdependence between the 
output of China’s P industry and environmental sustainabil-
ity. It is suggested that:

Firstly, more P exports should be allocated to P compa-
nies that are committed to greener and cleaner production 
processes under China’s current P export license manage-
ment since 2019. More investment in clean energy deploy-
ment for P production is encouraged, since fossil energy use 
is directly related to GHG emissions and expanding clean 
energy usage is the best alternative solution to achieving 
economic, social, and environmental sustainability (Ulucak 
and Lin 2017). In practice, policy makers can formulate poli-
cies that encourage the transition from expanding P produc-
tion capacity to other priorities, such as, improving energy 
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use efficiency, utilizing advanced technologies to increase 
cleaner production and environmental pollution prevention 
measures, and implementing larger scale P recycling. Pos-
sible policy-level interventions such as subsidies, interest 
on loans, and export allocation can be considered to help 
particularly small- and medium-sized P companies in China.

Secondly, considering the pioneering role of China in 
the global P export market, China can take responsibility 
and initiatives for deploying sustainable P exports and help 
trade partners in strengthening their policies to import and 
promote the use of greener and cleaner P fertilizer. Here, 
Chinese companies can act and initiate collaborations with 
other major exporters to jointly tackle the global challenges 
of cleaner P fertilizer production.

Thirdly, as this is a truly global challenge, we encour-
age not only international cooperation but also the creation 
of international standards in P production. These initiatives 
can be beneficial to create economic benefits and balance 
the negative environmental externalities associated with P 
production and P utilization. In this context, we strongly 
encourage P producing companies to provide P footprint cal-
culations to present their P flows, and thus commit to their 
environmental responsibility.

Finally, we strongly believe that Multidisciplinary, multi-
dimensional and practical solutions are key to the transition 
of China’s P industry. In this context, greater awareness of 
the debate of the EF-P nexus can further enable citizens to 
better observe economic, social, and industry sectors poten-
tially negatively influence on ecological resources, and then 
pursuit sustainable environmental practices and regulations 
(Langnel and Amegavi 2020).

Limitation

We recommend that future studies investigate and fur-
ther discuss the understanding of the EKC hypothesis by 
incorporating different variables, industry sectors in cases 
of different countries and regions by using different mod-
els. Although we broadened the empirical investigation by 
exploring the analysis of EF in China’s P industry, the find-
ings are restricted by data availability and uncertainty. In 
this study, we could only consider the sampling period from 
1985–2018. It is widely known that cointegration models 
depend on the longitude of available time series datasets. 
If we include more recent annual data (2019–2022), we can 
infer that the results might show some difference to the pre-
sented findings. Furthermore, although EF is widely used 
and accepted as an indicator of environmental degradation, 
we call upon organizations and academics to design and 
develop even more comprehensive and systematic P foot-
print models that can result in an even better understanding 
of the underlying processes.
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