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Abstract
Forecasts of wastewater inflow are considered as a significant component to support the development of a real-time control 
(RTC) system for a wastewater pumping network and to achieve optimal operations. This paper aims to investigate patterns 
of the wastewater inflow behaviour and develop a seasonal autoregressive integrated moving average (SARIMA) forecasting 
model at low temporal resolution (hourly) for a short-term period of 7 days for a real network in South Australia, the Murray 
Bridge wastewater network/wastewater treatment plant (WWTP). Historical wastewater inflow data collected for a 32-month 
period (May 2016 to December 2018) was pre-processed (transformed into an hourly dataset) and then separated into two 
parts for training (80%) and testing (20%). Results reveal that there is seasonality presence in the wastewater inflow time 
series data, as it is heavily dependent on time of the day and day of the week. Besides, the SARIMA (1,0,3)(2,1,2)24 was 
found as the best model to predict wastewater inflow and its forecasting accuracy was determined based on the evaluation 
criteria including the root mean square error (RMSE = 5.508), the mean absolute value percent error (MAPE = 20.78%) and 
the coefficient of determination (R2 = 0.773). From the results, this model can provide wastewater operators curial informa-
tion that supports decision making more effectively for their daily tasks on operating their systems in real-time.
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Introduction

The operations of wastewater pumping systems or net-
works consume a tremendous amount of electrical energy 
to transfer sewage and with both the financial and energy 
inefficiency issues which can be handled by improving man-
agement practices (Galve et al. 2021; Mirra et al. 2020). 
Meanwhile, practical guidance for pumping operations is 
generally not available; thus, wastewater operators activate 
or deactivate the pumps only according to their own expert 

knowledge and experience of the system generally result-
ing in higher operating energy costs (Kim et al. 2006). A 
pump switching program that properly controls pump on/
off applied into the wastewater network can lead to a great 
reduction in energy costs (Wei et al. 2013), especially when 
the pumps are planned to operate with the precise estima-
tion of electricity spot market prices and wastewater inflow 
rates (Do et al. 2022, 2021). Wastewater inflow forecast-
ing plays an essential role in controlling pumping system 
of a wastewater network (Piri et al. 2021). The quantity of 
incoming wastewater to the network/wastewater treatment 
plant (WWTP) can be used to pre-schedule pump opera-
tions. Therefore, to achieve optimal schedules for wastewater 
pumps, it is best to forecast influent flow rate in advance as 
one of the significant parameters (Kim et al. 2016; Zeng 
et al. 2016; Wei and Kusiak 2015).

In the recent literature, there have been studies focused 
on projections of wastewater inflow rate to the WWTPs 
using different data-driven approaches which can be 
separated into three categories. The first one is the machine 
learning (ML) method. Wei et al. (2013) applied four ML 
algorithms, including multilayer perceptron neural network 
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(MLPNN), random forest, boosted tree, and support vector 
machine to model the quantity of influent flow. The MLPNN 
was determined as the best-performing algorithm and 
therefore chosen to produce forecasts. In addition, other 
ML techniques were also used to predict wastewater 
inf low rate such as chaos neural network (Li et  al. 
2007), k-nearest neighbour (Kim et al. 2016) and deep 
learning (Oliveira et al. 2020). The second data-driven 
method is the hybrid technique such as adaptive neural 
fuzzy interference–grey wolf optimiser (ANFIS-GWO) 
(Dehghani et al. 2019) and multimodal and ensemble-
based deep learning (ME-DeepL) (Heo et al. 2021). The 
last one is the conventional data-driven method such as 
the autoregressive integrated moving average (ARIMA) 
model. ARIMA is developed with a time series which 
is a set of data acquired at evenly spaced time intervals; 
therefore, it is also called time series model. It has been 
proven as an effective method in constructing forecasting 
models for wastewater inflow to WWTPs. Kim et  al. 
(2006) anticipated daily influent rate and properties 
by developing an ARIMA model based on daily data 
collected for 150  days. Research outcomes showed 
good forecast results for 1–7 days ahead. Nevertheless, 
to enhance the reliability of the proposed forecasting 
model, a sufficient data quantity was required as the 
collected datasets did not exhibit seasonal and annual 
patterns. ARIMA models were also able to describe 
weekly (Abunama and Othman 2017) and daily (Boyd 
et al. 2019) observed and future behaviour of wastewater 
inflow rate to produce forecasts for case study WWTPs. 
A comparison study was implemented by Zhang et al. 
(2019) on forecasting ability of the ARIMA and MLPNN 
models. The ARIMA model was developed using the 
wastewater inflow data only, while the MLPNN model 
included exogenous meteorological variables (e.g. 
temperature, precipitation). The results indicated reliable 
daily predictions could be obtained by both models. 
However, the ARIMA model was proven to have higher 
accuracy in terms of statistical metrics.

Predicting wastewater flow into the WWTPs is a chal-
lenging task. According to Zhang et al. (2019), engineers 
and operators have to cope with a number of uncertainties 
and complexities, such as the difficulties in simulating influ-
encing factors on wastewater inflow (e.g. rainfall, runoff and 
infiltration) and the changes in infrastructure due to aging 
conditions. Time series models such as ARIMA and its 
derivatives (e.g. seasonal autoregressive integrated moving 
average (SARIMA), a model is formed by adding seasonal 
terms to the ARIMA model to deal with seasonal elements 
in the data series) can overcome these problems (Zhang 
et al. 2019). The dynamics of the wastewater inflow rate is 
expected to follow a certain pattern such as time of the day, 
day of the week, weekly, monthly or quarterly which means 

there is a presence of seasonality in the time series. ARIMA 
model is inadequate for forecasting in this case; therefore, a 
seasonal ARIMA (SARIMA) approach needs to be applied 
to develop predictive models (Hyndman and Athanasopou-
los 2018) to address the shortcoming of the ARIMA method.

SARIMA technique has been used to build forecast-
ing models in a wide range of scientific disciplines such 
as hydrology, meteorology, and climatology (Brito et al. 
2021; Liu et al. 2021; Ray et al. 2021). However, there is 
no comprehensive evaluation of the ability, and reported 
application of the SARIMA model to forecast wastewa-
ter inflow has been found. Besides, in the studies of the 
ARIMA model as mentioned above, researchers only 
explored predictive ability of this model for high tem-
poral resolution including daily and weekly forecasts. 
In a real-time control system, wastewater inflow used as 
smart controller’s input to plan pump on/off schedules 
in advance should be predicted for low temporal resolu-
tion. From these knowledge gaps arise the need for fur-
ther research on the development of a wastewater inflow 
forecasting model with temporal resolution of 60 min to 
generate hourly forecasts for pumping control in real-time. 
Moreover, this need leads to the framing of a research 
argument on the forecasting performance of the SARIMA 
model for hourly wastewater inflow.

This study describes the application of the SARIMA 
model as a predicting approach to address the seasonality 
in the wastewater inflow time series and forecast future 
datapoints. The primary purposes of this paper are to 
characterize wastewater inflow rate and develop a SARIMA 
model as an inflow forecasting tool for the Murray Bridge 
WWTP. The accuracy of the proposed model was evaluated 
based on three statistical indexes, including the root mean 
square error (RMSE), the mean absolute value percent error 
(MAPE) and the coefficient of determination (R2). The main 
objectives of this study are as follows: (1) identifying and 
selecting the best SARIMA forecasting model for a real 
wastewater network/WWTP, (2) generating low temporal 
resolution (60  min) wastewater inflow forecasts for a 
short-term period (7 days) and (3) managerial implications 
regarding the application of hourly inflow predictions in the 
real-time wastewater pumping control.

This paper proceeds as follows. The methodology 
descr ibes the methods used for modell ing and 
forecasting low temporal resolution (hourly) wastewater 
inflow, the research case study, the process of collecting 
and preparing data, the step-by-step procedure of 
forecasting model development and criteria to evaluate 
its accuracy. The findings on wastewater inflow pattern 
investigation, model development and prediction 
are provided as results and discussed. Finally, the 
conclusion gives a summary and highlights the 
outcomes of the study.
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Methodology

SARIMA model

ARIMA time series model (Box et  al. 2015) relies 
on the analysis of historical data to predict future 
values with an assumption that data patterns in the 
past can be utilized to predict data in the future. The 
ARIMA model consists of three components, includ-
ing (i) autoregression (AR) which describes the cor-
relation between an observation with its own lagged 
values, (ii) integration (I) which shows the number of 
times differencing needs to be performed to make the 
data series stationary, and (iii) moving average (MA) 
which represents the correlation between observations 
and residual errors (Wang et al. 2021; Parmezan et al. 
2019).

SARIMA is developed by including additional seasonal 
component to the ARIMA model which handles the sea-
sonality in the time series. SARIMA model, in general, 
is a combination of the non-seasonal module (p,d,q) and 
seasonal module (P,D,Q)s with seven parameters. It is 
denoted as SARIMA(p, d, q)(P, D, Q)s (1); where p and 
P are the order of non-seasonal and seasonal AR term; d 
and D are the degree of non-seasonal and seasonal dif-
ferencing; q and Q are the order of non-seasonal and sea-
sonal MA term; and s is the length of seasonality in the 
time series. For example, in an hourly time series, s = 24; 
in a daily time series, s = 7; in a monthly time series, 
s = 12; and in a quarterly time series, s = 4.

SARIMA, as a member of the ARIMA model family, 
works best when it is applied for a long and stable time 
series (Dimri et al. 2020). SARIMA method requires a 
medium to long length time series that consists of at least 
50 data points. It has a strong dependence on the histori-
cal data; therefore, the continuity of data is required to be 
guaranteed (Zhou et al. 2019).

The ARIMA model family such as AR and ARIMA 
has been a widely used technique for wastewater 
inflow predictions. However, the SARIMA model, an 
extended version of the ARIMA model has not yet 
been applied in the same filed. The ARIMA model 
is utilized if there is no presence of seasonality in 
a time series. In case a seasonality pattern exists, 
the SARIMA model needs to be applied (Hyndman 
and Athanasopoulos 2018). In the time series data, 
seasonality is observed when the changes in data have 
a regular pattern that repeats over a certain period. 
Seasonality is a known and fixed frequency cycle 
(Hyndman and Athanasopoulos 2018). There are 
different seasonality types such as time of the day, 
day of the week, weekly, monthly and quarterly.

Case study

The Murray Bridge wastewater network in South Australia, 
a realistic wastewater network with real data was selected 
as the case study to apply the proposed SARIMA model. It 
serves approximately 14,000 people and covers an area of 
about 14 km2 with different land-use types (e.g. residential, 
commercial, education and recreational). Details of this net-
work and related studies have been published in Do et al. 
(2021), Gorjian Jolfaei et al. (2019) and Konetschka et al. 
(2017). Figure 1 shows the schematic diagram of this case 
study.

In this study, an assumption has been made that the total 
wastewater inflow to the Murray Bridge WWTP is consid-
ered to be equal to the total flow collected from sources/
catchments then transferred by numerous pump stations in 
the Murray Bridge wastewater network. At the WWTP, the 
flow meter is installed; therefore, data is available to be used 
to develop the forecasting model for wastewater inflow.

Data collection and pre‑processing

Data preparation was conducted with two stages: (1) col-
lection and (2) pre-processing to gather and transform raw 
data into a time series dataset used for modelling and fore-
casting wastewater inflow. The procedures are described 
in Fig. 2.

•	 Data collection
	   The historical wastewater inflow data of the Mur-

ray Bridge WWTP for 32 months from 7 May 2016 to 
31 December 2018 were sourced from the SA Water’s 
Operational Data Store (ODS). The raw dataset with 
1,149,637 data points in total was unevenly spaced 
which included actual measurements of inflow rate to the 
WWTP at different sampling times. They were recorded 
at intervals of 3 s at a minimum and 3 h 50 min at a 
maximum, and mostly every 5 and 55 s.

•	 Data pre-processing

Data cleaning was first conducted to identify and handle 
probable inaccurate or irrelevant data. There were 504 data 
errors detected, including 484 non-numerical, 16 abnormally 
large and four negative values. They were determined by 
sorting the dataset ascending and descending. All of them 
were eliminated to achieve a more consistent and better 
accuracy dataset to build a predictive model for wastewater 
inflow.

The filtered wastewater inflow dataset with 1,149,133 
data points remaining after error elimination was converted 
to an hourly time series dataset by averaging data within 
each 60 min. After the data conversion process, each day in 

70986 Environmental Science and Pollution Research  (2022) 29:70984–70999

1 3



the considered period has 24 records; therefore, an hourly 
wastewater inflow dataset with 23,256 data points was cre-
ated. This converted dataset was then inspected to find out 
any interval without data. Twenty detected missing values 
accounting for only 0.09% of the entire converted dataset 
were filled in by averaging the two nearby observations 

which are close to the average value of this dataset; there-
fore, there was no impact on the data.

The hourly wastewater inflow dataset was divided into 
two parts: training and testing. As stated by Hyndman and 
Athanasopoulos (2018), typically, the size of the testing set 
accounts for around 20% of the entire dataset and is ideally 
at least equal to the longest forecasting duration. Therefore, 
the ratio of training to testing set is 80:20. The training set 
that includes data of the first 26 months (May 2016 to June 
2018) with 18,840 data points was used for model develop-
ment. The testing set that consists of data of the remaining 
6 months (July to December 2018) with 4416 data points 
was reserved for model validation. A summary of details of 
the wastewater inflow datasets is shown in Table 1.

Model development procedure

Figure  3 illustrates the flowchart of the step-by-step 
methodology applied for modelling and forecasting waste-
water inflow in this study. The procedures were based 
on Box and Jenkins methodology (Box et al. 2015) and 
comprised four stages, including (i) model identification, 
(ii) parameter estimation, (iii) diagnostic checking and 
(iv) forecasting. IBM SPSS Statistics 25 was employed as 
a tool to support the implementation of these four stages.

The procedures of these four stages are described in 
detail as follows.

•	 Stage 1. Model identification

Fig. 1   Schematic diagram of 
the Murray Bridge wastewater 
network

Fig. 2   Data collection and pre-processing procedures
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The first and most important requirement for the devel-
opment of SARIMA model is to ensure the wastewater 
inflow rate time series data is stationary. A time series 
is considered to be stationary when its statistical fea-
tures (e.g. mean and variance) are constant over time, 
or not impacted by time at which the series is observed. 

The term “stationarity” is used to imply the stationary 
status of a time series. In contrast, when a time series 
exhibits trends (e.g. upward or downward) and/or sea-
sonal patterns (e.g. quarterly, monthly or weekly), it is 
non-stationary.

Table 1   Wastewater inflow 
dataset summary

Dataset Data points Starting date Ending date

Raw data 1,149,637 7 May 2016 31 December 2018
Filtered data 1,149,133 7 May 2016 31 December 2018
Converted data 

(hourly data)
Entire set 23,256 7 May 2016 31 December 2018
Training set 18,840 7 May 2016 30 June 2018
Testing set 4416 1 July 2018 31 December 2018

Fig. 3   Flowchart of modelling 
and forecasting wastewater 
inflow procedure
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On the basis of the above-mentioned requirement, the 
first step of the model identification stage was checking the 
stationarity of the data. The training set (see Table 1) was 
used in this stage and from this section onwards, it is called 
the original training time series. This wastewater inflow 
dataset was plotted to provide an initial guess about its sta-
tionarity features (Jalil and Rao 2019). Boxplots of waste-
water inflow grouped by time of the day and day of the week 
were used to analyse possible intraday and intraweek pat-
terns visually. Next, to statistically test the data stationarity, 
the Mann–Kendall Trend Test (Kendall 1975; Mann 1945) 
was undertaken to examine whether there is an increasing 
or decreasing trend in the time series. This is a commonly 
used test for hydro-meteorology time series such as stream-
flow, rainfall and temperature (Kabbilawsh et al. 2020). 
The Mann–Kendall test is a non-parametric test that is less 
impacted by the presence of outliers compared to other para-
metric tests (Praveen et al. 2020; Wang et al. 2020; Hamed 
2009). Additionally, further statistical tests were also imple-
mented to mathematically confirm the stationarity condition 
of the training wastewater inflow series, including a unit 
root test, Augmented Dickey-Fuller (ADF) test (Dickey and 
Fuller 1979) and a stationarity test, Kwiatkowski-Philips-
Schmidt-Shin (KPSS) (Kwiatkowski et al. 1992). These 
three tests were performed at the 5% significance level where 
the alpha value was 0.05 (α = 0.05) corresponding to the 
95% confidence interval. Two opposing hypotheses were set 
up for each test, including null hypothesis H0 and alternative 
hypothesis Ha. The purpose of hypothesis tests was to decide 
between H0 and Ha with rules applied for rejecting the null 
hypothesis H0. Table 2 summarizes statements of the null 
and alternative hypotheses and decision rules applied for the 
trend, unit root and stationarity tests.

After checking the stationarity of the training time series 
using statistical tests, the non-seasonal differencing d and 
seasonal differencing D were determined. If the series is sta-
tionary, it is not required to execute the process of differenc-
ing, and the value of parameters d and D is zero. In case the 
series is non-stationary with the presence of seasonality and 
trend, the seasonal difference is applied. When there is no 
trend and seasonality component, the series is transformed 
by the non-seasonal difference. The value of parameters d 
and D implies the number of times the wastewater inflow 

series needs to be differenced to satisfy stationarity. The 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) plots of the original training time series 
are created if required to further confirm its stationarity. 
In this study, the ACF plots depict the correlation coef-
ficient between the wastewater inflow time series and its 
own lagged values, and the PACF plots measure the partial 
correlation coefficient between this data series and lagged 
versions of itself.

The next step was to plot the ACF and PACF of the sta-
tionary time series. It could be the original training time 
series with stationary status or the differenced series after 
differencing process obtained from the previous step. The 
non-seasonal and seasonal orders of AR (parameters p and 
P) and MA (parameters q and Q) were identified based on 
the ACF and PACF plots. Different values of those param-
eters were combined to identify possible configurations of 
(p,d,q) and (P,D,Q) for potential SARIMA models.

•	 Stage 2. Parameter estimation
	   In this stage, various potential models identified in 

stage 1 were examined. The coefficient of determination 
(R2), root mean square error (RMSE), and normalized 
Bayesian information criterion (BIC) were used to select 
one amongst the potential models. The best model with 
the optimal set of parameters has the highest R2, and the 
least RMSE and normalized BIC.

•	 Stage 3. Diagnostic checking
	   The best model selected in stage 2 was tested to deter-

mine whether it adequately captured the behaviour of the 
wastewater inflow data to the Murray Bridge WWTP. 
The correlograms ACF and PACF of residuals were plot-
ted to check if the residuals followed a white noise pro-
cess after fitting a SARIMA(p,d,q)(P,D,Q)s model to the 
time series. The difference between observed and fitted 
data is called residuals. The residuals are white noise 
when they are identically, independently distributed with 
a zero mean. If at least 95% of all lags lie within the 
lower and upper confidence limits, it can be concluded 
that the selected model can be used for the analysis of the 
wastewater inflow series.

	   The Ljung-Box Test (Ljung and Box 1978) was also 
conducted to detect white noise in the residual time 

Table 2   Summary of hypothesis testing for stationarity check

Test Null hypothesis H0 and alternative hypothesis Ha Decision rules

Mann–Kendall test H0: There is no trend in the series
Ha: There is a trend in the series

If p-value ≤ α = 0.05, H0 is rejected
If p-value > α = 0.05, H0 is failed to be rejected

ADF H0: There is a unit root for the series. The series is non-stationary
Ha: There is no unit root for the series. The series is stationary

KPSS H0: The series is stationary
Ha: The series is non-stationary
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series. The hypotheses used for the Ljung-Box test 
include a null hypothesis H0 that means the residuals are 
white noise, and an alternative hypothesis Ha that means 
the residuals are not white noise. They were performed at 
the 5% significance level (α = 0.05). If p-value ≤ α = 0.05, 
H0 is rejected, while if p-value > α = 0.05, H0 failed to be 
rejected, and Ha is accepted.

•	 Stage 4. Forecasting

A model with the highest accuracy in simulating waste-
water inflow would be employed to forecast data. Applying 
the selected SARIMA model, the wastewater inflow series 
were forecasted using the SPSS software. The predicted val-
ues were then matched against the testing set.

Model performance evaluation

In order to determine the precision of the SARIMA model 
in wastewater inflow predictions, the root mean square error 
(RMSE), the mean absolute value percent error (MAPE) and 
the coefficient of determination (R2) were used as statistical 

indicators to evaluate the fit of the forecasted to the observed 
values. Lower values of RMSE and MAPE and a higher 
value of R2 imply a more reliable and robust model (Ansari 
et al. 2018).

Results and discussion

Visualization of the data patterns

The original training time series was used as input for the 
process of modelling and forecasting hourly wastewater 
inflow to the WWTP. A plot of this dataset (May 2016 to 
June 2018) is generated as in Fig. 4. Using this plot, trend 
and seasonality of the series could be visually identified. 
A random zoom for the 1–15 September 2017 period was 
provided to achieve a better insight into the dynamics of the 
hourly wastewater inflow rates. From this zoom, it could 
be preliminarily determined that the wastewater inflow rate 
had no trend and tended to be very low from the beginning 
of each day, then reached a peak twice during the day. This 

Fig. 4   Hourly wastewater inflow 
to the Murray Bridge WWTP 
time series plot of the training 
set (7 May 2016–30 June 2018) 
and a random zoom (1–15 
September 2017)
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indicates possible intraday patterns in the time series. Fur-
ther investigation on trend and seasonal of the series in terms 
of time of the day and day of the week will be presented in 
the next section.

Wastewater inflow patterns

Time of the day patterns of the wastewater inflow to the 
Murray Bridge WWTP are revealed in Fig. 5 in the form 
of boxplots. The inflow rates were low after midnight till 
5:00. The higher wastewater inflow occurred in the early 
morning, late afternoon and early evening. In particular, 
from 6:00, it increased then peaked at 10:00. It can be said 
that hours during the day have a strong influence on the 
daily high and low wastewater inflow rates. This implies 
the existence of the intraday seasonality in the wastewater 
inflow dataset.

Boxplots grouped by day of the week of wastewater 
inflow data are shown in Fig. 6a. Mondays were often the 
days with the highest inflow to the network/WWTP which 
was just slightly greater than that of other weekdays (Tues-
days to Fridays). The inflow rate on Saturdays and Sundays 
was slightly lower than the remainders of the week. The 
lower rate on weekends compared to weekdays by time of 
the day is also shown in Fig. 6b. At every hour of the day, 
excluding 6 h from 09:00 to 15:00, the weekday inflow rate 
was higher than that of the weekend. The difference between 
the higher and lower levels of wastewater inflow by week-
days and weekends indicates it is dependent on the day of the 
week. Therefore, there is a presence of intraweek seasonality 
in the wastewater inflow data series.

With the identified intraday and intraweek seasonality 
components, it can be stated that the wastewater inflow 
series is non-stationary. To statistically claim the presence 

of stationarity in the time series, several trend and stationar-
ity tests were required to implement.

Data stationarity tests

Stationary is a compulsory condition of the data time series 
to be used for a SARIMA model. If the series is still non-
stationary even after certain times of differencing, it is failed 
to apply the model (Zhang et al. 2019). Before employing 
the SARIMA technique to develop a forecasting model, the 
time series data needs to be in a stationary condition. There-
fore, the stationarity of the original training time series of 
hourly wastewater inflow was investigated. The Mann–Ken-
dall trend test, the ADF and KPSS tests, and the ACF and 
PACF plots were used to verify the data’s stationarity. The 
results of these statistical tests can be seen in Table 3.

For the Mann–Kendall Trend Test, the calculated p-value 
(0.16) was greater than the significance level α = 0.05 indi-
cating that the null hypothesis H0 failed to be rejected. The 
result shows there is no downward or upward trend, and the 
time series is stationary. The ADF test showed the same 
outcome as the Mann–Kendall trend test. With the p-value 
of < 0.0001 lower than 0.05, the non-stationary null hypoth-
esis was rejected. This confirms there is no unit root in the 
wastewater inflow series; therefore, the series is stationary. 
However, the KPSS test indicated a contrary outcome to the 
other two tests. The calculated p-value (< 0.001) was smaller 
than the significance level α = 0.05. Thus, the null hypothesis 
H0 was rejected which means the wastewater inflow series is 
concluded to be non-stationary. This may be caused by the 
strong seasonality of the series as analysed in the previous 
sections.

The disagreement between results of the KPSS and 
other tests can be solved by examining the ACF and PACF 

Fig. 5   Wastewater inflow pat-
tern by time of the day (7 May 
2016–31 December 2018)
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coefficients of the original training time series (Kabbilawsh, 
Sathish Kumar & Chithra 2020). They are calculated by 
SPSS and plotted as in Fig. 7a and b. The black dashed lines 
in each ACF and PACF plot represent the 95% confidence 
level. The first 50 lags were analysed.

From the ACF plot (Fig. 7a), there are significant peaks 
at 24 lags such as lag 24 and lag 48 which shows a strong 
seasonality repeating every 24 time points or 24 h in a day. It 
can be said that the wastewater inflow data is seasonal with 
period of seasonality s = 24. The ACF coefficients move in a 
sinusoidal wave pattern that is clear evidence of the presence 
of seasonality that makes the original training time series 
non-stationary. The existence of seasonality (or seasonal 
components) in a time series can be subtracted by seasonal 
differencing technique (Mills 2019; Brockwell and Davis 
2016) . Therefore, the first order seasonal differencing D = 1 
and periodicity s = 24 were performed to convert the origi-
nal training time series to the stationarity form and satisfy 
the requirement of SARIMA modelling. Figure 8 shows the 
transformed hourly wastewater inflow training time series 
and a zoom for the first 15 days of September 2017. The 

Fig. 6   (a) Wastewater inflow 
patterns by day of the week and 
(b) hourly average wastewater 
inflow by time of the day and by 
weekday and weekend (7 May 
2016–31 December 2018)

Table 3   Results of the stationarity tests of the original training data 
series

*One-tailed; **two-tailed.

Parameter Mann–Kendall ADF KPSS

p-value 0.160*  < 0.0001**  < 0.0001**
α 0.05 0.05 0.05
Reject null hypothesis H0 No Yes Yes
Stationary series Yes Yes No
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fluctuations of this series at zero and constant mean demon-
strate that it is stationary.

The first order seasonal differenced series obtained by 
the transformation process was then verified for stationar-
ity using three statistical tests, including the Mann–Kendall 
Trend Test, ADF and KPSS tests. Table 4 reports results of 
these three stationarity tests for the first order seasonal dif-
ferenced series. The p-value resulting from the Mann–Ken-
dall and KPSS test was greater than α = 0.05 which means it 
was failed to reject the corresponding null hypotheses. For 
the ADF test, the null hypothesis was rejected. All these 
results infer that the first order seasonal differenced series 
is stationary and can be used for the SARIMA application.

During the process of analysing and converting the non-
stationary wastewater inflow series into stationary, the 

non-seasonal differencing was not required, so the value 
of parameter d is zero. With the seasonal difference D = 1 
and period of seasonality s = 24 as identified previously, 
SARIMA(p,0,q)(P,1,Q)24 models were suggested for further 
investigation. In the next section, values of parameters p, q, 
P and Q will be found.

Model selection

The SARIMA(p,0,q)(P,1,Q)24 model were ascertained by 
potential values for the non-seasonal AR order (p), non-
seasonal MA order (q), seasonal AR order (P), and seasonal 
MA order (Q). ACF and PACF plots of the stationary waste-
water inflow series which was seasonally differenced with 

Fig. 7   (a) ACF and (b) PACF 
plots of the original training 
wastewater inflow time series
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D = 1 and periodicity s = 24 (see Fig. 9a and b) were used to 
identify the unknown parameters.

The behaviour of seasonal lags (e.g. lags 24 and 48) 
and non-seasonal lags which are lags of the first span 
of periodicity (lags 1–23) in the ACF plot (Fig. 9a) was 
investigated to determine the parameters q and Q, while 
in the PACF plot (Fig. 9b), the parameters p and P. From 
the ACF plot, at lags 1, 2 and 3, significant autocorre-
lations crossed outside the lower and upper confidence 
limits that indicate appropriate values of the parameter q. 

The continuity of significant autocorrelations disappeared 
at lags 4–7 as they lied between the lower and upper confi-
dence limits. Thus, the significant autocorrelations at other 
non-seasonal lags in the first seasonal multiples of 24 were 
not taken into consideration. There were also significant 
autocorrelations at lags 12 and 24 of the ACF plot. This 
means the parameter Q could be 1 or 2. Similarly, sig-
nificant autocorrelations at lags 1 and 2 observed from 
the PACF plot imply the potential values of parameter p. 
Seasonal lags 12 and 24 in the PACF plot with significant 
autocorrelations indicate 1 and 2 could be the values of 
the parameter P. With possible values of p, P, q and Q, 24 
configurations of those parameters were combined cor-
responding to 24 potential models.

Determine the optimum parameters

The selection of the best fitting model from 24 potential ones 
was based on the lowest RMSE and normalized BIC and the 
highest R2. Table 5 presents the results of those evaluation 
metrics for all potential models.

Fig. 8   Plot of the first order 
seasonal differenced hourly 
wastewater inflow for the train-
ing time series (d = 0, D = 1, 
and s = 24) and a random zoom 
(1–15 September 2017)

Table 4   Stationarity tests for the first order seasonal differenced 
series

*One-tailed; **two-tailed.

Parameter Mann–Kendall ADF KPSS

p-value 0.968*  < 0.0001** 1.000**
α 0.05 0.05 0.05
Reject null hypothesis H0 No Yes No
Stationary series Yes Yes Yes
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Both SARIMA(2,0,2)(2,1,2)24 and SARIMA(1,0,3)
(2,1,2)24 had the smallest values of RMSE (4.113) and 
normalized BIC (2.833). However, the value of R2 
for SARIMA(1,0,3)(2,1,2)24 was higher than that of 
SARIMA(2,0,2)(2,1,2)24 and the highest amongst other 
models (0.850). It can be concluded that SARIMA(1,0,3)
(2,1,2)24 is the best model which satisfies the given 
conditions.

Diagnostic checking

Diagnostic checking was conducted with the purpose of test-
ing the residuals of the best model SARIMA(1,0,3)(2,1,2)24 
to identify if the SARIMA model sufficiently represents the 
statistical features of the observed wastewater inflow time 

series. Figure 10 shows the ACF and PACF residual plots of 
the selected model. All residuals lie between 95% confiden-
tial limits that indicate there is no autocorrelation amongst 
residuals; thus, the residuals are white noise.

White noise of the residuals was further tested by the 
Ljung-Box test to mathematically confirm its absence or 
existence. This is a diagnostic tool to determine if the residu-
als of a time series model are independent and identically 
distributed or if autocorrelation in a time series is differ-
ent from zero. The results showed that the p-value (0.19) 
was greater than 0.05 indicating the null hypothesis failed 
to be rejected. This means the residuals are white noise. In 
other words, SARIMA(1,0,3)(2,1,2)24 removes the residual 
dependency from the wastewater inflow time series. There-
fore, the proposed model passes the required check.

Fig. 9   (a) ACF and (b) PACF 
plots of the first seasonally 
differenced series (d = 0, D = 1 
and s = 24)
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Wastewater inflow forecasting

The ability of the proposed SARIMA model in predict-
ing wastewater inflow data was assessed in this last stage. 
The testing dataset (1 July to 31 December 2018) was used 

for the model validation procedure. The SARIMA(1,0,3)
(2,1,2)24 model was directly utilized for the entire testing 
process. There were no forecasts generated outside the test-
ing period, as this study mainly focuses on the demonstration 
of the ability of the developed model in predicting future 
values rather than the actual wastewater inflow rate predic-
tions for the case study WWTP.

The fitness of the observed and forecasted hourly waste-
water inflow rate is discussed to determine the quality of 
the proposed SARIMA model. The mean of the observed 
and forecasted wastewater inflow rate was 33.26 L/s and 
33.35 L/s, respectively. The difference between these two 
values is only 0.03% that indicates a good fit relationship. 
In additional, the results of statistical tests were as follows: 
RMSE = 5.508, MAPE = 20.78% and R2 = 0.773. The RMSE 
about two times lower than the standard deviation (11.56) 
is an indication of the good prediction (Boyd. et al. 2019). 
A high-quality forecasting model also has a low value of 
MAPE. In the previous studies, the results of MAPE were 
within the range of 71–78% in Zhang et al. (2019) and from 
20 to 94% for 4 out of 5 case study WWTPs in Boyd et al. 
(2019). It can be concluded that a low MAPE value was 
achieved in this research. Besides, the value of R2 which 
is larger than 0.5 also indicate relatively good predictions 
(Alsharif et al. 2019). As a result, SARIMA(1,0,3)(2,1,2)24 
is considered as a reliable forecasting model for wastewater 
inflow to the Murray Bridge wastewater network/WWTP.

Future forecasts data for the 1-week period (1–7 July 
2018) using the proposed SARIMA model are illustrated in 
Fig. 11. The figure also compares observed and forecasted 
wastewater inflow, and 95% upper confidential limit (UCL) 
and lower confidential limit (LCL). SARIMA(1,0,3)(2,1,2)24 
in general has the capability to provide future predictions 
for the wastewater inflow. The forecasted data relatively 

Table 5   SARIMA potential models

SARIMA model RMSE Normalized BIC R2

1 (1,0,1)(1,1,1)24 4.127 2.838 0.848
2 (1,0,2)(1,1,1)24 4.124 2.837 0.849
3 (1,0,3)(1,1,1)24 4.122 2.836 0.849
4 (2,0,1)(1,1,1)24 4.126 2.838 0.849
5 (2,0,2)(1,1,1)24 4.120 2.835 0.849
6 (2,0,3)(1,1,1)24 4.122 2.837 0.849
7 (1,0,1)(1,1,2)24 4.125 2.837 0.849
8 (1,0,2)(1,1,2)24 4.122 2.836 0.849
9 (1,0,3)(1,1,2)24 4.120 2.836 0.849
10 (2,0,1)(1,1,2)24 4.123 2.837 0.849
11 (2,0,2)(1,1,2)24 4.118 2.835 0.849
12 (2,0,3)(1,1,2)24 4.120 2.836 0.849
13 (1,0,1)(2,1,1)24 4.123 2.836 0.849
14 (1,0,2)(2,1,1)24 4.120 2.835 0.849
15 (1,0,3)(2,1,1)24 4.118 2.835 0.849
16 (2,0,1)(2,1,1)24 4.122 2.836 0.849
17 (2,0,2)(2,1,1)24 4.116 2.834 0.849
18 (2,0,3)(2,1,1)24 4.118 2.835 0.849
19 (1,0,1)(2,1,2)24 4.118 2.834 0.849
20 (1,0,2)(2,1,2)24 4.115 2.833 0.849
21 (1,0,3)(2,1,2)24 4.113 2.833 0.850
22 (2,0,1)(2,1,2)24 4.116 2.834 0.849
23 (2,0,2)(2,1,2)24 4.113 2.833 0.849
24 (2,0,3)(2,1,2)24 4.131 2.842 0.848

Fig. 10   Residuals of ACF and 
PACF of the SARIMA(1,0,3)
(2,1,2)24 model
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matched the observed data during morning until midnight 
from 6 a.m. to 12 a.m. However, it underestimated/overes-
timated the wastewater inflow during after midnight hours 
from 1–5 p.m. This could be because ARIMA family mod-
els only approximate the data patterns in the past, as the 
structure of the underlying data mechanism is not explained 
(YoosefDoost et al. 2017).

The predictions of wastewater inflow to the Murray 
Bridge wastewater network/WWTP generated based on an 
hourly time series dataset are useful for the smart wastewa-
ter pump controller. This controller operates pumps with 
consideration of two inputs including wastewater inflow 
rate and electricity spot price. Details on this smart control-
ler are presented in Do et al. (2021). The forecasts of its 
two inputs can support the operators in planning the pump 
schedules during the day in advance. Therefore, wastewater 
inflow forecasts for low temporal resolution such as 60 min 
as in this paper are required to accomplish the task. It is 
impossible with daily and weekly predictions as in previ-
ous studies of ARIMA model. According to Dehghani et al. 
(2019), 7–10 days ahead forecasts offer sufficient time to 
schedule pumps. Thus, the forecasts every hour for a short-
term period of 1 week ahead can significantly contribute to 
preparing operations plans for the WWTP.

Conclusions

This paper mainly focuses on developing and evaluating 
the ability of the SARIMA model of predicting wastewa-
ter inflow rate to the Murray Bridge wastewater network/
WWTP in South Australia. The SARIMA method was 
applied due to its capability to handle shortcoming of the 
ARIMA model in dealing with seasonal components in 
the time series. There has been no evidence of this model 
application in wastewater inflow rate prediction. Besides, 

low temporal resolution forecast of 60 min for wastewater 
inflow using ARIMA family models has not been demon-
strated in the literature. This paper came to fill these gaps 
of knowledge.

SARIMA technique was successful in wastewater inflow 
modelling and forecasting for the case study WWTP at low 
temporal resolution with hourly time series data. SARIMA 
(1,0,3)(2,1,2)24 was identified as the best model amongst 
potential ones. The orders (p,d,q) and (P,D,Q) of the pro-
posed SARIMA model were diagnostically checked by 
performing visualization (ACF and PACF graphs), and sta-
tistical test (Ljung-Box test) for the residuals. Short-term 
forecasts for 1 week ahead were shown for the first 7 days 
of July 2018. The results indicate the proposed SARIMA 
model provides high accuracy forecasts based on several 
evaluation criteria including RMSE, MAPE and R2.

The wastewater forecasts for low temporal resolution of 
60 min generated from the proposed SARIMA model can 
be utilized as an input for wastewater pump operations opti-
mization model or pump controller in real-time. Wastewater 
inflow predictions are an important factor in optimizing the 
pump operations. With high accuracy forecasts, the pump-
ing system reliability is improved, and pump schedules can 
be set up appropriately in advance with consideration of 
the predictions of electricity spot prices to obtain electrical 
energy cost savings.

An advantage of the SARIMA technique is it only requires 
historical observations to develop forecasting models, as it 
relies on the behaviour of past data points to predict future 
data points. However, it is also a limitation as SARIMA 
could not include other attributes that have influences on 
the wastewater inflow rate (e.g. rainfall) as its inputs. These 
influencing factors should be considered for future research 
to improve the accuracy of the SARIMA wastewater inflow 
forecasting model. Moreover, a comparative study on fore-
casting wastewater inflow rate using SARIMA model and 

Fig. 11   Observed and forecast 
wastewater inflow from 1 to 7 
July 2018
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machine-learning-based techniques such as artificial neural 
network (ANN), random forest (RF) and k-nearest neigh-
bour (k-NN) is recommended to be conducted to further 
evaluate the ability of the SARIMA. An additional possible 
research direction is to further validate the proposed fore-
casting model for the Murray Bridge WWTP in this study by 
comparing its performance against that of SARIMA models 
developed for other WWTPs. The performing ability of each 
model for each WWTP case study will be assessed and com-
pared based on a number of statistical criteria (e.g. RMSE, 
MAPE and R2). Hourly wastewater inflow datasets of the 
same length of time period should be utilized to generate low 
temporal resolution forecasting models for those WWTPs 
to achieve the most accurate results of comparison. Finally, 
different modelling and forecasting with lower/higher tem-
poral resolutions such as 15 min, 30 min, daily and monthly 
should be investigated to support the wastewater pumping 
system and WWTP for different operation purposes.
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