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Abstract
It is essential to study  CO2 emissions intensity as the most critical factor affecting temperature increase and climate change in 
a country like Iran, which ranked seven regarding  CO2 emissions intensity. Investigating the convergence of  CO2 emissions 
intensity is essential in recognizing its dynamics in identifying the effectiveness of government environmental policies. In 
this paper, using the Markov chain and spatial Markov chain methods, the convergence of  CO2 emissions intensity from 
fossil-fuel consumption has been investigated in 28 provinces of Iran from 2002 to 2016. The empirical results showed that 
convergence clubs and neighbors significantly influenced the transition probability of regions to clubs with high and low 
 CO2 emissions. Therefore, if a province had a neighbor with low (high)  CO2 emissions intensity, the transition probability 
of this province to the club with low (high)  CO2 intensity increased. Therefore, in provinces that have neighbors with low 
(high)  CO2 emissions intensity, the transition probability to the club with low (high)  CO2 intensity increases.
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Introduction

CO2 emissions increased from 22 billion tons in 1990 to 
more than 36 billion tons in 2019 (ourwo rldin data. org). 
However, in 2020, with the COVID 19 pandemic, which 
reduced energy demand by 4%, the global  CO2 emissions 
related to energy fell by 5.8% to about 2 billion tons per 

year, unprecedented in human history (www. iea. org). How-
ever, energy consumption and  CO2 emissions are expected 
to return to normal with the prevention of the COVID 19 
pandemic. Figure 1 shows the highest  CO2 intensity  (CO2-I) 
countries in the world. South Africa, Kazakhstan, Taiwan, 
Russia, and Ukraine have the highest  CO2-I. Iran ranks 
seventh in the world regarding  CO2-I. A comparison of the 
trend of  CO2-I between Iran and the global average showed 
that although  CO2-I in the world has been decreasing from 
1990 to 2018, this trend is increasing in Iran (Fig. 2). This 
is in the context that Iran has the second-largest gas reserves 
after Russia and the fourth-largest oil reserves after Ven-
ezuela, Saudi Arabia, and Canada (Dudley, 2020).

One of the most critical effects of  CO2 emissions is 
climate change and global warming. This is essential for 
survival on earth because “Every bit of warming matters” 
(IPCC, 2018). Figure 3 shows the effect of emissions on 
heating imbalance, in watts per square meter, caused by all 
major artificial greenhouse gases. It is known that the high-
est share and highest growth of greenhouse gases are related 
to  CO2 emissions. As a result, the absorbed heat per watt 
per square meter had almost doubled from 1980 to 2019. 
Given the high effects of  CO2 emissions on climate change 
and temperature, it is essential to identify the factors affect-
ing  CO2 emissions. Many studies, including Wang et al. 
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(2018), Kang et al. (2019), Chen et al. (2019), and Shah-
nazi and Shabani (2021), have been done in this regard. One 
of the factors related to  CO2 emissions is  CO2 emissions 
convergence.

This research aims to investigate the convergence of  CO2 
emissions intensity in Iranian provinces. The convergence 
of  CO2 emissions can be explained theoretically based on 
three foundations, i.e., environmental Kuznets theory, the 
orientation of global environmental treaties, and economic 
growth convergence.

The environmental Kuznets theory is one of the most 
important models used to explain  CO2 emissions. Accord-
ingly, the relationship between economic development and 
environmental quality is an inverse-U relationship. Accord-
ing to Grossman and Krueger (1991), economic development 
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Fig. 1  CO2 intensity breakdown by country (kCO2/$2015p). Source: 
https:// yearb ook. enerd ata. net

Fig. 2  CO2 intensity (kCO2/$2015p). Source: https:// yearb ook. enerd ata. net

Fig. 3  Combined heating 
influence of greenhouse gases.  
Source: https:// www. clima te. 
gov
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affects environment in three ways: (i) scale effect in the 
sense that increasing the scale of the economy leads to 
more destruction of natural resources and more emissions; 
(ii) composition effect: with the increasing development, 
production structures change and move towards cleaner 
activities with less pollution; (iii) technological effect result-
ing from increasing research and development costs in the 
development process which leads to new clean technologies. 
Therefore, considering these effects, economic growth has 
negative environmental effects in the short run and leads to 
increase pollution. However, in the long run, with the growth 
of clean technology development, the quality of environment 
improves, and different regions converge in  CO2 emissions. 
The second explanation for the convergence of  CO2 emis-
sions is related to international environmental treaties such 
as the Kyoto Protocol or the Paris Agreement (Haider and 
Akram 2019). International environmental treaties can be 
the basis for  CO2 emissions convergence to provide unified 
policies for improving environmental conditions in different 
countries. Regarding the treaties of universal laws and regu-
lations from 1850 up to now, current content includes 1368 
Multilateral environment agreements (MEAs), 2264 bilateral 
environment agreements (BEAs), and 250 other environ-
mental agreements (https:// iea. uoreg on. edu). It should be 
noted that Iran is present in 320 of the agreements described 
in Table 1. The third basis for explaining the convergence of 
 CO2 emissions is related to the principles of convergence of 
economic growth. The concept of convergence is stemming 
from economic growth literature (Barro, 1991). Due to the 
fact that part of  CO2 emissions is related to energy con-
sumption for economic growth, as convergence in economic 
growth,  CO2 emissions associated with economic growth 
also converge.

This study has two significant contributions: first, a non-
parametric method that considers the spatial effects was 
used to assess  CO2 emission convergence. Although para-
metric methods have been used in different studies, which 
may provide misleading results as multimodality and dis-
tribution dynamics are ignored (Quah, 1993, 1997). On the 
other hand, if research deals with spatial data with loca-
tional information, spatial effects must be considered in data 

analysis as ignoring the spatial effects may lead to biased 
results. Second, as far as researchers examined, it is the first 
study examining  CO2-I convergence in Iran. Previous studies 
investigated  CO2 emissions in Iran (e.g., Mirzaei and Bekri 
2017, Hajilary et al. 2018, Hosseini et al. 2019), but  CO2-I 
convergence was not investigated in Iran. It is important to 
examine  CO2-I convergence in Iran regarding international 
environmental goals to fulfill Iran’s commitments in inter-
national environmental treaties and agreements such as the 
Kyoto Protocol and the Paris Agreement.

This study has the following sections: literature review 
is provided in “Literature review.” “Methodology and data” 
presents methodology. The empirical results are reported in 
“Empirical results.” Conclusion and policy implications are 
drawn in “Conclusion and policy implications.”

Literature review

Many studies explored the convergence of  CO2 emissions 
is shown in Table 2. These studies differ in the areas, dura-
tion, method, and type of convergence. Some studies such 
as Yu et al. (2018) and Boussemart et al. (2015) focused 
on studying the convergence of  CO2 emissions in the inte-
rior of a country, and some like Romero-Avila (2008), Yan 
et al. (2017), and Li et al. (2020) examined the convergence 
between countries. The single country study focuses mainly 
on the study of the USA and China. In multi-country studies, 
some have examined countries located in a region, mainly 
including EU and OECD countries. And some articles have 
reviewed a large number of countries in more than 100 coun-
tries. The study period ranges from 11 years (Li et al., 2017) 
to more than 100 years (Presno et al., 2018).

Previous studies differed in terms of the method used. For 
example, Romero-Ávila (2008) used the bootstrap methods, 
Van (2005) used the Kernel density estimates, Li et al. (2017) 
applied the spatial panel data models, Lee et al. (2008) used 
the panel unit root stationarity analysis, Huang and Meng 
(2013) employed the spatial panel data, and Morales-Lage 
et al. (2019) applied the nonlinear dynamic factor model to 
investigate the convergence of  CO2-I. Another difference 
between the studies was related to the type of convergence. 
Accordingly, some studies such as Boussemart et al. (2015) 
showed the existence of non-club convergences, and others 
such as Kounetas (2018), Morales-Lage et al. (2019), and 
Tiwari et al. (2021) showed the existence of club conver-
gences. Although most studies conclude that there is con-
vergence in emission intensity, in some studies, such as Yan 
et al. (2017), convergence is not confirmed.

A review of previous studies indicates the existence of 
two research gaps that the purpose of this article is to fill 
two. First, previous studies have mostly been performed with 

Table 1  Iran has taken steps in 320 agreements

Action Number

Signatures 44
Non-provisional applications 1
Ratification, accession, succession, or similars 69
Deposit of instruments 3
Entry into forces 78
Withdrawal or similars 1
Entry into force (tacit acceptance) 225
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parametric methods or have not seen spatial effects. And 
second,  CO2-I convergence has not been studied in Iran.

Some previous studies have used parametric methods that 
may provide misleading results as multimodality and dis-
tribution dynamics are ignored (Quah, 1993, 1997). On the 
other hand, Van (2005) and Kounetas (2018) investigated the 

convergence of  CO2-I using a non-parametric method while 
not considering the spatial or neighbor effects on  CO2-I 
convergence; ignoring the spatial effects may lead to biased 
results. This paper uses a non-parametric method of spatial 
effects to fill this research gap. As Table 2 shows, there is 
no study on  CO2-I convergence in Iran. Although Iran has 

Table 2  Summary of studies on  CO2-I convergence

PS method = Phillips and Sul (2007) method; CCEMG, common correlated effects mean group; DSDM, dynamic spatial Durbin model; SMR-
PDM, spatial multi-regime panel data models; SNPT, spatial non-parametric techniques

Authors Countries Period Methodology Findings

Van (2005) 100 countries 1966-1996 Kernel density estimates Convergence in industrial countries
Little evidence of convergence for the 

whole sample
Romero-Ávila 2008 OECD 1960-2002 bootstrap methods Per capita  CO2 emissions convergence
Lee and Chang (2008) 21 OECD countries 1960–2000 Panel unit root Convergence of 14 countries
Lee et al. (2008) 21 OECD countries 1960–2000 PS method Convergence
Panopoulou and Pantelidis 

(2009)
128 countries 1960–2003 PS method Two separate convergence clubs

Jobert et al. (2010) 22 European countries 1971–2006 Bayesian shrinkage estimation method Convergence
Huang and Meng (2013) Provinces of China 1985–2008 Spatial panel data The convergence is related to spatio-

temporal dependency
Herrerias (2013) 162 countries 1980–2009 Pair-wise unit root test There is convergence in many countries 

and divergence in some
Solarin (2014) 39 African countries 1960–2010 Unit root tests Stochastic and β-convergence
Solarin (2014) 92 countries 1961–2014 Unit root tests Convergence clubs
Boussemart et al. (2015) 30 Chinese regions 1970–2010 Non-parametric programming framework Convergence
Sun et al. (2016) Ten countries 1971–2010 Unit root test augmented with Fourier func-

tion
Convergence

Li et al. (2017) China, Yangtze River 
Delta (Cities level)

2000–2010 Spatial panel data models Divergence during 2002–2004 sigma 
convergence during 2000–2002 and 
2004–2010

Yan et al. (2017) 72 countries 1990–2012 Nonlinear time-varying factor model There is no convergence in 72 countries, 
but there is convergence in 19 OECD 
countries.

Apergis and Payne (2017) US states 1980–2013 PS method Multiple convergence clubs
Ahmed et al. (2017) 162 countries 1960-2010 wavelet analysis Convergence in 38 countries

Divergence in 124 countries
Yu et al. (2018) China 1995–2015 CCEMG method

PS method
Convergence clubs

Presno et al. (2018) 28 OECD countries 1901–2009 Unit root test Convergence
Kounetas (2018) EU countries 1970–2010 Distribution dynamics analysis Convergence clubs in  CO2 intensity
Ulucak and Apergis (2018) EU countries 1961–2013 PS method Confirm the existence of some conver-

gent clubs
Rios and Gianmoena (2018) 141 countries 1970–2014 DSDM

SMRPDM
SNPT

Convergence
Convergence clubs

Haider and Akram (2019) 53 countries 1980–2016 PS method Convergence clubs
Solarin (2019) 27 OECD Countries 1961–2013 Panel data Conditional convergence in 12 countries
Morales-Lage et al. (2019) 28 EU countries 1971–2012 Nonlinear dynamic factor model Convergent clubs
Li et al. (2020) 129 countries 1995–2015 Standard deviation

Unit root test
Panel data

Production side convergence is faster 
than consumption side convergence

Convergence clubs
Churchill et al. (2020) 17 emerging countries 1921–2014 LM and RALS-LM unit root tests Stochastic convergence for eleven out of 

the seventeen countries
Apergis and Payne (2020) NAFTA 1971–2014 PS method Convergence
Tiwari et al. (2021) USA states 1976–2014 PS method Convergence clubs
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seventh place globally,  CO2 emissions intensity and the trend 
of  CO2-I are increasing in Iran, contrary to the global trend 
from 1990 to 2018 (https:// yearb ook. enerd ata. net); identify-
ing  CO2-I convergence is very important for Iran in terms of 
policies to reduce emissions.

Methodology and data

Theoretical models

The concept of convergence was first introduced in the eco-
nomic growth literature in 1991 and is now being used in 
other fields such as carbon dioxide emissions. Three con-
cepts of beta, sigma, and random convergence can be used 
to check convergence. Sigma convergence examines the 
decreased difference in carbon dioxide emissions between 
regions over time. The increased difference in carbon diox-
ide emissions between regions means divergence. The sigma 
convergence is investigated using the standard deviation of 
carbon dioxide between regions or using the kernel density 
function. Beta convergence is divided into unconditional and 
conditional convergence. The convergence of  CO2 emissions 
of all regions into a common and stable steady state is called 
unconditional beta convergence. Their convergence to the 
steady-state conditions in proportion to the initial level of 
factors in each region is called conditional beta convergence. 
Based on the conditional beta convergence, each region con-
verges to its own specific steady state, and regions farther 
from their equilibrium point converge more rapidly to their 
steady state. This type of convergence led to forming a new 
concept called club convergence or multiple equilibrium 
models. In this case, regions with similar carbon dioxide 
emissions (e.g., high carbon dioxide emissions and low car-
bon dioxide emissions) converge to a steady state. Thus, in 
the long run, not only the difference between the regions 
does not disappear, but the carbon dioxide emissions of the 
regions converge towards similar peaks, and carbon dioxide 
emissions distribution of the regions moves towards two or 
more peaks. In this case, homogeneity between regions or 
countries increases, and differences between groups increase 
(Le Gallo, 2004). An examination of economic literature 
showed that the concept of club convergence was first pro-
posed by Baumol (1986) and then was completed by Durlauf 
and Johnson (1992, 1995). Next, Quah (1997) developed it 
in other ways. Kova argued that the econometric methods, 
a common method for examining beta convergence, often 
have misleading results, produce Galton’s problem, and do 
not describe distribution behavior and movements. Hence, 
he introduces the Markov chain as a powerful tool for study-
ing and identifying convergence clubs (Quah, 1993). Sto-
chastic convergence indicates that shocks to carbon dioxide 

emissions are temporary (Fallahi, 2017). A randomness unit 
root test is used to investigate random convergence.

In this paper, due to limited information, it was not pos-
sible to investigate Stochastic convergence. Moreover, since 
the provinces of Iran are not homogeneous and similar in 
terms of economic and geographical factors, conditional 
beta convergence (club convergence) should be considered. 
According to Quah (1993), the use of measurement methods 
to investigate the conditional beta convergence (club conver-
gence) leads to misleading results. Hence, in this paper, the 
Markov chain method was used to investigate club conver-
gence. In addition, the kernel density function has also been 
used to investigate Sigma convergence.

Empirical models

Kernel density

The kernel density estimator is a weighted moving average 
of the sample frequency distribution. The function K is the 
kernel if it is as follows:

In most cases, K is a symmetric probability density func-
tion. The kernel density estimator at point x with K is as 
follows:

where n is the number of observations, xi is the observa-
tion of i, and h is the smoothing parameter or bandwidth.

Markov chain

A random process with a set of finite values xr, t + 1, xr, t, 
xr, t − 1, …, xr, 0 is called a Markov chain, if this process is in 
state i at time t (xr, t = i) and the probability Pij is in state j at 
time t + 1(xr, t + 1 = j). So, for all values t ≥ 0 and all states,j, 
i−1, i−2, …, i0, we can write:

Pij is the probability of transition of the process from state 
i now to state j in the next time (Bickenbach and Bode 2003). 
If the Markov process is time-independent, the Markov chain 
is completely defined by the Markov transfer matrix (M). M 
is called the transition probability matrix; each of its val-
ues in row i and column j is Pij, which is the probability of 
moving from state i to j. Assuming the number of states is 

(1)∫
+∞

−∞

K(x)dx = 1

(2)f̂ (x) =
1

nh

∑n

i=1
K

{
x − Xi

h

}

(3)
P
(
xr,t+1 = j|xr,t = i, xr,t−1 = i−1,… , xr,0 = i0

)

= P
(
xr,t+1 = j|xr,t = i

)
= Pij
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2, the Markov transition probability matrix is a 2×2 matrix 
as follow:

The number of states in the Markov chain must be chosen 
so that the initial distribution of data in the different states is 
approximately the same (Quah 1993). The initial distribution 
of the data is explained by the initial vector (Monfort 2008). 
If the Markov chain is irreducible and periodical, the pro-
cess reaches a steady-state or stationary-state vector. The 
steady-state vector is called the ergodic distribution vec-
tor and calculated using an eigenvector associated with the 
eigenvalues of 1 in the transpose of transition probability 
matrix (Ibe 2009). The ergodic vector is used for considering 
convergence in the literature (Liddle 2012, Li et al. 2019). If 
the data concentration is in one state in the ergodic vector, 
there is absolute convergence. If the data is divided between 
different states with equal frequency, there is a divergence. 
Convergence clubs exist when the data are concentrated in 
some states (Le Gallo, 2004). According to transition prob-
ability matrix, we can calculate stability and half-life index. 
The stability index is as follows:

where N is the number of states, and Tr(M) is the trace 
of the matrix M (Monfort 2008). The half-life index shows 
the speed of convergence toward the ergodic vector and cal-
culates the years to cover the half distance to the ergodic 
vector. This index is as follows:

where α2 is the largest eigenvalue after 1 of transpose M, 
T is year interval (Shorrocks 1978). In this study, the year 
interval is 1. Matrix M presents the transition probability 
matrix but does not take into account spatial autocorrelation 
between observations of regions.

The Moran’s I statistic (1950) is the common method to 
investigate spatial autocorrelation of regions as follow:

where Ci is the variable of region i,C presents the average 
of variable, n is the number of regions, and Wij is ith and jth 
components of the spatial weights matrix.

For considering the effect of neighbors on the transition 
probability matrix, Rey (2001) proposed spatial Markov 

(4)S =
Tr(M)

N

(5)H =

(
−Log (2)

Log||�2||

)
∗ T

(6)I =
n
∑n

i=1

∑n

j=1
Wij

�
Ci − C

��
Cj − C

�

∑n

i=1

∑n

j=1
Wij

�
Ci − C

�2

transition probability. In this matrix, the transition prob-
abilities depended on the state of neighbors (spatial lag). 
If the number of states is 2, the spatial Markov matrix is a 
2×2×2 matrix (Rey 2001).

Table 3 presents the spatial Markov transition probability 
with two states. Spatial lags are determined based on the 
average  CO2 in the neighboring provinces in the starting 
year (e.g., 2002). For example, provinces are in state one 
according to spatial lag when the average  CO2 of neighbors 
is in a state of 1 in 2002. In Table 3, pij/k is the probability 
shifting from state i to j when the neighboring provinces 
are in k state. The spatial effects can be understood by com-
paring the elements of matrix M with the corresponding 
elements in Table 2. If the transition probabilities are as 
follows:

There is no spatial effect. Spatial effects exist when, for 
example, P12/1 < P12, meaning that if the neighbors of a prov-
ince are in state 1, then the province moves from state 1 to 
state 2 with a lower probability.

Data

Data of  CO2-I for 28 Iranian provinces in the period of 2002 
to 2016 was used in this study. To calculate the  CO2-I, first, 
energy consumption was extracted from different energy 
carriers. Second, the  CO2 emissions was calculated based 
on the carbon dioxide coefficient for each energy carrier 
documented in the Iranian energy balance sheet. Third,  CO2 
emissions for each province is divided into the real GDP to 
calculate  CO2-I. The data of GDP was collected from the 
statistical yearbook of provinces (www. amar. org. ir). The real 
GDP was calculated using the provincial consumer price 
index.

In the Markov chain method, relative variables are used 
and the relative  CO2-I is applied. To do this,  CO2-I in each 
province was divided into the average  CO2-I in Iran. Table 4 
shows the descriptive statistics of  CO2-I, GDP, and the rela-
tive  CO2-I in Iranian provinces.

(7)Pij∕1 = Pij∕2 = Pij ∀i, j = 1, 2

Table 3  Spatial transition probability matrix (K=2)

Spatial LAG ti ti + 1

State 1 State 2

State 1 State 1 p11/1 p12/1

State 2 p21/1 p22/1

State 2 State 1 p11/2 p12/2

State 2 p21/2 p22/2
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Empirical results

The kernel density in Fig.  4 shows how  CO2-I in 2002 
evolves into 2016. The probability density function was not 
symmetric and was left-skewed and had a positive kurto-
sis. The positive kurtosis indicates that the distribution is 
peaked and has thick tails relative to normal distribution. As 
shown in Fig. 4, the distribution of the relative  CO2-I of Ira-
nian provinces in 2002 was not normal and was in 105% of 
the country’s mean. Therefore, evidence suggested that the 
 CO2-I of most provinces in Iran was higher than the coun-
try’s average. In addition, kurtosis of distribution showed 
more data at this point than the normal state. Figure 4 shows 
that the concentration of provincial  CO2-I was 120% of the 
country’s average in 2016. Moreover, the negative skewness 
of distribution has increased, which shows that the  CO2-I 
of some provinces has been decreased compared to 2002.

A comparison of the four density distributions in 2002, 
2007, 2012, and 2016 showed that the distribution kurto-
sis increased in 2016, and the skewness shifted more to the 
left than in 2002, 2007, and 2012. Thus, over the 15 year, 
two peaks became apparent, one small peak was formed at 
around 30% of the country’s average, and a major peak was 
formed above the average. So, there are individual conver-
gence clubs in  CO2 emissions. The reason for this can be 
inequality in GDP per capita (Padilla and Duro 2013), and 
different energy mix and efficiency (Barassi et al. 2008; 
Wang et al. 2005), different industrial structures (Talukdar 

and Meisner 2001), and demographic variation (Knapp and 
Mookerjee 1996) among the provinces of Iran.

Although the distribution density function showed the 
shape of the distribution and formation of the convergence 
clubs, it cannot explain the intra-distribution movements 
and the evolution of distribution. Therefore, to investigate 
the intra-distribution dynamics, steady state, club conver-
gence, and convergence speed of  CO2-I, the first-order static 
Markov chain model, can be used.

In this study, the number of observations was 420, clas-
sified into four states. State 1 includes observations whose 
 CO2-I was 0 to 75% of Iran’s average  CO2-I, which is called 
low  CO2-I. In state 2, observations whose relative  CO2-I 
were between 75 and 100% of average are called medium-
low  CO2-I. The relative  CO2-I is between 100 and 120% 
of Iran’s  CO2-I average in state 3, a medium  CO2-I state. 
Finally, observations with  CO2-I above 120% of the average 
are in state 4. This state is called high  CO2-I. The initial 
distribution of observations between different states using 
the initial distribution vector showed that 24% of the obser-
vations were in state 1, 25% of the data were in state 2, 
25% of the observations were in state 3, and 26% were in 
state 4 (Table 5). In this study, four states are considered, so 
the transition probability matrix was a 4×4. The transition 
probabilities matrix is presented in Table 5, the elements 
of which indicate the probability of transfer from one state 
to another. As the results in Table 5 show the element on 
the main diagonal of the transition matrix were high and, 
on average, 80%. Therefore, the stability index was 80%. 

Table 4  descriptive statistics of 
relative  co2 emissions Intensity

Variable Unit Obs Mean Std. dev. Min Max

CO2 emissions Ton 420 1.68e+07 1.65e+07 957804.4 8.69e+07
GDP (constant 2011) Million Rial 420 1.87e+08 2.88e+08 2.04e+07 1.66e+09
Relative  CO2 emissions intensity - 420 0.999 0.388 0.058 2.232

Fig. 4  Kernel density of relative 
 CO2-I
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Moreover, the probability of movements outside the main 
diagonal was 7% on average. Therefore, according to the 
stability index and mobility outside the main diagonal, as 
well as the high probabilities staying in the states 1 (95%) 
and 4 (80%), it can be concluded that the provinces with 
high and low relative  CO2-I do not see changes in their rela-
tive position over time.

Table 5 showed that 87 observations were in state 1 dur-
ing 15 years which remained in state 1 with a 95% prob-
ability the next year and will shift up to states 2 and 3 with 
a probability of 4% and 1%, respectively. Therefore, prov-
inces with low  CO2-I are very unlikely to leave the low  CO2 
emissions club. According to the data (Appendix Table 10 
in appendix), Ilam, Tehran, Khuzestan, Kohkiluyeh, and 
Boyer-Ahmad provinces have been in the state 1 in 15 years. 
Golestan has been in state 1 for 8 years and then has moved 
to state 2; Lorestan has been in state 1 for 7 years. Moreo-
ver, Ardabil province has been in state 1 for 1 year and has 
shifted to state 2. Furthermore, 95 observations were in 
state 2, of which 78% remained in state 2 in the next year, 
and the highest probability of movement was 17% into state 
3. Chaharmahal Bakhtiari province for 15 years; Ardabil 
and Zanjan for 12 years; Azerbaijan Sharghei, Kerman, 
and Lorestan for 8 years; Semnan, Fars, and Golestan for 
6 years; Khorasan for 5 years; Kurdistan for 3 years; Gilan 
for 2 years; Bushehr, Mazandaran, and Markazi for 1 year 
were in state 2. Most observations (120 observations) were 
in state 3, which had a  CO2-I of 100 to 120% of Iran’s aver-
age. According to Table 5, the observations in state 3 will 
remain in this state with a probability of 66% in the next 
year. The probability of shifting down to state 2 is 12%, and 
the probability of shifting up to state 4 is 22%. Azerbaijan 
Gharbei, Khorasan, Gilan, and Mazandaran have been in 
state 2 for more than 10 years.

As shown in Table 5, 118 observations were in state 4, 
with a probability of 80% remaining in state 4 in the next 
year and with a probability of 18% and 2% moving down to 
states 2 and 3 in the next year, respectively. Isfahan, Sistan 
and Baluchistan, and Qazvin provinces have been in state 

4 for 15 years; Hormozgan for 14 years; Hamedan for 10 
years, Markazi for 9 years; Kurdistan for 8 years; Yazd, Ker-
manshah, and Qom for 6 years; Azerbaijan Gharbei for 4 
years; Bushehr, Semnan, and Gilan provinces for 2 years; 
and Mazandaran, Kerman, Zanjan, and Azerbaijan Sharghei 
provinces for 1 year. The ergodic distribution vector is pre-
sented in Table 5. The results of this vector were used to 
investigate the convergence. The results of ergodic vectors 
showed that in the long run, 87% of the observations are in 
states 1 and 2. The number of regions in state 1 or low  CO2-I 
club will increase from 24% in the initial vector to 27% in 
the ergodic vector. Moreover, the observations in state 2, 
i.e., in the medium-low  CO2-I club, will increase from 25 
to 59%. According to the results of the ergodic vector, the 
observations in state 3, i.e., the medium  CO2-I club, will 
decrease from 25 to 12%, and the number of observations 
in state 4 will decrease from 26 to 2%. However, the results 
indicate that there is club convergence. This finding was 
contradicted Boussemart et al. (2015) and Huang and Meng 
(2013) that support convergence in  CO2 emissions across 
provinces in a country, and consistent with Rios and Gian-
moena (2018), Kounetas (2018), Apergis and Payne (2017), 
and Tiwari et al. (2021) that predict the club convergence 
of  CO2 emissions. A possible explanation can be attributed 
to the fact that the provinces of Iran have different climatic 
conditions and structures of economies. Therefore, prov-
inces with similar climates, production composition, fuel 
consumption, and energy efficiency will converge towards 
the same provinces.

The half-life index was 14 years, indicating that 14 years 
are needed to cover the half distance between the initial vec-
tor to the ergodic vector. The results of half-life and stability 
indices indicated that the move towards long-run equilibrium 
was very slow and stability of the process was high. The 
results of Table 5 examined the evolution and dynamics of 
 CO2-I distribution without considering the neighborhood 
effects.

However, the data used in this study were spatial data 
containing the locational information, so the spatial effects 

Table 5  Transition probability 
matrix for Iran-relative  CO2-I

N, number of observations, upper endpoint is the ratio of the province to the national average  CO2-I

 ti ti + 1 N

State 1 State 2 State 3 State 4

State Upper endpoint 75% 100% 120% ∞

State 1 75% 0.95 0.04 0.01 0.00 87
State 2 100% 0.04 0.78 0.17 0.01 95
State 3 120% 0.00 0.12 0.66 0.22 120
State 4 ∞ 0.00 0.02 0.18 0.80 118
Initial distribution vector 24% 25% 25% 26% 420
Ergodic distribution vector 27% 59% 12% 2%
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should be considered in the data analysis. Figure 5 shows the 
continuous state in which each province is located from 2002 
to 2016. As Fig. 5 shows, most of the provinces that had a 

similar continuous state were located next to each other. A 
spatial correlation test must confirm this visual impression 
of spatial correlation.

The common test for the spatial autocorrelation was 
Moran’s I statistic. According to the results of Table 6, the 
Moran value was positive and was statistically significant 
in all years except 2009, showing that there was a positive 
spatial autocorrelation between  CO2-I in Iranian provinces. 
As a result, provinces with high (low)  CO2-I were adjacent 
to each other. This finding is consistence with Shahnazi and 
Shabani 2019, 2021, Liu et al. 2019, You and Lv 2018.

Table 7 shows two transition probability matrices. The 
first matrix was constructed using the neighbor-relative 
 CO2-I distribution, in which  CO2-I of each province is nor-
malized to the average  CO2-I of the neighboring provinces. 
The second matrix included the probability of transition 
between Iran-relative  CO2-I distribution and the neighbor-
relative  CO2-I distribution. This matrix showed probability 
transition between two different distributions at a given time. 
If there are no spatial effects, the first matrix in Table 7 is 
similar to the matrix in Table 5, and the second matrix in 
Table 7 is a unity matrix. The results of Table 6 showed that 
the first matrix is not similar to the matrix in Table 5, and 
the second matrix is not a unity matrix.

N, number of observations, upper endpoint is a ratio of 
the province to the national average  CO2-I

Table 8 shows the spatial transition probability matrix, 
which is conditioned on the spatial lag in 2002. The spatial 
lag indicates the state of the average  CO2-I of neighbors. It 
seems that the spatial lag of a province affects the transi-
tion probability of a province between different states. For 
example, provinces with low  CO2-I are negatively affected 
by the provinces with high  CO2-I. In fact, by increasing the 
 CO2-I of neighbors, the transition probability of moving up 

Fig. 5  Continuous state of Iranian provinces (2002–2016)

Table 6  Global Moran’s I statistics for  CO2-I

Year Moran’s I value p-value Year Moran’s I value p-value

2002 0.235 0.008 2009 0.067 0.130
2003 0.314 0.002 2010 0.230 0.006
2004 0.332 0.002 2011 0.389 0.002
2005 0.288 0.004 2012 0.323 0.002
2006 0.286 0.004 2013 0.372 0.002
2007 0.244 0.004 2014 0.246 0.004
2008 0.219 0.006 2015 0.184 0.012

Table 7  Transition probability 
matrix for neighbor-relative and 
Iran to neighbor-relative  CO2-I

Neighbor-relative
 ti ti + 1

State 1 State 2 State 3 State 4 N
State Upper endpoint 75% 100% 120% ∞
State 1 75% 0.92 0.07 0.01 0.00 89
State 2 100% 0.06 0.64 0.26 0.04 88
State 3 120% 0.00 0.15 0.71 0.14 134
State 4 ∞ 0.02 0.03 0.16 0.79 109
Iran to the neighbor-relative
 ti ti

State 1 State 2 State 3 State 4
State Upper endpoint 0.01% 100% ∞ N
State 1 75% 0.90 0.06 0.01 0.03 87
State 2 100% 0.11 0.38 0.35 0.16 95
State 3 120% 0.00 0.33 0.50 0.17 120
State 4 ∞ 0.00 0.06 0.34 0.60 118
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to the high states increase. According to Table 5, provinces 
with low  CO2-I (state 1) with an average probability of 5% 
of this state shift up to states 2 and 3. However, according to 
Table 8, if the neighboring provinces with low  CO2-I (state 1 
in spatial lag) surrounded these provinces, the probability of 
transition upwards is only 4%. But, if the neighboring prov-
inces had a medium-low  CO2-I (state 2 in spatial lag), the 
probability increases to 6%, and if the neighboring provinces 
were in state 3, the probability increases to 13%.

If the province is in state 2, as shown in Table 5, the prob-
ability of moving to states 3 and 4 is 18%. But if this prov-
ince has neighbors with low  CO2-I, then the probability of 
moving upwards will be 0%. Moreover, if the neighbors are 
in low-medium  CO2-I, the probability of moving upwards 
increases to 12%, and if it has neighbors with medium 
 CO2-I, the probability of moving upwards is 24%, and if the 
neighbors are in high  CO2-I, then, the probability of moving 
upwards will be 100%. Furthermore, provinces in state 3 
have been affected by the neighbors. As seen in Table 5, if a 

province is in state 3, the probability of transition to state 4 
is 22%. But, according to the results of Table 8, this province 
will not have neighbors with low  CO2-I. If this province is 
surrounded by the provinces that are in state 2, the probabil-
ity of moving upwards is 17%, and if it has neighbors with 
the medium  CO2-I (state 3), the probability of moving up is 
20%, and in the presence of neighbors that they are in state 
4, the probability of moving upwards is 38%. The results of 
Table-8 indicated that the provinces with high  CO2-I had 
not been affected by their neighbors. The results of ergodic 
distribution vectors of spatial lag are presented in Table 8. 
The results showed that if neighbors are in low or medium-
low  CO2-I states, the frequencies of observations in state 1 
were 53% and 46%, respectively. When neighbors were in 
state 3, the concentration of observations in state 3 was 42%, 
and when neighbors were in state 4, the data concentration in 
state 4 was 100%. As a result, the results of the ergodic vec-
tors indicated that their neighbors influenced the provinces.

Table 8  Spatial Markov 
transition probability matrix 
(spatial lag in 2002)

N, number of observations, upper endpoint is a ratio of the province to the national average  CO2 I

Spatial LAG ti ti + 1 N

State 1 State 2 State 3 State 4

State Upper endpoint 75% 100% 120% ∞

State 1 State 1 75% 0.96 0.04 0.00 0.00 26
State 2 100% 0.06 0.94 0.00 0.00 19
State 3 120% 0.00 0.00 0.00 0.00 0
State 4 ∞ 0.00 0.00 0.00 0.00 0
Initial distribution vector 58% 42% 0% 0% 45
Ergodic distribution vector 53% 47% 0% 0%

State 2 State 1 75% 0.94 0.06 0.00 0.00 38
State 2 100% 0.09 0.79 0.12 0.00 35
State 3 120% 0.00 0.11 0.72 0.17 36
State 4 ∞ 0.00 0.00 0.11 0.89 41
Initial distribution vector 25% 23% 24% 27% 150
Ergodic distribution vector 46% 17% 23% 14%

State 3 State 1 75% 0.87 0.13 0.00 0.00 8
State 2 100% 0.00 0.73 0.24 0.03 43
State 3 120% 0.00 0.14 0.66 0.20 69
State 4 ∞ 0.00 0.02 0.22 0.76 60
Initial distribution vector 4% 24% 38% 33% 180
Ergodic distribution vector 21% 24% 42% 13%

State 4 State 1 75% 1.00 0.00 0.00 0.00 15
State 2 100% 0.00 0.00 1.00 0.00 1
State 3 120% 0.00 0.08 0.54 0.38 14
State 4 ∞ 0.00 0.00 0.29 0.71 15
Initial distribution vector 33% 2% 31% 33% 45
Ergodic distribution vector 0% 0% 0% 100%
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Finally, we can summarize the information of the Markov 
spatial chain by considering the relationship between the 
probability of a specific transition (down, none, or up) 
and the  CO2-I of neighbors (spatial lag). Table 9 showed 
that neighbors had an important effect on the probability 
of moving down or up. For example, when a province was 

surrounded by provinces with low  CO2-I, the probability of 
moving downward was higher than moving upward. Moreo-
ver, if the provinces had neighbors with the high  CO2-I, then 
the probability of shifting upwards was higher than down-
wards. From the perspective of interregional convergence, 
all these results highlighted that the geographical environ-
ment affected interregional convergence. In this way, the 
neighbors affected the location of each province in the con-
vergence clubs. This finding can be considered a result of 
spatial or social interactions in the provinces. These interac-
tion processes can be considered to result from economic 
linkages, knowledge spillovers, policy copying among prov-
inces, and trade (Huang and Meng 2013).

This result contradicts Huang and Meng 2013, who state 
that spatial autocorrelation will lead to convergence. Also, 
our finding is consistent with Li et al. (2017) and Rios, V., 
and Gianmoena, L. (2018). In these studies, spatial autocor-
relation has caused divergence and convergence clubs.

Table 9  Transition probabilities conditioned on spatial lag of  CO2-I

N, number of observations; Down, down movement; None, non 
movement; UP, up movement

Spatial LAG N Move

DOWN NONE UP

Low 195 0.072 0.862 0.067
Same 180 0.135 0.726 0.139
High 45 0.111 0.756 0.133

Fig. 6  Conditional map of  CO2-I
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Conclusion and policy implications

Iran is one of the countries with the highest  CO2-I globally, 
making it essential to study  CO2-I convergence to encour-
age the government’s  CO2 policies to decrease the external 
effects of  CO2 emissions. On the other hand, assessing  CO2-I 
convergence is essential as the  CO2-I gap between provinces 
(or regions) can assist policymakers design and implement-
ing effective policies to decrease  CO2-I and the loss of the 
environment. As a result, the Markov chain and spatial 
Markov chain methods examined the  CO2-I convergence in 
28 Iranian provinces from 2002 to 2016. The results indicate 
convergence clubs in  CO2 emissions in Iranian provinces. 
Therefore, the results emphasized that the geographical envi-
ronment affects interregional convergence. In this way, each 
province’s location in the convergence clubs is influenced 
by its neighbors.

Figure 6 presented a conditional map of  CO2-I. These fig-
ures demonstrated the  CO2-I of provinces in 2016 compared 
to 2002. Accordingly, the dynamics of  CO2-I are different in 
different provinces. While the provinces of Ardabil, Zanjan, 
West Azerbaijan, Kurdistan, and Yazd have improved, in 
Fars, Chaharmahal and Bakhtiari, Khorasan, Semnan, and 
Qom provinces, the situation has worsened. The intensity of 
 CO2 emissions in Iran is increasing. Also, the results showed 
that there was a fundamental difference in the overall  CO2-I 
and dynamics of  CO2-I in Iranian provinces.

These findings have policy implications for emissions 
reduction targets, as recognizing differences in convergence 
patterns in Iranian provinces helps design and implement 
emission reduction policies.

The amount and intensity of carbon dioxide emissions in 
Iran are high for two main reasons: macro and micro. In both 
categories, based on the results obtained in this paper, it is 
important to pay attention to regional spillover effects. At 
the macro level, the high  CO2-I in Iran is related to national 
and regional reasons. Factors such as the low price of fos-
sil fuels are important at the national level. A different and 
unequal technology pattern between regions can lead to the 
high  CO2-I and  CO2-I divergence at the regional level. So, 
the spillover effects of  CO2 emissions should be considered 
by the policymakers, and paragraph 3 of Article 6 of the 
Sixth Development Plan of Iran (2017–2021), in which the 
distribution of funds obtained from pollution tax is limited 
to population proportion should be changed by consider-
ing the spillover effects of  CO2 emissions for neighboring 
cities or provinces. At the micro-level, the main factors of 
high energy intensity and subsequent increase in  CO2 emis-
sions in Iran are the following: low and out-of-date power 
plants (Iranian parliament research center, 2015a). About 
1.5 times higher electricity transmission and distribution 
losses in Iran compared to the global average (data. world 

bank. org), vehicles with old technologies and high energy 
consumption, more in low-income areas, weakness of rail 
transportation system, disadvantages of intercity and inter-
city road networks and heavy traffic loads, a high share of 
old technology industries and low share of high-tech indus-
tries in GDP (Iranian parliament research center, 2015b; 
Shahnazi 2021), and imbalance in the type of industry in 
different provinces of Iran.

In order to promote regional convergence, the adoption of 
new technologies and greater use of renewable energy, mak-
ing older equipment more efficient, and changing consumer 
behavior are effective to achieve long-term convergence. 
Therefore, the Iranian government must provide policy 
tools to introduce and disseminate technologies throughout 
the provinces. At the same time, the provinces, especially 
those that use inefficient technologies and have the high  CO2 
emission density (including Hormozgan, Qazvin, Hamadan, 
Isfahan, Kermanshah, Sistan and Baluchestan, Qom, Gilan, 
and South Khorasan), must be active in promoting energy-
intensive and low-emission technologies. Of course, adopt-
ing new technologies must consider local characteristics and 
regional compatibility. Providing incentives for technologi-
cal development and innovation, efficient energy production, 
and distribution is also effective in convergence. Hence, as a 
complementary policy, supportive fiscal policy can be effec-
tive. The government can reduce taxes on purchasing new, 
energy-intensive, and low-emission technologies or provide 
financial subsidies to adopt efficient technologies.
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