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Abstract
This study explores the implications of plastic waste and recycling management on recyclates for manufacturing clean-energy 
harvesting devices. The focus is on a comparative analysis of using recycled polyethylene terephthalate (PET) for triboelectric 
nanogenerator (TENG) production, in two densely populated Asian countries of large economies, namely Singapore and 
India. Of the total 930,000 tonnes of plastic waste generated in Singapore in 2019, only 4% were recycled and the rest were 
incinerated. In comparison, India yielded 8.6 million tonnes of plastic waste and 70% were recycled. Both countries have 
strict recycling goals and have instituted different waste and recycling management regulations. The findings show that the 
waste policies and legislations, responsibilities and heterogeneity in collection systems and infrastructure of the respective 
country are the pivotal attributes to successful recycling. Challenges to recycle plastic include segregation, adulterants and 
macromolecular structure degradation which could influence the recyclate properties and pose challenges for manufacturing 
products. A model was developed to evaluate the economic value and mechanical potential of PET recyclate. The model 
predicted a 30% loss of material performance and a 65% loss of economic value after the first recycling cycle. The economic 
value depreciates to zero with decreasing mechanical performance of plastic after multiple recycling cycles. For understand-
ing how TENG technology could be incorporated into the circular economy, a model has estimated about 20 million and 
7300 billion pieces of aerogel mats can be manufactured from the PET bottles disposed in Singapore and India, respectively 
which were sufficient to produce small-scale TENG devices for all peoples in both countries.
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Introduction

The vast amount of plastics entering the environment annually 
is contributing to an ever-increasing problem of pollution from 
plastic waste both on land and in the ocean (Garcia and Robert-
son 2017). This escalating problem is spurred by the global popu-
lation growth and demand for plastic products, resulting in the 
rapid growth in plastic production coupled with the linear ‘take-
make-waste’ economy. In addition, on the peak of the COVID-19 
pandemic, a substantial increase in single-use plastics, such as 
personal protective equipment (namely masks and gloves), has 
further aggravated the plastic waste problem (Lau et al. 2020) .

The pollution and emissions of greenhouse gases and 
chemical pollutants during plastic production and the clean-
up cost of plastic account for US$3.7 trillion in 2019 (more 
than the GDP of India in 2019) and are projected to reach 
US$7.1 trillion by 2040 (more than GDP of Australia, Can-
ada, and Germany in 2019 combined) (The Straits Times 
2021). Figure 1a and b show an estimation of global plastic 
production (not based on any particular country) and waste 
generation with respect to industry sectors and polymer types 
in 2018, respectively. Commercial production of plastics had 

outpaced the majority of other manufactured materials reach-
ing ∼ 450 million tonnes in 2018 (Tsakona and Rucevska 
2020). Plastic packaging and single-use plastics are the major 
products from the plastic industry that enters the waste stream 
almost instantly after usage (see Fig. 1a), contributing to a 
cumulative total of 6.3 billion tonnes of plastic waste gener-
ated worldwide (Joo et al. 2018). The projected increase in 
the quantity of post-consumer plastic waste comprises a con-
siderable portion of the solid waste stream, attracting reason-
able attention in recent years, predominantly in areas of rapid 
economic development and population growth. The challenge 
of managing the increasing quantities of plastic debris, espe-
cially from short-use products, requires the municipalities to 
arrange efficient systems for collection, disposal and potential 
reclamation, recycling and recovery of waste plastics. How-
ever, the present-day scenario has accounted for about 40% 
(by weight) of mismanaged plastic waste (Geyer et al. 2017). 
It was reported that a small amount of plastics were recycled 
(about 9%) and incinerated (about 12%), and about 60% of 
the plastics were discarded to the landfills and natural envi-
ronment (Geyer et al. 2017). Globally, there is a great urgency 
to control and reduce unmanaged plastic waste to reduce the 

Fig. 1  Estimation of global 
plastic production and waste 
generation in 2018 by a industry 
and b polymer types (Tsakona 
and Rucevska, 2020)
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pressure on the environment. The global market share of 
recycled plastics by application is presented through Fig. 2.

Several factors concerning plastic waste management, 
namely government policies, strategies, accounting behaviour, 
sustainability indicators and gross domestic product (GDP), 
have been investigated for possible correlation as reported in 
many recently published studies (Barnes 2019; Lebreton and 
Andrady 2019; Cordier et al. 2021). Barnes and co-workers 
modelled the relationship between the income per capita and 
mismanaged plastic debris for 151 countries (Barnes 2019). 
The model predicted that the mismanaged plastic waste per 
capita increases with increasing income per capita in a coun-
try up to a certain level, beyond which the mismanaged plastic 
waste per capita decreases owing to improved environmental 
efforts (Barnes 2019). Furthermore, higher capital investment 
in research and development by higher-income countries 
provide the means for technological innovations to mitigate 
the environmental impact of plastic waste (Barnes 2019). It 
has been proposed that mismanaged waste is inversely cor-
related to the gross domestic product (GDP) per capita; in 
other words, an increasing amount of mismanaged waste leads 
to decreasing GDP (Lebreton and Andrady 2019). A recent 
study based on the World Bank database argued that improper 
management of plastic trash was not the only factor; GDP 
is also dependent on other factors such as geographic loca-
tion, legislation and policy measures, market regulations and 
education levels (Cordier et al. 2021). The practice of plastic 
waste valorization, such as the conversion of plastic waste into 
fuel, energy and other value-added products, dominates in 
many developed countries affiliated with the organization for 
economic cooperation and development (OECD) (Table 1). 
However, globally, a large proportion of plastic waste was 
disposed at open dumps or landfills.

It is important to emphasize that developed economies 
depend on waste-to-energy technologies involving techniques 

such as incineration, pyrolysis, gasification, plasma pyroly-
sis, plasma gasification, landfill gas utilization, composting, 
anaerobic digestion with biogas recovery, bio-hydrogen pro-
duction, bio-recycling and many other technologies to create 
a real circular economy (Munir et al. 2021).

The intent of this report is to assess the implications of 
plastic waste management and recycling regulations on the 
recyclates for manufacturing advanced clean-energy har-
vesting devices. In particular, the focus is on a comparative 
analysis of the use of recycled polyethylene terephthalate 
(PET) for triboelectric nanogenerators (TENGs), in two 
densely populated Asian countries of large economies by 
GDP, Singapore and India. Here, two seemingly dispro-
portionate Asian countries stand out: India and Singapore 
(Lebreton and Andrady 2019). The land area of India is 
about 4516 times larger than Singapore, and the population 
of India is about 243 times bigger than Singapore. A sum-
mary of the comparison of the land area, population, popu-
lation density and GDP between Singapore and India were 
presented in Table 2. In 2019, Singapore, a high-income, 
high-density small city-state in Asia, with the 4th highest 
GDP per capita ranking in the world (Worldometers GDP 
per Capita n.d), generated a total of 930 thousand tonnes 
of plastic waste, with only 4% recycled (National Environ-
ment Agency 2021a). In comparison, India, a low-income, 
a highly populated country in Asia, generated a much larger 
tonnage of plastic waste, at 8.6 million tonnes. Yet, India 
could achieve a 70% recycling rate (Central Pollution Con-
trol Board 2019; Ministry of Housing and Urban Affair 
2019). Singapore relies heavily on the incineration of plastic 
waste to satiate the energy needs of a robust, growing indus-
try, and therefore, it becomes important to study renewable 
energy alternatives which could aid in minimizing the elec-
tricity generation cost while promoting cleaner production. 
At the same time, India is perceived to have an enormous 

Fig. 2  Market share of recycled 
plastics by application
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potential for adopting the waste-to-energy practice, largely 
because of the high population and its inclusion in the group 
of emerging countries that will endure an upsurge in waste 
generation and energy consumption shortly.

The present study aims to understand the current plastic 
waste management practices from the perspective of coun-
tries in South Asia (India) and South-East Asia (Singapore). 
The study evaluates the exacerbating problem of plastic 
waste and the management of plastic waste based on the 
existing regulations and policies. Typically, about 43% and 
33% of the total plastic waste produced were utilized for 
packaging purposes in India (Kapur-Bakshi et al. 2021) and 
Singapore (Jen Teo 2018), respectively. Of particular interest 
here is polyethylene terephthalate (PET), a polymer widely 
utilized in the packaging industry (see Fig. 1b) due to its 
high specific modulus (modulus to weight ratio), low cost, 
ease of processing, durability, high resistance to heat and 
chemicals, hydrophobicity and bio-inertness (Geyer et al. 
2017; Lebreton and Andrady 2019). Recycling methods such 
as sorting, washing, grinding, and extrusion processes can 
facilitate up to 37% and 90% of PET waste in Singapore 
(Singapore Environment Council 2021) and India (NCL 
Innovations, CSIR-NCL 2013; Plasteurope.com 2017), 
respectively. Unfortunately, the mechanical and structural 
properties of the recycled products were found to deterio-
rate progressively with each cycle (Alvarado Chacon et al. 
2020). The reduction in properties were attributable to the 
thermo-mechanical and thermo-oxidative degradation of the 
polymeric chains coupled with hydrolytic scission. Herein, 
a summary of different studies (Table 3) report on the deg-
radation of mechanical and structural properties of recycled 
commodity polymers. Therefore, it becomes important to 
assess the material value sustainability and material cost 

impact with respect to the number of recycling cycles and 
industry applications (Brouwer et al. 2020).

In this study, a circular economy approach was introduced 
for managing PET and its waste. A model was developed to 
predict the raw material cost and mechanical integrity of the 
recycled PET materials. In view of the increasing energy 
consumption by the respective countries, putting pressure 
on the production of energy, this study explores the pathway 
leading to the mass manufacturing of the triboelectric nano-
generator (TENG), a novel energy-harvesting device that has 
the potential for every day-use, from recycled PET materials. 
First reported in 2012, TENG is a promising technology for 
harvesting the mechanical energy of the human body and 
environment and transforming into electrical energy (Wang 
et al. 2012, 2017b). The benefits of TENG include low cost, 
simplicity to manufacture, high output performance at low 
frequencies and unrestricted material selection (Wang et al. 
2017b). Altogether, these benefits were exploited to design 
intelligent sensing and miniaturized portable harvesters to 
charge low-power electronics (Zi et al. 2016). In a study 
published recently, recycled PET was used to make TENG 
with little loss of performance (Roy et al. 2021). Here, the 
TENG performance, benefits and limitations from several 
studies were also reviewed. The implications on the eco-
nomic material value of using recycled PET for TENG pro-
duction were explored. An order of magnitude estimate was 
provided for the simplest application, i.e. an everyday wear-
able application namely the digital wrist watch (as an alter-
native to existing solar-powered ones) (Wang et al. 2017a). 
It might be argued that the choice of the application could 
be expanded to other applications, such as hearing aids and 
even contact tracing devices (Yang Boon 2021) that were 
used for monitoring COVID-19 infections in the community. 

Table 2  Land area, population 
and GDP of Singapore and 
India

Singapore India Scale

Land area  (km2) 728 3,287,590 1:4516
Population 5,685,807 1,380,004,385 1:243
Population density  (km2) 7810 420 -
GDP USD 339,998,477,000 (USD 

59,798 per capita)
USD 2,622,984,000,000 

(USD 1,900 per capita)
1:8 (31:1)

Table 3  Degradation in properties of commodity polymers post-recycling reported previously in the literature

Reference Recycled polymer % degradation in properties

Dahlbo et al. (2018) Polypropylene 26% yield strength, 86% elongation, 21% modulus
Cress et al. (2021) Acrylonitrile butadiene styrene 10% tensile and fracture strength, 25% strain at break, 37% toughness
Budin et al. (2019) Polylactic acid 11% tensile strength, 5% transverse rupture test, 50% impact strength, 

4% hardness
Mendes et al. (2011) High-density polyethylene 40% crystallinity degree
Eriksen et al. (2019) Polyethylene terephthalate 56% tensile strength
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The waste-to-energy (WTE) treatment were argued to be not 
suitable for recovering the resources when the ‘reduce, reuse 
and recycle’ (3R’s) methods could be implemented.

This article presents the findings of the plastic waste 
management policies, legislation and infrastructure of both 
Asian countries (India and Singapore) that highlights the 
proper management and mismanagement of plastic waste 
and their environmental pollution and energy consump-
tion. Further to address the gaps and add to the body of 
knowledge, this article focuses on the progress of TENGs 
for renewable energy generation by recycling PET plastic 
(for increasing recycling rate) for the manufacturing of tri-
boelectric material. The article aims to provide a perspec-
tive to understand plastic waste as an evolving resource that 
could be proposed and implemented in the waste-to-energy 
technology for improving plastic waste management in both 
countries.

Landscape of plastic waste management 
and recycling

This section discussed the current legislation and policies 
for plastic waste management and recycling, related infra-
structure and recycling statistics in Singapore and India. The 
legislation in waste and recycling management has been con-
stantly amended by the governing body in the respective 
countries (Singapore and India) to provide an opportunity 
to implement new regime. The related infrastructure and 
processes facilitate the flow of plastic waste and recyclables, 
and the statistics of the total plastic waste generated and the 
recycling rate of the respective countries were presented.

Legislation and policies

Table 4 shows the comparison of the plastic waste manage-
ment regulations and goals of Singapore and India. In Singa-
pore, the National Environment Agency (NEA) administers 
licencing and regulatory functions of waste collection, treat-
ment and disposal (National Environment Agency 2021b). 
The Environment Public Health Act (EPHA) regulates 
the waste management system aided by (1) general waste 
collection regulations, (2) general waste disposal facili-
ties regulations and (3) toxic industrial waste regulations 
(National Environment Agency 2021b). In 2014, a manda-
tory waste reporting (MWR) framework was introduced 
under the EPHA, requiring the owners, occupiers or les-
see of a workplace to furnish data on the specific types of 
waste generated and recycled, and corresponding reduce, 
reuse and recycle (3Rs) plan annually to the NEA Waste and 
Resource Management System (WRMS) (National Environ-
ment Agency 2021c). NEA states that the purpose of the 
MWR framework is to bring awareness to the producers on 

the amount of waste being generated at their premises and 
also to encourage them to improve their waste management 
system (National Environment Agency 2021c). Since the 
enactment of MWR frameworks, NEA has found that more 
commercial premises have step up their effort in the recy-
cling activities which had led to an increased in the recycling 
rate in 2019, e.g. 7.4% and 11.4% for the respective hotels 
and malls (National Environment Agency 2021c).

In Singapore, typically, one-third of the total generated 
waste comprises packaging waste (including plastics). Pack-
aging waste has been identified as the key priority waste 
stream in the Zero Waste Master plan that requires atten-
tion and efforts to close the resource loop for Singapore 
to achieve its goal as a Zero Waste Nation (National Envi-
ronment Agency 2022a). The enactment of the Resource 
Sustainability Act (2019) requires the brand owners, manu-
facturers, importers and retailers (i.e. supermarkets) of pack-
aged products to comply with the Mandatory Packaging 
Reporting (MPR) framework entailing the reporting of the 
packaging data (namely material types, form and weight) 
and 3R strategies (including initiatives, plans, goals and key 
performance indicators for tracking the progress of plastic 
reduction in subsequent years) to the WRMS. The Act was 
fully enforced on the 1st of January 2021 (Republic of Sin-
gapore Government 2022). The MPR framework aims to 
curb the utilization of single-use plastics and improve the 
plastic recycling rate (Jen Teo 2018; National Environment 
Agency 2022a).

In India, the Ministry of Environment, Forest, and Cli-
mate change (MoEF) in conjunction with the pollution con-
trol boards (Central Pollution Control Board (CPCB) and 
State Pollution Control Board (SPCB)) regulates the waste 
management system. In 2011, the MoEF enacted the Plastic 
Waste (management and handling) Rules to enforce coercive 
laws to mandate the responsibilities of the respective SPCBs, 
urban local bodies and gram panchayats for the imposition 
of provisions for plastic waste collection, treatment and 
disposal (Ministry of Housing and Urban Affair 2019). In 
response to the global concerns on sanitation and waste man-
agement through the Swachh Bharat Mission (SBM) dated 
October 2014, new plastic waste management rules, namely 
the ‘Plastic Waste Management (PWM) Rules, 2016’, super-
seded the ‘Plastic Waste (management and handling) Rules, 
2011’ (Ministry of Housing and Urban Affair 2019). The 
new PWM legislation integrates with the concept of the EPR 
framework to dictate brand owners, importers and producers 
to establish systems for the assemblage of waste generated 
from their products within a period of 6 months and subse-
quent implementation within 2 years. Mandatory registra-
tion of manufacturers to sell plastics to user (or members 
of the public) and transporting plastic waste recyclables to 
register recyclers are required. Also, individuals involved 
in recycling waste processes are required to submit a grant 
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application or renewal of registration for recycling. In con-
formity with the PMW rules, the Solid Waste Management 
Rules mandated the responsibility of waste producers such 
as event organizers and institutions to implement waste gen-
eration and minimization, prevent illegal disposal of waste 
and facilitate waste storage following segregation and hand-
ing over of the segregated waste to local bodies or agencies 
authorized by the local bodies. The latest amendment of the 
rules, referred to as the PWM (Amendment) Rules, 2018, 
includes a central registration system for brand owners, 
importers and producers under the purview of CPCB (Min-
istry of Environment 2016a). Similarly to the MPR frame-
work in Singapore, the advent of the Uniform Framework for 
EPR in India in June 2020 requires packaging brand owners, 
importers and producers to submit quarterly reports, while 
the producer responsibility organizations (PROs), SPCBs 
and CPCBs submit their annual reports on waste collection 
and disposal to the National registration and database reposi-
tory web portal. These reports are intended to inform CPCB 
for monitoring the effectiveness of the PWM rules (Pani and 
Pathak 2021).

Plastic waste management infrastructure

The process flow for managing plastic waste and recyclables 
(Fig. 3) in both Singapore and India includes (a) identify-
ing the disposal point/locations; (b) collections by waste 
collectors; (c) segregation and (d) treatments to waste and 
recyclables.

Table 5 presents the comparison of waste and recycling 
infrastructure between Singapore and India. In Singa-
pore, the NEA award licences to the public waste collector 
(PWCs) for providing waste collection and recycling ser-
vices for domestic and trade premises and to the general 
waste collectors (GWCs) to provide services to commer-
cial and industrial premises. Residents dispose the waste 
in the general waste bin or the collection point (i.e. rub-
bish chute and green bins around estates). The incinerable 
waste is collected by the waste collector and transported 
to the WTE incineration plants using a refuse collection 
vehicle (National Environment Agency 2020a). The WTE 
plant crushes the bulky waste with a high-capacity rotary 
crusher, followed by feeding the waste into the incinera-
tor and burning it at temperatures of about 850 to 1000 °C 
(National Environment Agency 2020a). The heat produced 
during combustion generates steam in the boilers to drive the 
turbogenerators, which produced about 3% of the electric-
ity needs in Singapore. The ash from the burnt waste has a 
volume of about 10% before incineration (National Environ-
ment Agency 2020a). The ashes are transported to the Tuas 
marine transfer station for disposal at the offshore Semakau 
landfill (National Environment Agency 2020a).Ta
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In Singapore, NEA introduced a national recycling pro-
gramme in 2001 that requires all PWCs to provide recycling 
bins and collection services to all estates, namely housing 
estate of the Housing Development Board (HDB), private 
landed properties and condominiums or private apartments, 
who opted into the public waste collection scheme (National 
Environment Agency 2022b). A standardized blue-colour 
recycling bin is provided at open area that is accessible to 
the residents and for fire safety reasons (National Environ-
ment Agency 2022b). The collectors (PWCs for domestic 
and GWCs for commercial and industrial) gather the recy-
clable materials (mixed recyclables) using a recycling truck 
(National Environment Agency 2019). The recyclables are 
transported to the material recovery facility (MRF) for sort-
ing into different material streams (i.e. glass, paper, plastic 
and metal) (National Environment Agency 2019). During 
the process of sorting the recyclables, non-recyclables and 
contaminated materials will be disposed as refuse and sent 
to WTE plants for incineration (Ministry of the Environment 
and Water Resources 2019). The MRF consolidates the recy-
clables into bales and transports them to the recycling plants 
(National Environment Agency 2019). For plastic recycling, 
the recycling plant sorts the recyclables to their polymer type 
(if possible, based on resin identification codes). Thereafter, 
mechanical recycling is conducted by shredding the plastics 
into flakes and washing the flakes to remove contaminants 
(National Environment Agency 2019). The plastic flakes 
can be further processed by pelletizing them into granules. 
The plastic flakes or granules can be served as feedstock 
for remanufacturing (Jen Teo 2018; National Environment 
Agency 2019).

India embraces a similar plastic waste and recycling man-
agement strategy. In particular, the types of plastic recycling 
processes and facilities implemented in India are quite simi-
lar to those in Singapore. Waste and recycling management 
in India are conducted at the municipal level (Ministry of 
Housing and Urban Affair 2019). The municipal authority 
or gram panchayat appoints local waste collectors to collect 
waste and recyclables from domestic and public places and 
segregate them into incinerable waste, non-incinerable waste 
and recyclables (Ministry of Environment 2016a). Unlike 

Singapore (a developed country) which engages licenced 
waste collectors, India (a developing country) depends heav-
ily on the informal sector, namely waste collectors, trash/rag 
pickers, road sweepers, Dhalaos, intermediate dealers/junk-
yard owners and recyclers which contributes to a relatively 
high plastic collection rate of 60% (Ministry of Housing 
and Urban Affair 2019). While the formal recyclers (formal 
sector) are generally part of the waste management chain 
to manage the bulk plastic waste that are collected by the 
informal sector (Ren et al. 2021). Furthermore, uncollected 
plastic wastes are often openly dumped due to a lack of prop-
erly engineered landfills and also leads to poor practices 
where open burning of waste is conducted to reduce the 
waste volume (Ren et al. 2021). Over the years, India has 
been utilizing the non-recyclables and co-processed it for 
road construction and in cement kiln, including pyrolysis 
to obtain fuel from waste (Ministry of Housing and Urban 
Affair 2019). Currently, Singapore is still researching on 
plastic recycling methods using gasification and pyrolysis 
to obtain useful products. More importantly, in land-scarce 
Singapore, only some recyclables are recycled locally, and 
most of the recycling processes are conducted in neighbour-
ing countries (Johor, Malaysia) (Kerdlap et al. 2020, 2021), 
while India is able to house all the recycling processes and 
facilities locally (Ministry of Housing and Urban Affair 
2019).

Recycling statistics

NEA (Singapore) reported that a total of about 868 thou-
sand tonnes (152 kg per capita) of plastic waste were gener-
ated, whereas about 36 thousand tonnes (6 kg per capita) 
were recycled in 2020 (see Fig. 4a) (National Environment 
Agency 2021a). In 2018, a report from Singapore Environ-
ment Council (SEC) revealed that packaging waste contrib-
uted to a huge portion of the total plastic waste in Singapore 
(Dahlbo et al. 2018). The types of packaging waste consist 
of about 467 million PET items (i.e. bottles), 473 million PP 
items (i.e. takeaway containers) and 820 million PE items 
(i.e. plastic bags) (Singapore Environment Council 2018). 
It was observed that the overall plastic recycling rate had 

Fig. 3  Typical processes of waste and recycling in Singapore and India (National Environment Agency 2019)
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Table 5  Comparison of land area, economy and their waste and recy-
cling infrastructure between Singapore (Ministry of the Environment 
and Water Resources 2019; National Environment Agency 2022b) 

and India (Ministry of Housing and Urban Affair 2019). Data related 
to country sizes and economy in 2020 were obtained from The World 
Bank (The World Bank 2020)

Singapore India

Waste disposal point
• General waste is disposed into the rubbish chute of HDB flats, and 

green-colour waste bin available around the estate, commercial 
buildings and parks

• Recyclables are disposed into the blue-colour recycle bins located 
under each HDB flat and recycling bins around the estate, commer-
cial buildings and parks

• Mixed recyclables (paper, plastics, glass, metal) are disposed into 
the blue-colour bin and the recyclables are not separated by its 
respective material types at this point. Some commercial buildings, 
i.e. shopping centres, and parks initiate recyclables separation that 
offer recycling bins with instructions on the type of waste that can 
be binned

• Both general waste and recyclables are disposed, typically to be stored 
temporarily at home, yards and commercial buildings, prior to door-
to-door collections

• Waste is segregated into different streams, namely organic or biode-
gradable waste, dry waste (i.e. plastic, paper, metal and wood) and 
domestic waste (i.e. diapers, napkins, mosquito repellents and clean-
ing agents)

Collection
• NEA appoints and licences the PWCs to provide refuse and recycla-

ble services to serve domestic and trade premises
• NEA licences the GWCs to serve the commercial and industrial 

premises
• The waste collectors collect the refuse from the green bin and the 

recyclables from the blue bin by using trucks
• The trucks transport the refuse from domestic and trade premises to 

the WTE plant. For the recyclables, they are transported to the MRF
• For commercial and industrial premises, the GWCs collect the 

refuses and recyclables, followed by transporting them to the GWC’s 
facilities. Of note, GWCs can only handle the types of refuses and 
recyclables according to the licence that NEA has awarded to them

• Municipal authorities and Gram panchayat appoint waste collectors 
to collect the waste and recyclables by door-to-door collections from 
domestic premises, public places and storage in covered yard

• The waste collection is heavily dependent on the informal sector, 
which includes waste collectors, trash/rag pickers, road sweepers, 
Dhalaos, intermediate dealers/junkyard owners and recyclers

• Waste collected is transported to a segregation facility for sorting of 
waste and recyclables

Segregation
• Waste collected from the waste disposal point is not segregated 

before sending off for waste treatment
• Commercial and industrial waste collected by GWCs is generally 

segregated during collections. GWCs may require further segrega-
tions depending on the refuse types

• Recyclables collected by PWCs or GWCs are usually sent to the col-
lector’s MRF to segregate the recyclables into four different streams 
of materials (namely glass, paper, plastic and metal). Thereafter, the 
recyclables are consolidated and baled into large cubes (for paper 
and plastics only)

• Non-recyclables found during segregation are removed and deemed 
as refuse

• Municipal authority and Gram panchayat to appoint registered facili-
ties, and unorganized/informal sectors to segregate the waste and 
recyclables

• The waste is segregated into incinerable waste, non-incinerable waste 
and recyclables

• Subsequently, the segregated waste is transported to different facilities 
for waste and recyclables treatment

Waste and recyclables treatment
• Incinerable waste is transported to the WTE incineration plants to 

reduce the waste into ashes. The heat generated from the superheated 
steam in the boiler drives the turbogenerators to produce electricity. 
After incineration, ferrous scrap metals are recovered and recycled, 
while the ashes are disposed at the offshore Semakau landfill

• Recyclables are sent to several local recycling plants and mostly 
to the recycling plant located in neighbouring countries (Johor, 
Malaysia)

• For plastic recyclables, they are further sorted into different plastic 
types. The plastic scraps are mechanically recycled by washing to 
remove contaminants, followed by shredding to become plastic 
flakes for remanufacturing. The flakes can be further process by pel-
letizing to form plastic pellets

• Incinerable waste is transported to plants for construction of bitumi-
nous road through hot mix plant, pyrolysis to convert waste to liquid 
fuel, co-processing in cement kilns as an alternate fuel and raw mate-
rials, and disposal through incineration

• Non-incinerable waste is transported to plants for compositing (for 
organic waste), and grit making (for inorganic waste)

• For plastic recyclables, they are further sorted into different plastic 
types. The plastic scraps are mechanically recycled by washing to 
remove contaminants, followed by shredding to become plastic flakes 
for remanufacturing. The flakes can be further process by pelletizing 
to form plastic pellets
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decreased from 7% in 2016 to 4% in 2020, and the residual 
waste was sent to WTE incineration plants, followed by dis-
posing off in offshore Semakau landfill (Elangovan 2021; 
National Environment Agency 2021d).

The decreasing recycling rate was mainly attributed 
to contamination of recyclables due to incorrect disposal 
of non-recyclables into the recycle bins (Mahmud 2018). 
Another factor that resulted in the decrease of the recycling 
rate was attributed to the decrease in overseas demand for 
recyclable materials. For instance, the ban imposed by China 
for importing recyclable materials, and restrictions on recy-
clable materials imposed by Malaysia and Thailand have 
impacted the economic value of the recyclable materials 
(Rapoza 2020). The recyclable materials generate low-profit 
margins in considering the cost to collect at source (Mohan 
and Min 2020).

In India, the CPCB reported that a total of 8.6 million 
tonnes (6 kg per capita) of plastic waste were generated, 6 
million tonnes (4 kg per capita) of plastic waste were recy-
cled, and the remaining 2.6 million tonnes (2 kg per capita) 

of plastic waste were confined to landfill or left squandered 
in 2019 (Central Pollution Control Board 2019; Ministry 
of Housing and Urban Affair 2019). The total plastic waste 
generation has reduced by 8% as compared to 2018. Con-
comitantly, it was observed that the overall recycling rate 
has increased from 59% in 2018 to 70% in 2019 (Central 
Pollution Control Board 2018, 2019). However, plastic waste 
leakage during the recycling process attributable to the 
dearth of formal recycling channels, standard operating pro-
cedures and rudimental strategies steer is a major challenge 
facing by the recycling industry (Kapur-Bakshi et al. 2021). 
The formal recycling sector is predominantly constricted to 
cleanse and sequester pre-consumer waste by regions in the 
country. Encompassing those in the western states of Maha-
rashtra and Gujarat benefits from the rugged transport and 
recycling infrastructure and grid connectivity (Kapur-Bakshi 
et al. 2021). Notably, high transportation costs were incurred 
as the pre- and post-consumer recyclables from distant states 
of Southern or Eastern India were also recycled in the west-
ern states of India (Ministry of Environment 2016a). Poor 
infrastructure and road connectivity in regions, especially 
North-East India, pose a major challenge due to the long-
distance transportation of waste in India. Furthermore, the 
available recycling infrastructure could only process up to 
50–60% of the total recyclables, as the remaining recycla-
bles were contaminated and rejected. In addition, the ban on 
the import of plastic waste in India has relieved stresses on 
the recycling sector in managing the high volume of plastic 
recyclable (Kapur-Bakshi et al. 2021).

CPCB has summarized the challenges in managing waste 
in India as follows: (1) inadequate data submission from 
the state; (2) data submitted by the responsible organization 
does not comply with the waste reporting standard as pub-
lished under the waste management rules; (3) waste were not 
fully accounted owing to incomplete data submission from 
some states and (4) rampant illegal dumping and failing to 
comply with the waste management rules (Central Pollution 
Control Board 2018, 2019).

Plastic waste conversion technologies 
for PET

In this section, three plastic waste treatment technologies 
for PET, namely mechanical recycling, pyrolysis and incin-
eration were discussed. The technologies have been sum-
marized and presented in Table 1. As the name suggests, 
mechanical recycling of plastics such as PET processes plas-
tic products by mechanical means, such as grinding, wash-
ing, separating and drying, to recover the PET with minimal 
alteration to the material. Pyrolysis is a process which sub-
jects plastic waste to thermal degradation (in the absence of 
oxygen) to recover fuel or monomer. Thermal degradation 

Fig. 4  Bar charts of plastic waste generated, disposed and recycled in 
a Singapore (2016–2020) (National Environment Agency 2021d) and 
b India (2018–2019) (Ministry of Housing and Urban Affair 2019)
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reduces long-chain polymer molecules to smaller, less com-
plex molecules under the effect of pressure and heat in the 
absence of oxygen (Damayanti and Wu 2021). Incineration 
is a terminator process of eliminating plastic waste by the 
combustion of plastic waste to ashes (thus reducing the 
original physical volume of the waste by 85–90%) before 
disposal takes place; the process in turn produces heat for 
powering devices.

Moreover, with the help of mechanical recycling, the 
recovered PET could be used for manufacturing products 
such as clean energy devices (TENG) (A potential energy 
harvesting device made from recycled PET). After going 
through several cycles of recycling, degradation in the physi-
cal and chemical properties of PET could reduce the eco-
nomic value (Retrofitting PET waste treatment towards a 
sustainable circular economy). Eventually, the PET waste 
could be treated through the pyrolysis or incineration pro-
cess. The key strength and weaknesses of the respective 
technologies have been highlighted. A major concern with 
mechanical recycling is the presence of different contami-
nants including heat stabilizers, additives, plasticizers, pig-
ments, flame retardants and concoction of different polymer 
types affect the quality of secondary plastics inferring low 
economic and technical values. The pyrolysis technology 
currently requires high carbon and energy inputs which lim-
its its implementation on industrial scales. The incineration 
technology is limited by large greenhouse gas emission and 
landfills are needed to accommodate the ashes (National 
Environment Agency 2020b).

Mechanical recycling

To date, the mechanical processing of plastics is the most 
traditional and economical technique employed for recycling 
post-consumer plastic waste (Geyer et al. 2017). A large 
proportion of the recovered post-consumer PET bottles are 
recycled through mechanical recycling in India and Singa-
pore (Central Institute of Plastics Engineering & Technology 
2008; Khoo 2019). However, the recycled materials could 
only be employed for applications that are not intended for 
exigent performance.

Mechanical recycling could be operated in two modes, 
namely primary and secondary. The primary recycling 
mode, otherwise known as ‘closed loop recycling’, refers to 
reprocessing of plastics to manufacture products utilized for 
the same purpose as the pristine materials. The secondary 
recycling mode refers to the utilization of reclaimed materi-
als as a source of new production (National Environment 
Agency 2019). These modes of recycling involve sorting, 
shredding, washing and pelletizing (or extrusion to form 
pellets) of the material as described in the “Plastic waste 
management infrastructure” section.

The polymer materials are limited by the number of 
reprocessing cycles, due to the shortened polymeric chains 
after chain scission amortize polymer viscosity and elas-
ticity and embrittles the polymer (Hopewell et al. 2009). 
The presence of contaminants and additives complicates 
the processes and affects the amount of recovered mate-
rials (Hopewell et al. 2009). Residues of PVC, PLA and 
PVA in PET can leach acids and stimulate hydrolysis or 
acidolysis of PET during extrusion. Contaminated plastic 
trash demands rigorous cleaning prior to recycling, which, 
even with state-of-art technology, involves the utilization 
of about 2 to 3  m3 of water per tonnes of materials (Dama-
yanti and Wu 2021). Furthermore, cross-linking during 
chain extension (due to an increase of molecular weight) 
adversely affects the recyclate quality and risk damaging the 
equipment used for the recycling processes. The degrada-
tion of PET chains is prompted by carbon to hydrogen trans-
fers or attacks by free radicals. As a result of the heat and 
the stress from the extruder, the reaction of macroradicals 
with oxygen occurs, resulting in the formation of peroxy-
based radicals. Emanating macroradical chains as a result of 
radical hydrogen abstraction exacerbates the concentration 
of carboxylic acid end groups and causes thermo-oxidation. 
Henceforth, the recyclables are more prone to degradation 
after each recycling cycle due to the degradation of the 
polymer chain (Hopewell et al. 2009).

The microstructure of the PET could take on the follow-
ing forms: rigid amorphous, mobile amorphous and crystal-
line. The mobile amorphous fraction is more prone to attack, 
releasing short chains to fold into intercrystalline domains 
nucleate crystallization (Vollmer et al. 2020). Thickening 
and rearrangement of the crystalline domains can occur, 
resulting in new crystalline domains with smaller average 
sizes formed with increased recycling, causing increased 
embrittlement and stiffness. Irrevocable impairment of poly-
meric chains as a result from mechanical recycling leads to 
the final disposal in landfills (Vollmer et al. 2020).

Pyrolysis

A schematic of a typical pyrolysis plant is presented in 
Fig. 5. The pyrolysis process has been used to recuperate 
energy and fuels. The pyrolysis process can form (1) gases, 
comprising light-weight hydrocarbons, hydrogen, CO and 
 CO2; (2) oil/wax mixture, encompassing a mixture of ali-
phatic and aromatic compounds and (3) char, a solid residue 
which is derived after processing. At lower temperatures, 
oil and waxes are formed; at higher temperatures, pyrolysis 
leads to monomer recovery in larger quantities.

Degradation can occur in the following ways under pro-
cess conditions: (a) depolymerization into monomer; (b) 
randomly breaking the polymer chain into smaller frag-
ments; (c) removal of side groups or reactive substitutes; 
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(d) cross-linking in case of thermosetting polymers during 
heating. Desired products could be obtained by varying the 
process parameters (i.e. temperature, catalysts, residence 
time, pressure, type of fluidizing gas and its rate, type of 
reactors) (Dogu et al. 2021).

Pyrolysis has been investigated as an appealing substi-
tute for incineration for waste disposal. In contrast to the 
conventional incineration plant operated in the capacity of 
kilotonnes per day, the scale of the pyrolysis plant is more 
versatile, and the output of pyrolysis can be consolidated 
with other downstream technologies for product upgrada-
tion (Peng et al. 2022; Yansaneh and Zein 2022). The liquid 
oil yielded can be utilized in several applications, including 
boilers, furnaces, diesel engines, and turbines, without fur-
ther treatment (Rajendran et al. 2019).

Compared to mechanical recycling, the pyrolysis technol-
ogy is in the early stage of development and a majority of 
the technologies were in pilot scale in both countries (Khoo 
and Tan 2010; Kapur-Bakshi et al. 2021). High production 
cost, energy inputs and release of harmful chemicals, for 
instance, biphenyls and polycyclic compounds could further 
limit its application (Roosen et al. 2020). Several small-scale 
pyrolysis systems have been implemented in India (Dutta 
and Bhaskar 2017) and Singapore (National Environment 

Agency 2020c), but more research are needed namely on the 
design, environmental impact of the incineration before full-
scale commercialization in both countries could be realized.

Incineration

In Singapore, incineration (see Fig. 6) is a common method 
to process waste material to derive energy while minimizing 
the volume of waste sent to the landfill. It was highlighted 
that about 48% of the 5.88 million tonnes of plastics and 
non-plastics generated in Singapore were incinerated in 2020 
(National Environment Agency 2021a). However, India 
restricts plastic waste incineration to multi-layered plastics 
and non-recyclables (Ministry of Environment 2016b).

At a typical incinerator (Fig. 6), plastics are burnt to ashes 
to generate heat which is used to boil water to release steam 
to turn turbine blades and this in turn generates electricity 
for the local grid. Concomitantly, this is accompanied by 
the release of greenhouse gases and toxic pollutants like 
acid gases, heavy metals and dioxins (Sharma et al. 2021). 
The utilization of recovered energy (recovered in the form 
of heat after incineration of waste) varies noticeably which 
depend on the energy recovery method such as the combina-
tion of power and heat, generation of electricity and solid 

Fig. 5  Schematic of a general pyrolysis plant: (1.) coarse refuse bun-
ker, (2.) rotary shares, (3.) fine refuse bunker, (4.) overhead crane, 
(5.) feeding system, (6.) pyrolysis kiln, (7.) discharging system, (8.) 
hot gas filter, (9.) combustion air fan, (10.) combustion chamber, (11.) 
selective non-catalytic reduction, (12.) evaporator, (13.) superheater, 

(14.) economizer, (15.) turbine, (16.) generator, (17.) condenser, (18.) 
feedwater tank, (19.) additive metering hopper, (20.) fibrous filter, 
(21.) filter dust discharging, (22.) induced draught ventilator, (23.) the 
emission monitoring system, (24.) stack
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refuse fuel for cement kilns or blast furnaces (Yang et al. 
2021). Incineration of plastic waste requires a large amount 
of energy and the energy generated by a mass burning of 
plastics were substantially less than the energy conserved by 
recycling (Rahimi and Garciá 2017). A study has reported 
that the energy recovered from the incineration of plastic 
scraps was about 36,000 kJ/kg, whereas the processing 
of plastic scraps through mechanical recycling conserved 
approximately 60,000 to 90,000 kJ/kg (Rahimi and Garciá 
2017). Thus, mechanical recycling of plastic scraps eventu-
ally conserves more energy than incineration can generate 
(Gradus et al. 2017). Furthermore, there are concerns about 
the environmental impacts of the pollutants. The by-prod-
ucts such as  CO2, acidic gases (oxides of sulphur), persistent 
organic compounds (dioxins and furans), heavy metals and 
particulate matters are highly hazardous which can result in 
global warming and several health problems including res-
piratory symptoms, decreased lung function and high cancer 
risk (Zhang et al. 2021).

Retrofitting PET waste treatment 
towards a sustainable circular economy

In this section, the feasibility considerations for a circular 
economy approach for the PET have been discussed. To 
begin, the economic value was compared to the perfor-
mance of the PET recyclates after consecutive mechanical 
recycling. Thereafter, when it is no longer economically 

viable to recycle the PET waste (i.e. when it is no longer 
feasible to keep the PET in circulation), the existing waste 
conversion technologies were explored as an end-of-life 
strategy for eliminating the PET waste and its impact on the 
environment.

Economic value of PET recyclate materials

Thus, plastic recycling to recover PET can be achieved 
through mechanical recycling. Mechanical recycling is a 
common method used in many countries to process the 
plastic scraps to secondary raw materials (see “Mechani-
cal recycling” section) (Gu et al. 2017; Khoo 2019; Ren 
et  al. 2021; Sharma et al. 2021). Often, the mechani-
cal properties of the recycled plastics were inferior as 
compared to the virgin plastics. Therefore, to mitigate 
the potential loss of property, as a foundation for future 
efforts, an economic analysis to establish the future 
closed-loop material usage of PET materials is presented 
with regard to the environmental impact and externalities. 
Existing life cycle analysis studies on the existing plastic 
conversion technologies were analysed to investigate the 
environmental benefit of a technology against the existing 
technologies in use.

In this section, a model was employed to evaluate the 
material economic value for the sustainability and impact 
of material flow in a closed-loop circular economy (Hag-
nell and Åkermo 2019). Herein, the model established 
the economic value of the plastic scraps after consecutive 

Fig. 6  Schematic of an incinera-
tion plant
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mechanical recycling for evaluating the sustainability of 
using recycled plastics in manufacturing (National Environ-
ment Agency 2021b). The economic value of the recyclable 
materials ( RVi ) may be estimated using a recyclate value 
model (RVM) developed by Hagnell and a co-worker (Hag-
nell and Åkermo 2019). The RVM considers the mechanical 
performance of the recycled materials after each recycling 
step/cycle ( i ). The RVM can be expressed as Eq. (1),

where RVi is the recyclate material value after recycling. 
RVi−1 is the recyclate material value before the current recy-
cling step/cycle. m is the retained mechanical performance 
factor (0 ≤ m < 1) of the recycled materials to account for 
the material degradation effects (such as thermal, chemical 
and loss of materials) during the recycling process. rp is the 
percentage of reclaimed recyclate yield that accounts for 
the amount of contaminants after recycling. P represents 
the recycling process cost. RV

0
 is the economic value of the 

materials when it is virgin (not recycled before). B is the 
final value after the recycling process.

Table 6 shows the data used to derive the RVi of PET 
plastic. The estimated RV

0
 of the virgin PET for South-East 

Asia (Singapore) were obtained from S&P Global Platts, 
while the RVi−1 of the recycled PET flakes were obtained 
from a company (2 Lians Pte Ltd) located in Singapore. 
The estimated RV

0
 of the virgin PET in South Asia (India) 

(1)
RVi = f

(

RVi−1

)

= mrpRVi−1 − P

RVi ≥ B

were obtained from a company in India (Rishav Polyplast 
Pte Ltd), while for the estimated RVi−1 for the recycled PET 
flakes were obtained from Jebruna International Pte Ltd. 
Notably, the RVi−1 of the PET materials were estimated 
from several companies in March 2021. Furthermore, a 30% 
decrease in RVi−1 of PET following each recycling step was 
conjectured. The dataset ( m ) for the mechanical performance 
factor (namely tensile strain properties, Charpy impact 
properties, the viscosity of PET resin during extrusion and 
degree of crystallinity) of PET plastic were obtained from 
several published articles (La Mantia and Vinci 1994; Del 
Mar Castro López et al. 2014; Schyns and Shaver 2021). 
With regard to the rp , the virgin state of PET plastic was 
assumed to be devoid of any contaminations and a prolifera-
tion of about 3% was projected with each consecutive recy-
cling step. With increasing recycling step, it was assumed 
that there were about 3% contaminants (which may be due 
to a mixture of different colours of PET recyclables). For 
P, a fixed value was assumed to avoid complexity, but in 
reality, the recycling costs may differ in different countries 
depending on the operational capacity of facilities and on 
the recycling method and material types.

Figure 7 shows the line chart of the estimated RVi of each 
recycling cycle (up to 5 cycles) for PET materials. It was 
observed that the RV

0
 (sale value) for South-East Asia (Sin-

gapore) was higher than South Asia (India) when the PET 
materials were in the virgin state. After the first recycling 
cycle ( i = 1), the estimated resale value ( RV

1
 ) of the recy-

cled PET material decreases about 65% (Singapore) and 52% 

Table 6  Predictions of the recyclate value of PET plastic

#Material value dropped by 30% from the previous recycling step
§Materials purity decreases by 0.03% from the previous recycling step
‡No change in the process costs per recycling step

Country No. of times 
recycled?

Estimated economic 
value, RVi-1 # (USD/mt)

Retained mechanical performance factor (m)
(0 ≤ m < 1)

Reclaimed 
recyclate (rp) §

Recycling 
cost (P) ‡

Elongation at 
break (εB)

Impact strength
(αcU)

Viscosity
(η)

Degree of 
crystallinity
(D)

(0 ≤ rp < 1)

Singapore 0 1341 1 1 1 1 1 50
1 610 0.833 0.526 0.97 0.97 0.97
2 427 0.136 0.185 0.94 0.94 0.94
3 299 0.062 0.119 0.91 0.91 0.91
4 209 0.038 0.044 0.88 0.88 0.88
5 146 0.018 0.044 0.85 0.85 0.85

India 0 1090 1 1 1 1 1 50
1 680 0.833 0.526 0.97 0.97 0.97
2 476 0.136 0.185 0.94 0.94 0.94
3 333 0.062 0.119 0.91 0.91 0.91
4 233 0.038 0.044 0.88 0.88 0.88
5 163 0.018 0.044 0.85 0.85 0.85
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(India) as compared to the virgin ( i = 0) PET materials. 
When the recycled PET materials ( i = 1) were introduced 

into remanufacturing and thereafter reached the end of the 
useful life of the products, the PET materials were con-
sidered for recycling again ( i = 2) to reuse and keep the 
PET materials within the closed-loop economy. The resale 
value ( RV

2
 ) of the PET material reduces to US$0 per met-

ric tonnes. Furthermore, recycling results in negative RVi 
values, suggesting that the costs of mechanical recycling 
processes were more expensive than the resale value of the 
recycled PET materials ( RVi < B ) after the second cycle.

Figure 8 shows the line chart of RVi with respect to the 
mechanical performance factor, namely (a) rupture strain, εB, 
(b) Charpy impact strength, αcU, (c) viscosity of PET resins 
during extrusion, η, and (d) degree of crystallinity, D, of the 
virgin PET and recycled PET in South-East Asia (Singapore) 
and South Asia (India). In general, the RVi decreases non-
linearly along with the decreasing mechanical performance 
of the recycled PET, regardless of region and country. The 
estimated value ( RVi ) of the recycled PET materials depre-
ciate close to no value (USD$0) when the mechanical per-
formance factor of εB and αcU decreases to a magnitude of 

Fig. 7  Estimated recyclate value ( RV
i
 ) of each recycling step or cycle 

(up to 5 cycles) of PET materials in South-East Asia (Singapore) and 
South Asia (India)

Fig. 8  Estimated recyclate value ( RV
i
 ) to the mechanical perfor-

mance factor (Del Mar Castro López et al. 2014) of virgin PET and 
recycled PET in South-East Asia (Singapore) and South Asia (India). 

a RV
i
 versus elongation at break, εB. b RV

i
 versus Charpy impact 

strength, αcU. c RV
i
 versus viscosity of PET resin during extrusion, η. 

d RV
i
 versus degree of crystallinity, D
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smaller than 0.2, and the η and D decrease to a magnitude 
of smaller than 0.88 (for more details on the economic value 
data of recycled PET plastics, refer to Supplementary Infor-
mation, Section 1.)

The analysis concluded that the economic value of 
PET depreciates after mechanical recycling as compared 
to the economic value of virgin PET materials. The eco-
nomic values depreciate to zero value with the decreasing 
mechanical performance of PET after recycling for several 
cycles. Revealing that the recycled PET materials may be 
only suitable for remanufacturing for certain applications 
where the product design does not require high mechani-
cal performance (i.e. micro-mesh fabric used for wastewater 
treatment and TENG for energy harvesting). Further esti-
mation of RVi (when i = 3, 4 and 5) revealed that it is not 
economical to recycle the PET materials for more than two 
cycles due to the costs incurred for the mechanical recycling 

processes (where RVi in the negative region shown in Fig. 7) 
and the reduction of mechanical performance after multiple 
recycling cycles (Fig. 8). Of note, when the materials were 
dumped in the landfill, the economic value of the materials 
would be USD$0 per metric tonnes (Hagnell and Åkermo 
2019).

Circular economy

New clean energy technologies to reduce emission such 
as TENG rely on raw materials (namely PET) to build the 
device. The manufacturing process would increase pres-
sure on the supply of PET materials. How would this also 
increase pressure on our natural resources will depend on the 
manufacturing efficiency and keeping the PET in circulation 
for as long as possible?

Fig. 9  System boundaries for 
end-of-life assessment of PET. 
The types of systems include 
mechanical recycling, pyrolysis 
and incineration

51252 Environmental Science and Pollution Research  (2022) 29:51234–51268

1 3



Figure 9 illustrates the processes of system boundaries 
of end-of-life assessment of PET including the process of 
waste conversion technologies such as mechanical recy-
cling, pyrolysis and incineration. Mechanical recycling of 
post-consumer PET waste encompasses a series of events, 
including sorting, cleaning, drying, size reduction and 
reprocessing. Treatment techniques such as bottle wash-
ing, grinding and flake washing could result in a material 
loss (8%); a further material loss could occur through the 
following processing stages: melt filtration (1%), air clas-
sifier (7%), material conveying (2%) (Sherwood 2020). 
Typically, the mechanical recycling processing tempera-
ture ranges from 280 to 320 °C (Chaudhari et al. 2021). In 
India and Singapore, mechanically recycled PET materi-
als were utilized to make polyester fibres. In India, it was 
predicted that about 95% of recycled PET was utilized to 
make polyester fibre materials (NCL Innovations, CSIR-
NCL 2018). In 2018, a national life-cycle analysis (LCA) 
report published by CPCB on packaging plastics projected 
that a total energy of 31651.2 MJ was consumed for pro-
cessing 1 tonne of PET bottles by mechanical recycling. 
The report also published the amount of water consumed 
(about 7529 L) and the emission of contaminants that were 
noxious to the environment such as carbon monoxide, 
nitrogen oxide, sulphur oxide and several dust particles. 
About 1001 kg of carbon dioxide emission (which contrib-
utes to the greenhouse effect) was predicted to be released 
(Meys et al. 2020). For Singapore, a study has assessed 
the life cycle of PET waste (Khoo 2019). A significantly 
lower greenhouse gas emission attributable to the employ-
ment of hydroelectric energy for powering the mechani-
cal recycling processes was observed (Khoo 2019). It was 
concluded that mechanical recycling was not widely used 
in Singapore; instead, the WTE plants were used widely for 
PET disposal (Khoo 2019, Grace Yeoh 2021).

The three principles of a circular economy are concerned 
with design for (i) the elimination of waste and pollution, (ii) 
circular handling of products and materials in use and (iii) 
the regeneration of natural systems (Ministry of Sustainablil-
ity and Environment 2021; Velenturf and Purnell 2021). A 
closely associated notion with circular economy is that sus-
tainable development with the environmental and economic 
dimensions of sustainability creates significant coherence 
with the principles of circular economy (Priyadarshini and 
Abhilash 2020). Evaluation of the environmental impact 
of the entire life cycle of plastics (from design to disposal) 
have identified opportunities for innovative solutions and 
systemic changes to address the sustainable development 
challenges (Huysman et al. 2017; Cordier and Uehara 2019; 
Foschi et al. 2020; Cordier et al. 2021).

A priority for the management of waste in order to guar-
antee the selection of the most environmentally sound option 
is to establish the resource hierarchy. The actions associated 

with this hierarch were highlighted by the R-ladder which 
was used to evaluate the end-of-life options (Keijer et al. 
2019). The R-ladder refers to reject, reduce, reuse, redis-
tribute, repair, refurbish, repurpose, remanufacture, recycle, 
recover and return. The least preferred option in this ladder 
of circularity is the ‘landfilling of waste’ or ‘incineration of 
materials as waste’. It is important to note that even though 
incineration as a disposal method generates electricity and 
heat, this should not be generally recommended unless there 
are no viable recycling options (Hahladakis et al. 2020). 
While prevention of waste (by avoiding or preventing the 
use of plastics) is the most desirable option, an optimal pro-
cess design for the efficient separation, purification, recy-
cling and reuse of waste products is the best option for waste 
management in case waste generation is not avoidable. With 
regard to PET, the processes to recycle PET waste should 
not result in increased  CO2 emission relative to new virgin 
PET materials.

End of life assessment of PET

When the economic value of PET recyclate diminute after 
multiple recycling as shown in the “Economic value of PET 
recyclate materials” section, what could be done with the 
PET waste if recycling is no longer viable?

The pyrolysis method is an environmentally friendly 
(conserving fossil resources) method as compared to the 
incineration method as it could aid in curbing environmen-
tal pollution and reduction of global warming (Czajczyńska 
et al. 2017). Compared to municipal solid waste incinera-
tors, pyrolysis plants require lower process temperature 
and result in lower air pollutant emission (Czajczyńska 
et al. 2017). In comparison to waste processing by cement 
kilns, monomer production by pyrolysis give rise to nega-
tive environmental potentials for LDPE and HDPE (high 
calorific HDPE and LDPE must be compensated by lig-
nite in cement kilns resulting in higher emissions), a small 
positive for polypropylene (the increase in avoided global 
warming impacts in cement kilns is slightly less than for 
HDPE and LDPE), and positive environmental potentials 
for polystyrene and PET (global warming impacts were 
avoided from conventional production of styrene and eth-
ylene) (Meys et al. 2020). In comparison to mechanical 
recycling, pyrolysis could recover gases and fluids, and 
refinery feedstock to avoid small-scale global warming 
(Meys et al. 2020). The current scenario suggests that the 
pyrolysis plants presently employed in the place of munici-
pal waste incinerators reduce terrestrial acidification and 
marine/freshwater eutrophication if refinery feedstocks or 
fuels are produced. On the other hand, all the processes 
present many opportunities to reduce terrestrial acidifi-
cation if cement kilns were utilized for energy recovery 
(Vollmer et al. 2020).
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Incineration of PET waste could contribute negatively 
to the waste pathway and waste management, as such the 
practice causes plastic residuals (i.e. filter ashes, bottom 
ashes and sludge after incineration) to remain trapped 
in the ecosystem which ultimately requires landfill dis-
posal. Decomposition in landfill results in the production 
of bad odours and landfill gas that is toxic to humans 
and could contribute to acidification and global warm-
ing (Sharma and Chandel 2017). The ashes comprised 
of toxic pollutants, such as heavy metals, which could 
leak into the marine environment in the form of leachate 
through groundwater. In Singapore, the main contribution 
to the greenhouse gas comes from the WTE plants; a large 
proportion of the residual of the waste or ashes were sent 
to the off-shore Semakau landfill (Kerdlap et al. 2021). In 
India, about 8% of plastic waste was sent to cement kilns 
for incineration. Incinerating the plastic waste in cement 
kilns contributed to 38% of total climate change by pol-
lution from the gases and the ashes (Ren et al. 2021). 
While sanitary landfills (installed with walls that isolate 
the trash from the environment to protect it from contami-
nation by leachate, emitted landfill gas, etc.) have been 
engineered and established in both countries, it has been 
predicted that the effectiveness of these measures would 
degrade with time (Ren et al. 2021).

A potential energy harvesting device made 
from recycled PET

The typical conversion processes from plastic waste to 
energy could be derived from three different approaches, 
namely chemical, biochemical and thermochemical. Lately, 
researchers have concentrated on increasing efficacy in 
power generation units for minimizing global warming. Inte-
gration of clean and renewable energy frameworks can con-
currently reduce environmental pollution, enhance energy 
efficiency and reduce the total cost (Sharma et al. 2021).

This section focus on a novel PET aerogel fabric that 
could be manufactured from recycled PET materials (Duong 
et al. 2021; Roy et al. 2021). A PET aerogel fabric made 
from the electrospun PET nanofibers could confer light-
weight property, high porosity (large surface-to-volume 
ratio), high flexibility, excellent absorption capacity and low 
thermal conductivity on the aerogel (Thai et al. 2019). The 
excellent properties of PET aerogels have led to numerous 
potential applications, ranging from heat and sound insu-
lations to wastewater treatment (Koh et al. 2018; Le et al. 
2019, 2020; Thai et al. 2019). This focused discussion is 
on the use of PET aerogels for triboelectric nanogenera-
tor (TENG), a device which is intended for sustainable 
energy production (see Fig. 10) (Roy et al. 2021). The use 

Fig. 10  Block diagram of a TENG-based energy harvesting device
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of recycled PET for making the aerogel has been proposed 
recently (Roy et al. 2021). The fabrication of recycled PET 
aerogels has been reported in several published articles 
(Le et al. 2019; Duong et al. 2021; Roy et al. 2021). The 
mesoporous sol–gel materials (70–90%) with large specific 
surface area (500–1000  m2/g), exceptional acoustic proper-
ties and low density (0.0001–0.200 g/cm3) are categorized 
as super insulators attributable to their ultralow thermal con-
ductivity (12 mW/mK).

Working principle of TENG

The working principle of TENG is based on triboelectri-
fication, a type of contact electrification (see Fig. 10) by 
which the surface contacted between two surfaces causes the 
charges to travel from one side to another, generating sig-
nificantly high voltages. The generation of electrical energy 
from mechanical energy relies on electrostatic induction and 
triboelectrification (Kim et al. 2021). Initially, the physical 
contact by one pair of triboelectric layers with distinct elec-
tron affinities results in the fabrication of charges. Second, 
external mechanical forces (derived from the range of natu-
ral sources, for instance, wind, rain or ocean waves to bodily 
motions including walking, running or finger movement) 
trigger the relative motion between triboelectric layers, 
breaking the balanced electrostatic charge distribution on 
the electrodes. Consequently, the electric potential difference 
built up between the electrodes is sufficient to trigger the free 
electrons to flow through the external circuits to establish 
an equilibrium. As the triboelectric layers return to their 
original position, the free electrons flow back to establish 
equilibrium (Zi et al. 2016). The alternating current arising 
from the oscillatory mechanical motions can be stored as 
energy in the storage unit or can be utilized for powering 
electric devices (Kim et al. 2020a).

Performance of TENG

Figure 11 presents the triboelectric output (a) voltage and (b) 
current of the TENG in a recent study (Roy et al. 2021). The 
TENG (tribolayer size approx. 2 cm by 1 cm) could generate 
an output power of 636.4 μW (voltage ≈ 67.7 V; current ≈ 
9.4 μA), enabling it to lit up 36 pieces of LEDs instantly. The 
TENG shows highly stable output performance over 10,000 
cycles of continuous loading/unloading in room temperature 
over a period of 65 days with high-performance accuracy of 
about 99% (Roy et al. 2021).

The choice of material is important for improving the tri-
boelectric effect and for procuring TENG with high output. 
There is a limited range of materials that have the desired 
electrical and mechanical properties such as breathability, 
washability, durability, lightness, extensibility and flexibility 
for use in TENG. The triboelectric series is a list of materials 
that rank according to their tendency to positive or negative 
charge used to select suitable pair of materials with oppo-
site tribopolarity (Dzhardimalieva et al. 2021). The power 
generation in TENG is the result of the coupling effect of 
electrostatic induction and electrification. Therefore, amelio-
rating the contact charge generation on two dissimilar mate-
rials (compliant polymer ranked lower and the conducting 
polymer ranked higher in the triboelectric series) should 
be the most effective and inherent strategy to enhance the 
energy output (Feng et al. 2021). Furthermore, optimization 
of structural design of the device, such as increasing the 
contact area and functionalization of surface, could enhance 
the performance of the TENG device as reported in other 
published work (Mallineni et al. 2017; Zou et al. 2021).

Figure 12 shows the comparison of electrical output 
(namely voltage, current and power) of the TENG derived 
from various studies. In general, the findings from the stud-
ies showed that TENG could emit up to 200 colourful LEDs 

Fig. 11  Triboelectric output a voltage and b current of TENG (Roy et al. 2021)
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and able to power up a digital watch. Furthermore, cyclic 
mechanical loading was conducted to evaluate the durabil-
ity and the reliability of the TENG. The findings showed 
that the TENG could be mechanically loaded for more than 
10,000 cycles with a high performance accuracy of 99% (in 
the output voltage and current). In comparison among the 
different studies, the findings revealed that the performance 
of the TENG depends on a number of factors, namely (1) 
types of tribolayer materials, (2) types of surface modifica-
tion on the tribolayers, (3) the size and density of the tri-
bolayers and (4) the mode of mechanical motions and load-
ing parameters (load and speed) to harvest energy (Bukhari 
et al. 2022). Therefore, interpreting and comparing the per-
formance of the TENG from the different studies must be 

conservative. For more details on the comparison study on 
the performance of the TENG, refer to Table 7.

Benefits and limitations of TENG: production 
and deployment

Table 8 presents the benefits and limitations of TENG. There 
are many technology-related benefits of TENG (Liu et al. 
2019; Yu et al. 2019; Wang et al. 2020). The TENG can be 
operated by many modes of mechanical motions (namely 
contact-separation mode, sliding mode, single-electrode 
mode and free-standing mode) which provides great acces-
sibility to integrate TENG in the design for many appli-
cations (Godwinraj and George 2021). The TENG is a 

Fig. 12  Comparison of the electrical output generated from TENG device in different studies. a Voltage density. b Current density. c Power den-
sity
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self-sustainable energy system that generates its own power 
source without requiring external resources; in other words, 
the TENG can be used to replace the battery in electronic 
devices (Godwinraj and George 2021).

The benefits and limitations of TENG can be catego-
rized into two aspects, namely technology and environ-
ment. From technological perspectives, the benefits of 
TENG includes high voltage characteristics which makes 
TENG suitable for applications requiring high voltage 
requirements such as plasma generators and electric guns 
(Li et al. 2017; Cheng et al. 2018; Wang et al. 2020), while 
the low current characteristics of TENG limits their appli-
cation for transferring power to storage devices. Further-
more, TENG has also found applications in self-powered 
sensor units in chemical and biological fields due to its 
ability to furnish power to devices (Kim et al. 2021). The 
limitation of the TENG includes short product life due to 
the decay of materials which mainly arises from wear and 
tear caused by the mechanical motions (Godwinraj and 
George 2021). As observed in several different studies (see 
Table 7), mechanical testing has been conducted to evalu-
ate the performance and reliability of the TENG by con-
secutively loading the device. From a recently published 
study, the TENG was mechanically loaded for 65 days 
(about 10,000 cycles), the findings showed that the TENG 
did not failed and could produce a stable electrical output 
with accuracy up to 99% (Roy et al. 2021). Presently, the 
working/operational life of the TENG is uncertain, fur-
ther mechanical testing on the materials used to produce 
the TENG will be required; however, this is out of the 
scope of this study. Furthermore, the TENG size may pos-
sibly has an influence on the amount of electrical energy 

that the device can harvest as increasing contact surface 
between two materials may possibly increase the amount 
of charges travelling from one side to another, generat-
ing significantly high voltages. It is difficult to compare 
the performance of the TENG from different studies (see 
Table 7), as the TENG varies in material types, material 
density and porosity, and sizes of devices.

In the aspect of the environment, the benefits of produc-
ing and deploying TENG may alleviate the amount of PET 
waste and energy problem in rising economic growth. The 
implementation of recycled PET materials as feedstock for 
manufacturing aerogels could reduce the volume of PET 
plastic waste going into the incinerator and dumping into 
the landfill. The usage of PET waste could boost the recy-
cling rate of both Singapore and India by keeping the plastic 
resources in the closed-circular economy. The environment-
related limitations for manufacturing TENG include increas-
ing of wastewater or solvent used to treat the recycled PET 
flakes for PET aerogel manufacturing and an increase in 
electrical consumption by machineries during TENG manu-
facturing. Improper treatment and disposal of wastewater/
solvent lead to environmental pollution resulting in toxic 
to human, terrestrial acidification and marine/freshwater 
eutrophication (Vollmer et al. 2020). Another limitation to 
consider is the end-of-life of TENG, and how the TENG 
could be recycled. Disposal of TENG leads to increasing of 
waste which may possibly strain the waste treatment pro-
cesses. No further analysis on the environmental impact 
assessment and the end-of-life of the TENG product are 
required for our present purpose; however, it is an impor-
tant area to study when performing the life-cycle analysis 
for manufacturing of TENG product.

Table 8  Benefits and limitations of TENG

Benefits Limitations

Technology
• Accessible design for different applications
• Sustainable energy source
• Able to generate electrical energy by harvesting 

using mechanical motion
• High-energy efficiency to replace the battery for 

a low-powered electronic device (i.e. wearable 
device like watch or health tracker)

• Short product life due to decay of materials (wear and tear) caused by mechanical motions
• Small amount of electrical energy could be harvested, depends on the size of the TENG

Environment
• Alleviates the amount of PET waste by produc-

ing the aerogel using recycled PET materials
• Innovation and invention of technology by using 

PET waste
• Generating clean energy using recycled plastic 

resources
• Reduction of plastic waste dumping into the 

landfill which impacted the ecology due to 
greenhouse gas emission and production of 
toxic substances

• Increase in the amount of wastewater/solvent generated to treat the recycled PET flakes to 
produce PET nanofibers during aerogel manufacturing

• Increase in electrical energy consumption by the machineries to manufacture TENG
• Increase disposal of TENG device at the end-of-life
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Challenges of using plastic scraps for manufacturing

TENG has many remarkable merits (as shown in Table 8); 
however, in-country supply chains must be established in 
order to commercialize and market the TENG devices. Infra-
structures for a sustainable supply chain need to be put in 
place and their activities include recycling of plastic scraps, 
manufacturing, storage, packaging, transportation and to 
end-users/consumers (Mc Loughlin et al. 2021). Evidently, 
the current price of producing recycled plastics was high 
(due to the effort required for managing and costs of recy-
cling processes) which makes wider adoption as feedstock 
for manufacturing to be difficult (Arwa Mahdawi 2020). 
In-country supply challenges and integrated opportunities 
for futuristic sustainable development in converting plastic 
waste to TENG are embellished through Fig. 13.

In Singapore, the supply of recycled plastic scraps for 
manufacturing of TENG devices poses a challenge as most 
of the plastic scraps were exported to neighbouring countries 
for recycling (Kerdlap et al. 2020, 2021). In a recent report, 
the plastic recycling association of Singapore envisioned 
to build its first operational plastic recycling plant in the 
country by the year 2023 and aims to increase the plastic 
recycling rate from 4 (in 2020) to 30% in the next 5 years 
to support the Singapore Green Plan 2030, a national move-
ment to advance Singapore’s national agenda on sustainable 
development (Justin Ong 2021). The report showed that an 
estimate of 500 million PET bottles was disposed yearly 
and only 4% were recycled (about only 20 million PET bot-
tles) to check if the recycled materials would be sufficient 
to achieve a sustainable manufacturing of TENG devices in 
Singapore. For the purpose of illustration, an order of mag-
nitude estimates are considered for an everyday wearable 
application, namely the digital wristwatch (as an alternative 
to existing solar-powered ones) as highlighted in a previ-
ously published report by Wang et al. (2017a). One 500-ml 
PET bottle results in aerogel of size 210 mm in length by 
297 mm in width (Crystal Ho 2018). Considering 20 mil-
lion PET bottles (of 500-ml PET bottles) were recycled in 
2020, an estimation of about 610 million pieces of aerogel 
mats (size: 20 mm in length by 10 mm in width) could be 
produced. When the recycling rate increased to 30% (about 
150 million PET bottles) in the next 5 years, an estimated of 
about 46.5 billion pieces of aerogel mats could be produced. 
However, India is able to house all the recycling processes 
and facilities in the country (Ministry of Housing and Urban 
Affair 2019). An approximately 900,000 tonnes of PET bot-
tles were disposed, and 23 to 25 billion pieces of PET bottles 
(~ 800,000 tonnes) were recycled (recycling rate = 90% for 
PET waste) yearly since 2017. Here, an estimation of about 
7300 to 7800 billion pieces of aerogel mats (size: 20 mm 
in length by 10 mm in width) could be produced. Based on 
the findings, i.e. the amount of recycled PET plastics that 

were disposed yearly, if a proportion of this were to be used 
to make PET aerogels for the TENG devices, it would be 
sufficient to produce small-scale TENG wearable devices 
to cater for all the residents/peoples in Singapore (popula-
tion ≈ 5.68 million in 2020) and India (population ≈ 1.38 
billion in 2020).

Herein, the estimates of the recycled PET plastics used 
for manufacturing one tribolayer of aerogel of the TENG 
device were evaluated. The usage of PET plastic scraps 
could only recover a small percentage (about 4% for Sin-
gapore and 1.5% for India) of the PET scraps from the total 
amount of plastic waste generated in the respective coun-
tries. However, recovery of different plastic types from the 
generated waste is required in order to have a significant 
change in the plastic waste recovery system. Likewise, apart 
from PET, other types of plastic scraps (i.e. polyethylene, 
polycarbonate, polystyrene, polyvinyl chloride) could also 
be used to make different components of the TENG device 
such as an alternative tribolayers, device casing and packag-
ing. However, employing different recycled plastic materi-
als to produce TENG device is a challenge as the different 
material characteristics may affect the performance of the 
TENG (see Table 7). Furthermore, the recycling processes 
for different plastic scraps may differ due to the different 
in the resin characteristics (Rick Leblanc 2020). Additional 
recycling processes for different types of plastic scraps may 
increase the costs of the recycled plastics which increases 
the difficulty for the manufacturer to accept recycled plastics 
materials in production (Rick Leblanc 2020). Further studies 
are important to study the recycling processes for different 
plastic scraps and to evaluate the performance of the TENG 
using different recycled plastic materials to explore their 
benefits for different applications. However, the studies were 
beyond the scope of this paper.

Moreover, another big challenge is the low recycling 
rates due to the lack of improved technologies in plas-
tic waste collection, sorting and segregation and the lack 
of authentic data about recyclable and recycled plastics 
(Woidasky et al. 2020). Large-scale production and com-
mercialization of TENG would demand a secured platform 
for tagging, testing and tracking the plastic products to 
measure the real value of plastic products in terms of its 
recyclability. Advanced technology with unique molecular 
tags (molecular barcodes) applied in the manufacturing 
process may help in solving the issue of ambiguous plas-
tic labelling (Sandhiya and Ramakrishna 2021). Block-
chain technology, a digital innovation, offers the potential 
to trace the journey of plastic products across their life 
cycle from production, manufacturing, usage and disposal. 
These records can be further utilized by different economic 
agents, serving as a trust-based platform between plastic 
waste segregators, recyclers and recycled feedstock buyers 
(Chidepatil et al. 2020; Liu et al. 2021). As per the strategy 
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Fig. 13  In-country supply chain challenges and opportunities for plastic waste to TENG
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of blockchain technology, stakeholders are benefitted for 
their involvement in the validation process using digital 
cash (Sandhiya and Ramakrishna 2021). The shortcomings 
of the present sorting and segregation technologies may 
be overcome with the application of a multi-sensor driven 
artificial intelligence approach, i.e. using high-definition 
optical sensors to identify the shape, colour and texture of 
plastics to separate selected recyclables or incompatible 
materials in the recycling process (Chidepatil et al. 2020; 
Gussen et al. 2020).

Conclusions

Efficacious plastic waste management demands the highest 
priority from the environmental and economic perspectives. 
Comparing the two large economies (Singapore and India) 
based on governance, social, market regulatory and financial 
data, the study evaluated how both countries managed their 
waste system. The findings were summarized as follows,

(1) The legislation and policy measures have been imple-
mented in both Singapore and India to administer 
regulatory functions of waste collection, treatment 
and disposal for identifying the key waste stream and 
strengthen the resource resilience.

(2) Recycling infrastructure (i.e. MRF, WTE plant and 
landfill) and technologies (i.e. mechanical recycling, 
pyrolysis and incineration) have been developed in both 
countries to convert the waste to useful resources. The 
recycling statistics showed that the plastic recycling 
rate in Singapore were much lower (most were being 
incinerated) as compared to India.

(3) The economic value of recycled PET materials was 
estimated for considering as resources for remanufac-
turing. It was predicted that the economic value of PET 
depreciates after each consecutive recycling cycle as 
compared to virgin PET materials. Also, the economic 
value of the PET depreciates when the mechanical 
performance of the PET materials reduces after each 
recycling cycle.

(4) An emerging technology known as TENG, which is an 
energy harvesting device, was proposed. The produc-
tion of TENG using recycled plastics could appreciably 
aid in reducing plastic waste and keeping the plastic 
resources in the closed-loop economy, thus promoting 
sustainable cities and communities. Rerouting waste 
streams and utilizing them as chemical feedstocks 
should become pervasive for the manufacturing of 
merchantable products to accomplish the complete and 
continuous circulation of resources within the circular 
economy.

In addition, this work had benefitted from produc-
tive collaboration at the academic level and cooperation 
between industry and academic researchers, non-govern-
ment entities and legislative bodies.
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