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Abstract
The emission sources and their health risks of fine particulate matter (PM2.5) in Siheung, Republic of Korea, were investigated 
as a middle-sized industrial city. To identify the PM2.5 sources with error estimation, a positive matrix factorization model was 
conducted using daily mean speciated data from November 16, 2019, to October 2, 2020 (95 samples, 22 chemical species). 
As a result, 10 sources were identified: secondary nitrate (24.3%), secondary sulfate (18.8%), traffic (18.8%), combustion for 
heating (12.6%), biomass burning (11.8%), coal combustion (3.6%), heavy oil industry (1.8%), smelting industry (4.0%), sea 
salts (2.7%), and soil (1.7%). Based on the source apportionment results, health risks by inhalation of PM2.5 were assessed for 
each source using the concentration of toxic elements portioned. The estimated cumulative carcinogenic health risks from the 
coal combustion, heavy oil industry, and traffic sources exceeded the benchmark, 1E-06. Similarly, carcinogenic health risks 
from exposure to As and Cr exceeded 1E-05 and 1E-06, respectively, needing a risk reduction plan. The non-carcinogenic 
risk was smaller than the hazard index of one, implying low potential for adverse health effects. The probable locations of 
sources with relatively higher carcinogenic risks were tracked. In this study, health risk assessment was performed on the 
elements for which mass concentration and toxicity information were available; however, future research needs to reflect the 
toxicity of organic compounds, elemental carbon, and PM2.5 itself.

Keywords  Fine particulate matter · Source apportionment · Positive matrix factorization · Health risk assessment · 
Carcinogenic risk

Introduction

Fine particulate matter (PM2.5) in the atmosphere is classi-
fied as a group 1 carcinogen by the World Health Organiza-
tion (WHO) owing to its carcinogenicity to humans (WHO 
2005; Anderson 2009). In many countries, PM2.5 concentra-
tion is used as a major indicator of air quality, and significant 
efforts have been made to reduce PM2.5 pollution (Riojas-
Rodríguez et al. 2016; Nazarenko et al. 2021). For a proper 
PM2.5 management, pollution sources should be accurately 
managed by determining the relationship between the source 
characteristics and atmospheric concentrations (Kim et al. 
2019; Fang et al. 2020; Long et al. 2021). However, when 
PM2.5 is released into the atmosphere, it immediately goes 
through complex mechanisms such as advection, diffusion, 
reaction, and deposition; therefore, it is difficult to identify 
its source (Anderson 2009; Riojas-Rodríguez et al. 2016). 
Thus, to effectively clarify the mechanisms and character-
istics of PM2.5 pollution and improve air quality, scientific 
methods should be applied to identify and quantify PM2.5 
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sources (Wang et al. 2012; Belis et al. 2013; Hopke 2016). In 
addition, as the impacts on human health vary according to 
PM2.5 source, management priorities should be defined based 
on the evaluation of health impacts and source apportionment 
(Yang et al. 2013; Kim et al. 2015).

Receptor models based on chemical mass balance and 
principal component analysis as a statistical method have 
been widely used to identify PM2.5 sources (Samara et al. 
2003; Choi et al. 2013; Yang et al. 2013). Karagulian et al. 
(2015) have reported a total of 419 source apportionment 
studies conducted in 51 countries around the world. Among 
the principal component analysis methods, positive matrix 
factorization (PMF), which limits factors to those with posi-
tive values, is one of the most actively used receptor models 
worldwide, including in the USA (Paatero and Tapper 1994; 
Polissar et al. 2001; Han et al. 2017), South Korea (Kim et al. 
2018; Park et al. 2020), China (Zong et al. 2016; Wu et al. 
2018; Zhao et al. 2019; Lv et al. 2021), and Vietnam (Cohen 
et al. 2010). PMF modeling has its own error review capabili-
ties, such as bootstrapping (BS) and displacement (DISP), 
which leads to a relatively accurate source apportionment 
and is useful for interpreting source profiles based on domain 
knowledge. In addition, new approaches have been attempted 
to improve their usability (Brown et al. 2015; Wang et al. 
2018; Du et al. 2021). More recently, advanced methods such 
as dispersion normalized (DN) PMF have emerged (Dai et al. 
2020, 2021), and matrix factorization with Bayesian meth-
odology has also been used in receptor models (Park and Oh 
2015; Park et al. 2018, 2021).

The health risk assessment coupled with source appor-
tionment can be used to develop more specific environmen-
tal health policies because the health risks due to exposure 
to PM2.5 may vary depending on the emission source (Yang 
et al. 2013; Leogrande et al. 2019; Kim et al. 2019; Wang 
et al. 2020; Zhang et al. 2020). It is shown that oxidative 
potentials per PM mass differs greatly depending on the 
emission sources such as vehicle exhaust and secondary aer-
osols (Shiraiwa et al. 2017). Accordingly, health risk assess-
ments by sources were considered essential for comprehen-
sive understanding behavior of particulate matter (PM) (Li 
et al. 2013; Fan et al. 2021; Choi et al. 2022). Also, although 
the importance of evaluation of ambient PM that takes into 
consideration size, chemical composition, and source of par-
ticles has been pointed out (Cassee et al. 2013), those factors 
have rarely been involved in the health or toxicity assessment 
(Hannigan et al. 2005; Kim et al. 2020; Fushimi et al. 2021). 
Recent relevant studies have investigated specific sources 
and chemical components of air pollution that affect human 
health and compared the assessment results to those of other 
regions, but these studies are still lacking (Fan et al. 2021).

To date, far too little attention has been paid to conduct 
both source apportionment and health risk assessment simul-
taneously in middle-sized industrial cities that could exist in 

any country in the world, and rather, only some large cities 
are being studied (Hu et al. 2012; Yang et al. 2013; Fu et al. 
2021). Air pollution is generally more severe in industrial 
areas, owing to local industrial emissions (Fu et al. 2021; 
Shende and Qureshi 2022). The negative impact to human 
health in these areas are expected to be greater than those to 
humans in areas with less pollution because of the presence 
of pollutants such as heavy metals, organic carbon (OC), 
or elemental carbon (EC) (Samara et al. 2003; Kumar et al. 
2020). Therefore, the method source apportionment inte-
grated with health risk assessment needs to be applied as 
a basis for the development of air pollution management 
policies, especially in industrial areas.

The main purpose of this study was to identify the sources 
of PM2.5 and to evaluate the health risk of each source 
type in Siheung, which is a city with national industrial 
complexes located in the Republic of Korea. The specific 
aims of this study were to (1) identify and apportion PM2.5 
sources with error estimation, (2) assess health risks of 
PM2.5 inhalation and the contribution of each source to 
these health risks, and (3) identify the characteristics of 
the sources that represent higher health risks and explore 
appropriate PM2.5 reduction measures based on a source-
based health risk assessment. The target area of this study 
is a medium-sized industrial city, which is similar to many 
other industrial cities worldwide.

Materials and methods

Study site, sampling, and analysis

Siheung City is located at approximately 20 km southwest 
of Seoul, Republic of Korea, and it has a population of 
approximately 0.56 million (as of 2021). In the southwest 
of Siheung City, 10,000 factories are located in a national 
industrial complex, with an area of approximately 165 mil-
lion m2 (Siheung City’s official website, https://​www.​siheu​
ng.​go.​kr/​engli​sh/, last access: 10 August 2021). The main 
industrial fields include textiles, chemicals, metal smelting, 
printing, and paper. Siheung City has high accessibility to 
Seoul owing to the highways and nearby ports; therefore, 
industrial activities are prominent in that area. It shares 
city-regional characteristics with medium-sized industrial 
cities in other major countries worldwide. Figure 1 illus-
trates the location of Siheung City and its industrial com-
plexes. The daily average PM2.5 concentrations in Siheung 
City were compared with those of other industrial cities in 
Korea, China, and Germany. Figure 2 shows the PM2.5 con-
centration levels of industrial cities in China and Germany 
(Beijing, Shanghai, Hamburg, Kassel), in Korea (Ulsan, 
Yeosu, Incheon, and Daebudo), and Seoul, the capital city 
of Korea. For the data, the air quality index value obtained 
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from the Air Quality Historical Data Platform (https://​aqicn.​
org/, last access: 10 August 2021) was converted into mass 
concentration.

To quantify the chemical composition of PM2.5, samples 
were collected every three or four times a week over 24 h 

from November 2019 to December 2020 at the rooftop of 
Jeongwnag-dong National Air Quality Measuring Station 
(37.3472°N, 126.7399°E, shown as a red star in Fig. 1), which 
is approximately 10 m above the ground level. A PM2.5 sam-
pler (PMS-204, APM Engineering, South Korea) with three 

Fig. 1   Locations of this study site (Siheung city and sampling site)

Fig. 2   Average daily PM2.5 concentration comparisons between the sampling site and other sites
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parallel channels was used to collect PM2.5 samples. Two 
channels were installed with Teflon filters (2 μm pore size 
and 47 mm diameter, Measurement Technology Laboratories, 
USA) and one channel with a quartz filter (47 mm diameter, 
Pall Corporation, USA). Each sampler was operated for 24 h 
at a 16.67 L/min flow rate. The mass concentration, ionic com-
ponent, OC, EC, and elemental components of PM2.5 were 
analyzed as follows. The mass concentration was calculated 
by measuring the weight of a 24 h dried Teflon filter (PT47P, 
MTL, US) before and after sample collection, and then divid-
ing the obtained value by the collected air volume. The weight 
of the filters was measured after removing static electricity at 
a constant temperature (21 ± 1.5 °C) and humidity (35 ± 5%). 
Moreover, the weight of the blank filter was measured and 
used for correction. Ion component analysis was performed 
by ion chromatography (930 Compact IC Flex, Metrohm, 
Switzerland) using a Teflon filter (TF-10000, PALL, USA). 
In the analysis, each of the entire sampled filter was extracted 
for 120 min in a bath-type sonicator using 40 ml of distilled 
water, and then filtered using a 0.45 µm membrane. For OC 
and EC, a quartz fiber filter paper (7407, PALL, USA) cut to 
a diameter of 4 mm in the sampled portion was used, and the 
analysis was performed using the thermal optical transmit-
tance (TOT) method in a carbon analyzer (laboratory OC-EC 
aerosol analyzer, Sunset Lab, USA), and the analysis condi-
tions followed the NIOSH 5040 protocol. The trace elements 
were analyzed by energy dispersive X-ray fluorescence (ED-
XRF) spectroscopy (ARL QUANT'X ED XRF Spectrometer, 
Thermo Fisher Scientific, USA) using Teflon filters (PT47P, 
MTL, US) without additional pretreatment. Namely, each of 
the entire sampled filter was used in the measurement. A total 
of 29 components were analyzed. Including the mass concen-
tration analysis, 6 ionic species (NO3

−, SO4
2−, NH4

+, K+, Na+, 
and Cl−), carbons (OC and EC), and 21 species of elemental 
components (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Ba, 
Fe, Ni, Cu, Zn, As, Se, Br, and Pb) were quantified.

Positive matrix factorization modeling 
and combined analysis with meteorological data

The positive matrix factorization (PMF) model has been 
widely used as a method of factor analysis to derive air pol-
lution sources from speciated sample data (Paatero and Tap-
per 1994; Paatero 1997; Hopke 2016). The data matrix can 
be separated into factor contributions (G) and factor profiles 
(F) (United States Environmental Protection Agency (US 
EPA 2014). The equation for the PMF model is given by 
Paatero and Tapper (1994).

where X is a matrix of the sample dataset (e.g., n × j matrix, 
where n is the sampled date and j is the chemical species 
of the data), G is the source contribution matrix (e.g., n × q 

(1)X = G × F + E

matrix, where q is the source contribution), F is the source 
profile matrix (e.g., q × j matrix), and E is a residual matrix 
(e.g., n × j matrix).

In Eq.  (1), all elements of matrices G and F are 
constrained to positive values. To derive the appropriate 
G and F matrices, the objective function Q in Eq. (2) was 
minimized (Paatero 1997).

where n is the number of samples, m is the number of 
species, eij is the residual (e.g., element of matrix E), and �ij 
is the data uncertainty (e.g., uncertainty of chemical species 
j at date i).

The US EPA PMF version 5.0.14 was used to estimate 
the source contribution and profile in the target area. The 
concentration data for the modeling included the pre-
processed chemical composition analysis of 22 substances 
(NO3

−, SO4
2−, NH4

+, K+, Na+, Cl−, OC, EC, Mg, Al, Si, Ca, 
Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, and Pb) and PM2.5 mass 
concentration. The pretreatment process considered the ratio 
of cations and anions in PM2.5, and data were excluded if 
concentrations were below the detection limit or when an 
outlier was detected. If there were duplicate measurements, 
one was selected for use. Data with an S/N ratio of 0.2 
or less were also removed. This method is an established 
procedure reported in previous studies (Choi et al. 2013; 
Kim et al. 2018; Park et al. 2020). The data uncertainty was 
calculated using Eq. (3), according to the US EPA guidelines 
(US-EPA 2014).

where MDL is the method detection limit and Conc. is the 
concentration (μg/m3) of the species, (e.g., Xij). MDL values 
of the elemental components are listed in Table S1.

The data used for the modeling included 95 daily average 
values. The number of sources (e.g., q) in the model was 
selected by repeated modeling. Moreover, BS and DISP 
analyses in the US EPA PMF 5.0 were conducted to confirm 
the appropriate range of major chemical species by source. 
These functions are widely used to investigate errors and 
rotational ambiguity (Dai et al. 2020). PMF results of 8 to 
10 factors were considered for the best solution.

The CPF analysis was applied to investigate source 
directionality and the PSCF analysis was applied to locate 
possible source areas. The hybrid single-particle Lagrangian 
integrated trajectory (HYSPLIT 5) model and gridded 
meteorological data from the US National Oceanic and 
Atmospheric Administration were used to calculate air 
parcel backward trajectories.

(2)Q =

n∑
i=1

m∑
j=1

(
eij

�ij

)2

(3)

𝜎ij =

�
(5∕6) ×MDL√

(Conc. × 0.1)2 + (0.5 ×MDL)2
(if Conc. ≤ MDL)

(if Conc. > MDL)
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The conditional probability function (CPF) enable to 
analyze the changes in PM2.5 concentrations for each source 
according to wind direction and speed (Carslaw 2015). The 
CPF is defined as CPF = mθ/nθ, where mθ represents the 
samples above a certain concentration in the wind direction 
θ, and nθ is the total numbers of samples in the same wind 
direction. CPF values were visualized using hourly wind 
direction and speed data combined with PMF source 
contributions using the OpenAir package in R (version 4.0.3, 
Vienna, Austria). Meteorological data were obtained from the 
weather station located at the same position as the sampling 
site (37°20′48′′N 126°44′24′′E) and operated by the Korea 
Meteorological Administration (data are available at https://​
data.​kma.​go.​kr/, last access: 10 August 2021). The upper 25% 
of PMF source contributions was used as the threshold criteria.

Subsequently, backward trajectory analysis was conducted 
using the Hybrid Single-Particle Lagrangian Integrated 
Trajectory (HYSPLIT) model. The transboundary airmass 
transport pathways from the sampling site were predicted. 
According to the sampling date, 24  h and 72  h of back 
trajectories were analyzed in 1 h increments. The possible past 
routes were tracked using the Global Data Assimilation System 
(GDAS) 1-degree meteorological data. The HYSPLIT version 
5.0 and PySPLIT, which is a Python-compatible package 
(Warner 2018), were used. The potential source contribution 
function (PSCF) was calculated based on the results of the 
backward trajectory analysis. The PSCF model indicates the 
conditional probability of air coming from an area (Ashbaugh 
et al. 1985) and is represented by Eq. (4).

where mij is the total number of trajectory endpoints that 
exceed the threshold concentration in the i, jth grid cell; and 
nij is the total number of trajectory endpoints that pass the 
i, jth grid cell. In this study, the threshold concentration for 
mij was in the 70th percentile.

The weighted PSCF (WPSCF) value can lead to more 
reliable results because the PSCF value can have high 
uncertainty in some cases (Polissar et al. 2001). Therefore, 
the WPSCF was calculated using Eq.  (5). In addition, 
visualization was performed using WPSCF 

(
nij
)
 at each grid 

and interpolated by Kriging. The results and discussion of the 
combined analysis with meteorological data is provided in 
Text S1.

(4)PSCF = mij∕nij

(5)

WPSCF
�
nij
�
=

⎧⎪⎨⎪⎩

1.0 × PSCF
�
nij
�
(nij > 3navg)

0.7 × PSCF
�
nij
�
(3navg > nij > 1.5navg)

0.4 × PSCF
�
nij
�
(1.5navg > nij > navg)

0.2 × PSCF
�
nij
�
(navg > nij)

Health risk assessment

Using the species concentration for each source obtained 
through PMF modeling, the health risk was calculated 
following the guidelines established by the US EPA 
(2013, 2009). We evaluated only the substances with 
toxicity values, similar to previous studies on health risks 
of air pollution (Choi et al. 2011; Hu et al. 2012; Yang 
et al. 2013; Zhao et al. 2021; Fu et al. 2021). Therefore, 
the health risk results of this study did not reflect the ion 
components, OC, EC, and PM2.5 itself. The health risk was 
assessed only for toxic elements in PM2.5.

As inhalation is the predominant pathway for human 
exposure to PM2.5-bound toxic elements, we considered 
only the inhalation pathway for carcinogenic (As, Cr, Ni, 
and Pb) and non-carcinogenic (As, Cr, Cu, Ni, Pb, V, and 
Mn) risk estimations. For Cr, because its hexavalent and 
trivalent forms generate different levels of health impacts, 
the ratio of hexavalent to trivalent was set to 3:7 by refer-
ring to the abundance ratio in the PM of other industrial 
cities (Torkmahalleh et al. 2013; Widziewicz et al. 2016).

The average daily dose of PM2.5-bound trace elements 
via inhalation (ADDinh) was calculated using Eq. (6) (US 
EPA 2009).

where C represents the mean concentration of a pollutant 
in the air (μg/m3) over the sampling period, and ET is 
the exposure time (h/d). EF is the frequency of exposure 
(365 days/year), ED is the exposure duration (y), and AT is 
the average time in h ( ED × 365× 24).

The health risk assessment was based on adults residing 
in Korea. The exposure parameters used in the cancer and 
non-cancer risk assessments and their sources are listed 
in Table S2.

To estimate the carcinogenic risk by inhalation of 
PM2.5-bound trace elements, the incremental lifetime can-
cer risk (ILCR) was calculated following the risk assess-
ment guidelines established by the US EPA (2009, 2013). 
The ILCRinh was calculated using Eq. (7) (US EPA 2009).

where IUR is the inhalation unit risk (m3/μg).
According to the US EPA(1998, 2013), an ILCR lower 

than 1 × 10−6 is regarded as negligible, an ILCR above 
1 × 10−4 is likely to be harmful to human beings, and 
an ILCR value between 1 × 10−6 and 1 × 10−4 indicates 
a tolerable risks, but needing risk reduction plans. The 
IUR values were based on credible values from the US 
EPA’s Integrated Risk Information System (IRIS), and 
the Office of Environmental Health Hazard Assessment, 

(6)ADDinh(μg∕m
3) =

C × ET × EF × ED

AT

(7)ILCRinh = ADDinh × IUR
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(OEHHA) from the US EPA (2021), depending on the 
element. Table 1 shows the IUR values of each element, 
their sources, and the calculation results of health effects.

The calculation method of non-carcinogenic risk is 
given in Text S1 and the results and discussion for the non-
carcinogenic risk is provided in Text S2.

The health risks calculated in Siheung were compared to 
those in Seoul and Daebudo, of which measured data were 
obtained from the literature (Kim et al. 2018; Park et al. 
2019). Median values and the same exposure parameters 
were used in the health risk estimation for the comparison 
using consistent manners. The period of available data was 
2013–2014 for Seoul, 2019–2020 for Siheung, and 2016 for 
Daebudo.

Results and discussion

PM2.5mass concentration and chemical speciation

The average mass concentration of PM2.5 over the sampling 
period (11/16/2019 to 10/02/2020) was 23.5 ± 13.9 μg/m3. 
A time series plot is shown in Fig.S1 to compare the PM2.5 
concentration data obtained in this study and those provided 
from a national monitoring station (https://​www.​airko​rea.​or.​
kr/, last access: August 10, 2021). Both time series presented 
a similar trend, which confirmed the validity of our data 
acquisition. High concentrations (over the Korean daily 
standard of 25 μg/m3) were observed in 37 of the 95 samples, 
primarily in winter and spring (35 cases from November to 
May). The detailed concentrations of PM2.5 and chemical 
species (29 species) are summarized in Table S3.

The PM2.5 concentration levels in Siheung and other cit-
ies are shown in Fig. 2. The average daily PM2.5 concen-
tration in Siheung was similar to that in Seoul and higher 
than those in Yeosu and Ulsan, which are industrial cities 
in South Korea. Seoul and Siheung are cities located in the 

northwest of South Korea and are known to be affected by 
long-range transport of PM2.5 from China (Bae et al. 2019; 
Kumar et al. 2021). The contribution of long-range trans-
port from China to PM2.5 in Seoul was estimated ranged 
from 41 to 44% between 2012 and 2016 (Bae et al. 2019), 
approximately 20% in August, and approximately 60% in 
January and February (Kumar et al. 2021). In comparison 
to industrial cities of other countries, the average PM2.5 con-
centration in Siheung was higher than those in Hamburg and 
Kassel, in Germany, and lower than those in Beijing and 
Shanghai in China. This suggests that source apportionment 
coupled with health risk assessment in Siheung may be an 
example of a small and medium-sized industrial city with 
moderate PM2.5 pollution.

As the measurement and analysis period of this study 
included the COVID-19 lockdown or social distancing 
period in neighboring countries and Korea, we evaluated 
possible interferences. A previous study on air quality 
change in Seoul under COVID-19 social distancing reported 
that the monthly average PM2.5 concentration (from 29 
February to 29 March 2020) decreased by 10.4% in 2020, 
which was contrary to the average increase of 23.7% over 
the corresponding periods in the previous 5 years (Han et al. 
2020). Je et al. (2021) also reported that the mean PM2.5 
level in 2020 decreased by 16.98 μg/m3 nationwide in Korea 
compared to 2019, which represented a decrease of 45.45% 
(p < 0.001). However, significant reductions in PM2.5 were 
observed in Korea even before social distancing owing to the 
changes in transboundary PM2.5 concentration (Kim and Lee 
2018). In China, the average PM2.5 concentration during the 
lockdown period (January to February 2020) was 18 μg/m3, 
which represented a reduction of 30–60% in most regions 
(Bai et al. 2021).

Although there may be a gap between present results and 
previous ones, comparison with previous data is essential 
to obtain detailed information on PM2.5 pollution. A com-
parison of average concentrations of PM2.5-bound chemicals 

Table 1   Toxicological data and carcinogenic risk of PM2.5 in Siheung

*  Critical effects indicated the major carcinogenic effects on humans listed in the literature (Briffa et al. 2020)
**  The sources listed were the original reference of the value, and the values were downloaded from US-EPA (https://​www.​epa.​gov/​risk/​regio​nal-​
scree​ning-​levels-​rsls-​gener​ic-​tables, last access: 10 August 2021)

Chemical IUR (m3/μg) Critical effects* Source** ILCR

Using median 
concentrations

Using 95 
percentile 
concentrations

As 4.3.E-03 Lung irritation, decreased production of both red blood cells 
and white cells, deoxyribonucleic acid (DNA) damage

IRIS 4.47E-06 1.17E-05

Cr6+ 1.2.E-02 Liver and kidney disease, lung cancer IRIS 2.04E-06 4.17E-06
Ni 2.4.E-04 Lung embolisms, lung and nasal cancer IRIS 7.07E-08 1.30E-07
Pb 1.2.E-05 Renal impairment, encephalopathic signs OEHHA 6.92E-08 1.72E-07
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obtained in this study and those by Park et al. (2019) in Seoul 
indicated that Siheung had a higher concentration of Cr than 
Seoul. The average concentrations of As, Pb, Cr, Mn, Ni, Cu, 
Zn, and V, which are major toxic elements, were 4.74, 25.74, 
2.43, 16.37, 1.26, 7.13, 73.55, and 0.40 ng/m3 in Sheung, 
and 5.53, 38.11, 1.74, 16.93, 2.11, 7.92, 100, and 4.30 ng/m3 
in Seoul (Park et al. 2019) respectively. The concentrations 
of toxic elements except Cr were higher in Seoul than in 
Siheung. However, further research is required to determine 
the impacts of reduced concentrations attributed to the effects 
of the COVID-19. When comparing the concentrations of 
elements in Siheung and Seoul during the sampling period 
of this study, the mean concentrations of Pb, Cr, Mn, Ni, Cu, 
Zn, and V in Siheung were 1.6, 3.0, 2.2, 4.0, 2.8, 2.2, and 1.4 
times higher than those in Seoul (Korea Ministry of Envi-
ronment and National Institute of Environmental Research 
2022), respectively. These results might indicate that Siheung 
has a high concentration of Cr and other elements because the 
concentrations were high even during the COVID-19 lock-
down period. This was suggested because these elements 
are considered chemical markers of combustion and traffic 
sources (Farahani et al. 2021), which were reduced during 
the lockdown period. In Beijing, the mean concentrations 
of PM2.5-bounded As, Pb, Cr, Mn, Ni, Zn, and V during the 
winter of 2018 were 4, 44, 15, 34, 8, 110, and 7 ng/m3 (Fan 
et al. 2021), respectively, which are overall higher than those 
obtained in Siheung. The concentrations of the clean case 
presented in the literature showed similar results to those of 
Siheung. In Quebedo, Portugal (Silva et al. 2020), the con-
centrations of As, Cr, and Zn were 0.44, 3.55, and 11.0 ng/
m3, which were lower than those in Siheung, Korea.

Source apportionment of PM2.5 by PMF modeling

The source profile and the time series of PMF factor con-
tribution are shown in Fig. 3 and Fig. 4, respectively. Total 
10 sources of PM2.5 were identified, and all major species 
of the sources were within the DISP intervals (Fig. 3). The 
R2 between observed and predicted PM2.5 concentrations for 
the best solution was 0.92, indicating a reasonable modeling 
result. The 10 sources included secondary nitrate, second-
ary sulfate, traffic, combustion for heating, biomass burning, 
coal combustion, heavy oil industry, smelting industry, sea 
salts, and soil. The sources with the highest contributions 
were the secondary-generated particles (secondary nitrate 
and sulfate) (Fig. 4).

Secondary nitrate had an average contribution of 24.3% to 
PM2.5 mass concentration. The concentration of secondary 
nitrate was relatively high in the winter when the temperature 
was low (Fig. 4). The main species of secondary nitrate are 
NH4

+ and NO3
−, which are formed in urban air primarily 

through gas-particle partitioning (Shi et al. 2019). This 

occurs because nitrogen oxide and ammonia gas, which are 
gaseous precursors in spring and winter, easily react in the 
atmosphere producing particulate nitrate (Choi et al. 2013; 
Park et al. 2020). Secondary sulfate (18.8%) was identified 
by the high concentrations of SO4

2− and NH4
+ (Park 

et al. 2020). The contribution of secondary sulfate tended 
to increase primarily in the summer. This is considered 
to reflect the formation of sulfate in the atmosphere that 
becomes active when both temperature and humidity are 
high (Heo et al. 2009).

Traffic was identified as a source using OC and EC as 
major indicator components, and it contributed to 18.8% 
of the PM2.5. The high component ratio of carbon species 
exhibited the characteristics of automobile pollutants. Fe is 
also considered as an indicator of traffic resuspension as it is 
emitted from the brake wear of gasoline and diesel-powered 
engines (Belis et al. 2013).

Combustion for heating as a pollution source was 
characterized by the high Cl− content (Tian et al. 2020), 
and it presented a high contribution from November 2019 to 
March 2020. This period coincided with the heating periods 
in Korea and northern China. The combustion for heating 
contributed to 12.6% of the PM2.5.

Biomass burning contributed to 11.8% of PM2.5, with K+ 
as its major component (Andreae 1983). Its contribution 
was identified by the high load of OC and the medium 
load of EC (Moon et al. 2008; Liu et al. 2017). In addition, 
biomass burning exhibited seasonal characteristics with 
a high contribution in the winter (Shi et al. 2014), which 
is consistent with the increase in the use of wood fire for 
domestic heating (Choi et al. 2013).

Coal combustion contributed to 3.6% of PM2.5, and As 
and Pb were considered its major indicator components. 
The contribution of coal combustion did not exhibit any 
distinct seasonal fluctuations, which was consistent with 
the characteristics of local sources. For example, Arsenic 
is known as a major marker of coal combustion pollution 
(Duan and Tan 2013), and it is known to be largely emitted 
from fossil fuel burning.

Industrial sources were divided into heavy oil- and 
smelting-related sources. The high ratio of V and Ni was 
considered a characteristic of heavy oil-based industrial 
sources (Jang et al. 2007). For industrial smelting sources, 
the major indicators were heavy metal components such as 
Cu, Cr, Mn, Pb, and Zn (Dai et al. 2015). The industrial 
contributions did not show significant seasonal fluctuations.

Sea salt sources were identified by high concentrations of 
Na, Mg, and K (Park et al. 2020). The source was referred to 
as a fresh seal salt because of the relatively high concentra-
tion of chlorine ions (Han et al. 2017). Its concentrations 
exhibited seasonal characteristics, and the highest contribu-
tions were observed during the winter. Finally, soil sources 
were identified by the existence of representative crustal 
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components such as Mg, Al, Si, Ca, and Ti (Thorpe and Har-
rison 2008; Liu et al. 2017) and they contributed to 1.7% of 
PM2.5.

Park et al. (2020) performed PMF modeling in Seoul 
in 2014–2015 and isolated 9 sources. The contributions of 
secondary sources and traffic sources in Seoul were 6.3 and 
5.3 µg/m3 higher than those in Siheung, respectively. Unlike 
in the study of Seoul (Park et al. 2020), the industrial smelt-
ing source was extracted in this study probably due to non-
ferrous smelter sources in the near national industrial com-
plex. The existence of a smelting source was also observed 

in a PMF modeling study in Daebudo (Kim et al. 2018), 
near Siheung. In the literature, Cu, Zn, and Pb have been 
designated as major markers of industrial smelting sources 
(Kim et al. 2018).

Carcinogenic health risks

The uncertainty of health risk estimates coupled with PMF 
modeling results was calculated. The difference between the 
health risks using the measured values and the health risks 

Fig. 3   Source profile results 
of PMF modeling with DISP 
errors (The black bar corre-
sponds to the left axis, and the 
red dot corresponds to the right 
axis)

* Percent of species: the percentage concentration of each chemical species contributing to each of the sources (i.e., the sum 
of the percent of species values for each element from all sources is 100)
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coupled with PMF model results was within 10% (data not 
shown).

The calculated carcinogenic health risks by elements 
were shown in Table 1. The obtained carcinogenic health 

risks indicated that both the median and 95 percentile 
concentrations of As and Cr6+ exceeded the ILCR value 
of 1E-06, whereas the ILCR values of Ni and Pb did not 
exceed the reference value (Table 1). These results suggest 

Fig. 4   Source contribution 
time-series plot of PM2.5 in 
Siheung, Republic of Korea
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that air pollution management in Siheung should be based on 
pollution sources, focusing on As and Cr sources. This can 
also be confirmed in Table 2, which presents the health risk 
assessment results by element and source. According to the 
estimated health risks from PM2.5 sources using the median 
concentrations, the sources with high health risk potentials 
were coal combustion, oil industries, and traffic, which 
accounted for 48.9%, 20.4%, and 16.0% of the total ILCR 
value, respectively (Table 2). The concentration of portioned 
As and Cr had the greatest influence on the health risk val-
ues of each source. However, the absolute contributions of 
them to PM2.5 mass concentrations were 3.6%, 1.8%, and 
18.8%, respectively (Fig. 4). Figure 5 shows annual average 
contributions of sources to PM2.5 mass concentrations and to 
cumulative cancer risk, and of elements to cumulative cancer 
risks. The contributions of sources to PM2.5 mass concentra-
tion and to health risks were very different. Therefore, the 
contribution of PM2.5 sources might not be representative 
of health risks, which supports the argument that to manage 
PM2.5 with a focus on health risks, the concentration of toxic 
metal elements should be considered rather than total mass 
concentration. (Farahani et al. 2021).

The concentrations of As and Cr that must be reduced to 
achieve negligible health effects were calculated. The results 
indicate that to reduce the health risks of As to below 1E-06, 
the As concentration should be reduced to 1 ng/m3 or less, 
which represents a reduction of at least 75% compared to the 
current level. For Cr, the required concentration reduction 
was at least 50%. Therefore, there is a need for a significant 
reduction in coal combustion, which is the main source of 
As pollution, and in emissions from the oil industry, which 
are the main sources of Cr. In addition, as the seasonal 
differences in ILCR were not significant (data not shown), 
an overall reduction is necessary, instead of a specific-season 
reduction plan.

Strengthening the control of pollutants emitted from 
industrial sources is an important environmental and public 
health issue. Therefore, the industrial emission sources of 
As and Cr in cities such as Siheung need to be managed, 
and efforts to reduce ambient concentrations need to be 
taken. Owing to the COVID-19 pandemic, industrial activ-
ity and traffic were likely restricted compared to usual rates 
during this study. This is supported by Dai et al. (2021), 
who reported that human activities, such as industry and 
transportation, declined during the epidemic outbreak and 
spread. Therefore, it is possible that the health risks assessed 
in this study were underestimated. Therefore, further stud-
ies beyond the pandemic period are needed for an accurate 
estimation of health risks.

The calculated ILCR values for Siheung (2019–2020), 
Seoul (2013–2014), and Daebudo (2016) are shown in 
Table S4. The results of Seoul were calculated from the 
data of Park et al. (2019), and the results of Daebudo were 
calculated from the data of Kim et al. (2018). The health 
risk from As in Siheung (4.52E-06) was lower than those 
in Seoul (1.35E-05) and Daebudo (3.02E-06). This result 
might have been obtained because the Siheung data reflected 
an underestimation of the decrease in human activity owing 
to the COVID-19 pandemic. The health risk values in Nan-
jing (Hu et al. 2012) and Beijing (Fan et al. 2021) in China 
were 9.04E-06 and 1.67E-06, respectively, which were simi-
lar to the value in Siheung. These results indicate that As 
presents a health risk even at low concentrations (ng/m3). 
This is consistent with previous studies suggesting that the 
presence of As in the atmosphere is a major public concern 
for human health (Widziewicz et al. 2016). Nevertheless, 
the health risk of Cr6+, Siheung, and Seoul also exceeded 
1E-06, and Siheung presented the highest value (2.06E-06); 
therefore, Cr pollution in Siheung should be carefully man-
aged. A similar observation of Cr-dominated carcinogenic 

Table 2   Estimated carcinogenic risk in Sihueng (median elemental concentrations used)

Source Toxic elements in PM2.5 Sum of incremental 
cancer risk by 
sourceAs Cr6+ Ni Pb

Secondary nitrate 2.90E-07 – – 2.86E-09 2.93E-07 (4.4%)
Secondary sulfate – – 1.14E-08 – 1.14E-08 (0.2%)
Mobile 8.34E-07 2.30E-07 – 7.07E-09 1.07E-06 (16.0%)
Combustion for heating – 1.32E-07 4.51E-09 7.17E-09 1.44E-07 (2.1%)
Biomass burning 1.52E-07 2.12E-08 2.19E-09 – 1.75E-07 (2.6%)
Coal combustion 3.24E-06 – – 4.02E-08 3.28E-06 (48.9%)
Industry (oil) – 1.32E-06 4.93E-08 – 1.37E-06 (20.4%)
Industry (smelting) – 3.02E-07 – 6.26E-09 3.08E-07 (4.6%)
Sea salts – 5.11E-08 3.53E-09 4.61E-10 5.51E-08 (0.8%)
Soil – – 2.60E-10 6.13E-09 6.39E-09 (0.1%)
Sum of incremental 

cancer risk by element
4.52E-06 (67.2%) 2.06E-06 (30.7%) 7.12E-08 (1.1%) 7.02E-08 (1.0%) 6.71E-06 (100%)
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risk from industrial and traffic sources has been reported in 
Delhi, India (Khillare and Sarkar 2012). Hu et al. (2012) and 
Fan et al. (2021) reported that the carcinogenic risks of Cr 
for adults from PM2.5 in Nanjing and Beijing were 8.70E-05; 
and 2.2E-05, respectively, which are approximately 20.9 and 
5.3 times the value in Siheung. The industries were identi-
fied as Cr sources in this study (Fig. 3). Accordingly, Fan 
et al. (2021) identified the metal smelting industry as the 
main source of Cr.

Conclusion

Ten types of PM2.5 emission sources were derived using 
a PMF model in Siheung, South Korea. Based on the 
sources derived, the carcinogenic and non-carcinogenic 
health risks due to PM2.5 inhalation were estimated. For 
coal combustion, heavy oil industry, and traffic sources, 
the contribution to PM2.5 mass concentration was low 
but exceeded the benchmark carcinogenic health risk 
value (1E-06). Therefore, countermeasures on the PM2.5 

emission sources are better to be performed not only 
based on the PM2.5 mass concentration but also based on 
the health risks. In order to manage the effects of PM2.5 on 
human health in industrial cities, it is necessary to reduce 
the concentration of major toxic elements (especially 
As and Cr) and manage the emission sources. The 
methodology used in this study, which combines PMF 
modeling and health impact assessment, can be used to 
derive source types and calculate health impacts by source 
in other cities.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11356-​022-​20462-0.

Acknowledgements  This work is supported by the Korea Agency 
for Infrastructure Technology Advancement (KAIA) grant funded by 
the Ministry of Land, Infrastructure and Transport (Grant 21NSPS-
B149768-04). The authors appreciate the technical support from the 
Institute of Engineering Research, BrainKorea21 Four research pro-
gram of the National Research Foundation of Korea, and Institute 
of Construction and Environmental Engineering at Seoul National 
University.

Fig. 5   Annual average contributions a of sources to PM2.5 mass concentrations, b of sources to cancer risks, and c of elements to cancer risks

66601Environmental Science and Pollution Research (2022) 29:66591–66604

https://doi.org/10.1007/s11356-022-20462-0


1 3

Author contribution  Young Su Lee: methodology, analysis, 
investigation, visualization, writing. Young Kwon Kim: investigation, 
methodology, visualization. Eunhwa Choi: conceptualization, analysis, 
review, writing. Hyeri Jo: investigation, visualization. Hyeseung Hyun: 
investigation, review. Seung-Muk Yi: methodology, review. Jae Young 
Kim: supervision, writing, review, resources.

Funding  This work is supported by the Korea Agency for Infrastructure 
Technology Advancement (KAIA) grant funded by the Ministry of 
Land, Infrastructure and Transport (Grant 21NSPS-B149768-04).

Data availability  All data generated or analyzed during this study are 
included in this published article and its supplementary information 
files. Also, Sources of publicly available internet data are indicated 
in the text.

Declarations 

Ethics approval and consent to participate  Not applicable.

Consent for publication  All authors agree to publish.

Competing interests  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article's Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article's Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

Anderson HR (2009) Air pollution and mortality: a history. Atmos 
Environ 43:142–152. https://​doi.​org/​10.​1016/j.​atmos​env.​2008.​
09.​026

Andreae MO (1983) Soot carbon and excess fine potassium: long-
range transport of combustion-derived aerosols. Science (80- ) 
220:1148–1151. https://​doi.​org/​10.​1126/​scien​ce.​220.​4602.​1148

Ashbaugh LL, Malm WC, Sadeh WZ (1985) A residence time prob-
ability analysis of sulfur concentrations at grand Canyon National 
Park. Atmos Environ 19:1263–1270. https://​doi.​org/​10.​1016/​
0004-​6981(85)​90256-2

Bae C, Kim BU, Kim HC et al (2019) Long-range transport influence 
on key chemical components of PM2.5 in the Seoul Metropolitan 
Area, South Korea, during the Years 2012–2016. Atmos (2020) 
11:48. https://​doi.​org/​10.​3390/​ATMOS​11010​048

Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review 
and meta-analysis of ambient particulate matter source apportion-
ment using receptor models in Europe. Atmos Environ 69:94–108

Brown SG, Eberly S, Paatero P, Norris GA (2015) Methods for estimat-
ing uncertainty in PMF solutions: examples with ambient air and 
water quality data and guidance on reporting PMF results. Sci 

Total Environ 518–519:626–635. https://​doi.​org/​10.​1016/j.​scito​
tenv.​2015.​01.​022

Carslaw D (2015) The openair manual open-source tools for analysing 
air pollution data. King’s Coll London 287

Cassee FR, Héroux ME, Gerlofs-Nijland ME, Kelly FJ (2013) Par-
ticulate matter beyond mass: recent health evidence on the role 
of fractions, chemical constituents and sources of emission. Inhal 
Toxicol 25:802–812. https://​doi.​org/​10.​3109/​08958​378.​2013.​
850127/​SUPPL_​FILE/​IIHT_A_​850127_​SM0004.​PDF

Choi E, Choi K, Yi SM (2011) Non-methane hydrocarbons in the 
atmosphere of a Metropolitan City and a background site in 
South Korea: Sources and health risk potentials. Atmos Environ 
45:7563–7573. https://​doi.​org/​10.​1016/j.​atmos​env.​2010.​11.​049

Choi E, Muk S, Young Y et al (2022) Sources of airborne particulate 
matter-bound metals and spatial - seasonal variability of health 
risk potentials in four large cities South Korea. Environ Sci Pol-
lut Res. https://​doi.​org/​10.​1007/​s11356-​021-​18445-8

Choi JK, Heo JB, Ban SJ et al (2013) Source apportionment of PM2.5 
at the coastal area in Korea. Sci Total Environ 447:370–380

Cohen DD, Crawford J, Stelcer E, Bac VT (2010) Characterisation 
and source apportionment of fine particulate sources at Hanoi 
from 2001 to 2008. Atmos Environ 44:320–328

Dai Q, Ding J, Song C, et al (2021) Changes in source contributions 
to particle number concentrations after the COVID-19 outbreak: 
insights from a dispersion normalized PMF. Sci Total Environ 
759 https://​doi.​org/​10.​1016/j.​scito​tenv.​2020.​143548

Dai Q, Liu B, Bi X et al (2020) Dispersion normalized PMF provides 
insights into the significant changes in source contributions 
to PM2.5 after the CoviD-19 outbreak. Environ Sci Technol 
54:9917–9927. https://​doi.​org/​10.​1021/​acs.​est.​0c027​76

Dai QL, Bi XH, Wu JH et al (2015) Characterization and source 
identification of heavy metals in ambient PM10 and PM2.5 in 
an integrated Iron and Steel industry zone compared with a 
background site. Aerosol Air Qual Res 15:875–887. https://​doi.​
org/​10.​4209/​aaqr.​2014.​09.​0226

Du X, Yang J, Xiao Z et al (2021) Source apportionment of PM2.5 
during different haze episodes by PMF and random forest 
method based on hourly measured atmospheric pollutant. 
Environ Sci Pollut Res 2021:1–12. https://​doi.​org/​10.​1007/​
S11356-​021-​14487-0

Duan J, Tan J (2013) Atmospheric heavy metals and Arsenic in China: 
situation, sources and control policies. Atmos Environ 74:93–101. 
https://​doi.​org/​10.​1016/J.​ATMOS​ENV.​2013.​03.​031

Fan MY, Zhang YL, Lin YC et al (2021) Specific sources of health 
risks induced by metallic elements in PM2.5 during the winter-
time in Beijing China. Atmos Environ 246:118112. https://​doi.​
org/​10.​1016/j.​atmos​env.​2020.​118112

Fang C, Wang L, Gao H, Wang J (2020) Analysis of the PM2.5 emis-
sion inventory and source apportionment in Jilin City, Northeast 
of China. Environ Sci Pollut Res 27(30):37324–37332. https://​doi.​
org/​10.​1007/​S11356-​020-​07605-X

Farahani VJ, Soleimanian E, Pirhadi M, Sioutas C (2021) Long-term 
trends in concentrations and sources of PM2.5–bound metals and 
elements in central Los Angeles. Atmos Environ 253:118361. 
https://​doi.​org/​10.​1016/j.​atmos​env.​2021.​118361

Fu S, Yue D, Lin W et al (2021) Insights into the source-specific health 
risk of ambient particle-bound metals in the Pearl River Delta 
region China. Ecotoxicol Environ Saf 224:112642. https://​doi.​org/​
10.​1016/J.​ECOENV.​2021.​112642

Fushimi A, Nakajima D, Furuyama A et al (2021) Source contribu-
tions to multiple toxic potentials of atmospheric organic aerosols. 
Sci Total Environ 773:145614. https://​doi.​org/​10.​1016/J.​SCITO​
TENV.​2021.​145614

Han B-S, Park K, Kwak K-H et al (2020) Air quality change in Seoul, 
South Korea under COVID-19 Social Distancing: Focusing on 

66602 Environmental Science and Pollution Research (2022) 29:66591–66604

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.atmosenv.2008.09.026
https://doi.org/10.1016/j.atmosenv.2008.09.026
https://doi.org/10.1126/science.220.4602.1148
https://doi.org/10.1016/0004-6981(85)90256-2
https://doi.org/10.1016/0004-6981(85)90256-2
https://doi.org/10.3390/ATMOS11010048
https://doi.org/10.1016/j.scitotenv.2015.01.022
https://doi.org/10.1016/j.scitotenv.2015.01.022
https://doi.org/10.3109/08958378.2013.850127/SUPPL_FILE/IIHT_A_850127_SM0004.PDF
https://doi.org/10.3109/08958378.2013.850127/SUPPL_FILE/IIHT_A_850127_SM0004.PDF
https://doi.org/10.1016/j.atmosenv.2010.11.049
https://doi.org/10.1007/s11356-021-18445-8
https://doi.org/10.1016/j.scitotenv.2020.143548
https://doi.org/10.1021/acs.est.0c02776
https://doi.org/10.4209/aaqr.2014.09.0226
https://doi.org/10.4209/aaqr.2014.09.0226
https://doi.org/10.1007/S11356-021-14487-0
https://doi.org/10.1007/S11356-021-14487-0
https://doi.org/10.1016/J.ATMOSENV.2013.03.031
https://doi.org/10.1016/j.atmosenv.2020.118112
https://doi.org/10.1016/j.atmosenv.2020.118112
https://doi.org/10.1007/S11356-020-07605-X
https://doi.org/10.1007/S11356-020-07605-X
https://doi.org/10.1016/j.atmosenv.2021.118361
https://doi.org/10.1016/J.ECOENV.2021.112642
https://doi.org/10.1016/J.ECOENV.2021.112642
https://doi.org/10.1016/J.SCITOTENV.2021.145614
https://doi.org/10.1016/J.SCITOTENV.2021.145614


1 3

PM2.5. Int J Environ Res Public Heal 17:6208. https://​doi.​org/​
10.​3390/​IJERP​H1717​6208

Han F, Kota SH, Wang Y, Zhang H (2017) Source apportionment of 
PM2.5 in Baton Rouge, Louisiana during 2009–2014. Sci Total 
Environ 586:115–126

Hannigan MP, Busby WF, Cass GR (2005) Source contributions to 
the mutagenicity of urban particulate air pollution. J Air Waste 
Manag Assoc 55:399–410. https://​doi.​org/​10.​1080/​10473​289.​
2005.​10464​633

Heo J-B, Hopke PK, Yi S-M (2009) Source apportionment of PM 2.5 
in Seoul. Korea Atmos Chem Phys 9:4957–4971. https://​doi.​org/​
10.​5194/​acp-9-​4957-​2009

Hopke PK (2016) Review of receptor modeling methods for source 
apportionment. J Air Waste Manag Assoc 66:237–259

Hu X, Zhang Y, Ding Z et al (2012) Bioaccessibility and health 
risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn 
and Mn) in TSP and PM2.5 in Nanjing. China Atmos Environ 
57:146–152. https://​doi.​org/​10.​1016/j.​atmos​env.​2012.​04.​056

Jang HN, Seo YC, Lee JH et al (2007) Formation of fine particles 
enriched by V and Ni from heavy oil combustion: anthropogenic 
sources and drop-tube furnace experiments. Atmos Environ 
41:1053–1063. https://​doi.​org/​10.​1016/j.​atmos​env.​2006.​09.​011

Ju MJ, Oh J, Choi YH (2021) Changes in air pollution levels after 
COVID-19 outbreak in Korea. Sci Total Environ 750:141521. 
https://​doi.​org/​10.​1016/J.​SCITO​TENV.​2020.​141521

Karagulian F, Belis CA, Dora CFC et al (2015) Contributions to 
cities’ ambient particulate matter (PM): a systematic review 
of local source contributions at global level. Atmos Environ 
120:475–483. https://​doi.​org/​10.​1016/j.​atmos​env.​2015.​08.​087

Khillare PS, Sarkar S (2012) Airborne inhalable metals in residential 
areas of Delhi, India: distribution, source apportionment and 
health risks. Atmos Pollut Res 3:46–54. https://​doi.​org/​10.​5094/​
APR.​2012.​004

Kim I, Lee K, Lee S, Kim SD (2019) Characteristics and health 
effects of PM2.5 emissions from various sources in Gwangju 
South Korea. Sci Total Environ 696:133890. https://​doi.​org/​10.​
1016/j.​scito​tenv.​2019.​133890

Kim I, Park K, Lee KY et al (2020) Application of various cytotoxic 
endpoints for the toxicity prioritization of fine dust (PM2.5) 
sources using a multi-criteria decision-making approach. Envi-
ron Geochem Health 42:1775–1788. https://​doi.​org/​10.​1007/​
s10653-​019-​00469-2

Kim KH, Kabir E, Kabir S (2015) A review on the human health 
impact of airborne particulate matter. Environ Int 74:136–143. 
https://​doi.​org/​10.​1016/j.​envint.​2014.​10.​005

Kim S, Kim TY, Yi SM, Heo J (2018) Source apportionment of 
PM2.5 using positive matrix factorization (PMF) at a rural site 
in Korea. J Environ Manage 214:325–334. https://​doi.​org/​10.​
1016/j.​jenvm​an.​2018.​03.​027

Kim YP, Lee G (2018) Trend of air quality in Seoul: Policy and Sci-
ence. Aerosol Air Qual Res 18:2141–2156. https://​doi.​org/​10.​
4209/​AAQR.​2018.​03.​0081

Korea Ministry of Environment, National Institute of Environmental 
Research (2022) 2020 Annual Report of Intensive Air Quality 
Monitoring Station

Kumar A, Chauhan A, Arora S et  al (2020) Chemical analysis 
of trace metal contamination in the air of industrial area of 
Gajraula (U.P), India. J King Saud Univ - Sci 32:1106–1110. 
https://​doi.​org/​10.​1016/j.​jksus.​2019.​10.​008

Kumar N, Park RJ, Jeong JI et al (2021) Contributions of inter-
national sources to PM2.5 in South Korea. Atmos Environ 
261:118542. https://​doi.​org/​10.​1016/J.​ATMOS​ENV.​2021.​
118542

Leogrande S, Alessandrini ER, Stafoggia M et al (2019) Industrial 
air pollution and mortality in the Taranto area, Southern Italy: 

a difference-in-differences approach. Environ Int 132:105030. 
https://​doi.​org/​10.​1016/j.​envint.​2019.​105030

Li H, Qian X, Wang Q (2013) Heavy metals in atmospheric particulate 
matter: a comprehensive understanding is needed for monitoring 
and risk mitigation. Environ Sci Technol 47:13210–13211. https://​
doi.​org/​10.​1021/​es404​751a

Liu B, Wu J, Zhang J et al (2017) Characterization and source appor-
tionment of PM2.5 based on error estimation from EPA PMF 
5.0 model at a medium city in China. Environ Pollut 222:10–22. 
https://​doi.​org/​10.​1016/j.​envpol.​2017.​01.​005

Long L, He J, Yang X (2021) Characteristics, emission sources 
and health risk assessment of trace elements in size-segre-
gated aerosols during haze and non-haze periods at Ningbo, 
China. Environ Geochem Health 1–19 https://​doi.​org/​10.​1007/​
s10653-​020-​00757-2

Lv L, Chen Y, Han Y et al (2021) High-time-resolution PM2.5 source 
apportionment based on multi-model with organic tracers in 
Beijing during haze episodes. Sci Total Environ 772:144766. 
https://​doi.​org/​10.​1016/j.​scito​tenv.​2020.​144766

Moon KJ, Han JS, Ghim YS, Kim YJ (2008) Source apportionment 
of fine carbonaceous particles by positive matrix factorization 
at Gosan background site in East Asia. Environ Int 34:654–664. 
https://​doi.​org/​10.​1016/j.​envint.​2007.​12.​021

Nazarenko Y, Pal D, Ariya PA (2021) Air quality standards for the 
concentration of particulate matter 2.5, global descriptive analy-
sis. Bull World Health Organ 99:125–137. https://​doi.​org/​10.​
2471/​BLT.​19.​245704

Paatero P (1997) Least squares formulation of robust non-negative 
factor analysis. Chemom Intell Lab Syst 37:23–35. https://​doi.​
org/​10.​1016/​S0169-​7439(96)​00044-5

Paatero P, Tapper U (1994) Positive matrix factorization: a non-
negative factor model with optimal utilization of error estimates 
of data values. Environmetrics 5:111–126. https://​doi.​org/​10.​
1002/​env.​31700​50203

Park MB, Lee TJ, Lee ES, Kim DS (2019) Enhancing source iden-
tification of hourly PM2.5 data in Seoul based on a dataset 
segmentation scheme by positive matrix factorization (PMF). 
Atmos Pollut Res 10:1042–1059. https://​doi.​org/​10.​1016/j.​apr.​
2019.​01.​013

Park ES, Hopke PK, Kim I et al (2018) Bayesian spatial multivariate 
receptor modeling for multisite multipollutant data. Techno-
metrics 60:306–318. https://​doi.​org/​10.​1080/​00401​706.​2017.​
13669​48

Park ES, Lee EK, Oh MS (2021) Bayesian multivariate receptor mod-
eling software: BNFA and bayesMRM. Chemom Intell Lab Syst 
211:104280. https://​doi.​org/​10.​1016/j.​chemo​lab.​2021.​104280

Park ES, Oh MS (2015) Robust Bayesian multivariate receptor mod-
eling. Chemom Intell Lab Syst 149:215–226. https://​doi.​org/​10.​
1016/j.​chemo​lab.​2015.​08.​021

Park EH, Heo J, Kim H, Yi SM (2020) Long term trends of chemical 
constituents and source contributions of PM2.5 in Seoul. Che-
mosphere 251:126371. https://​doi.​org/​10.​1016/j.​chemo​sphere.​
2020.​126371

Polissar AV, Hopke PK, Harris JM (2001) Source regions for atmos-
pheric aerosol measured at Barrow, Alaska. Environ Sci Technol 
35:4214–4226. https://​doi.​org/​10.​1021/​es010​7529

Riojas-Rodríguez H, Da Silva AS, Texcalac-Sangrador JL, Moreno-
Banda GL (2016) Air pollution management and control in Latin 
America and the Caribbean: Implications for climate change. Rev 
Panam Salud Publica/pan Am J Public Heal 40:150–159

Samara C, Kouimtzis T, Tsitouridou R et al (2003) Chemical mass 
balance source apportionment of PM10 in an industrialized urban 
area of Northern Greece. Atmos Environ 37:41–54. https://​doi.​
org/​10.​1016/​S1352-​2310(02)​00772-0

Shende P, Qureshi A (2022) Burden of diseases in fifty-three urban 
agglomerations of India due to particulate matter (PM2.5) 

66603Environmental Science and Pollution Research (2022) 29:66591–66604

https://doi.org/10.3390/IJERPH17176208
https://doi.org/10.3390/IJERPH17176208
https://doi.org/10.1080/10473289.2005.10464633
https://doi.org/10.1080/10473289.2005.10464633
https://doi.org/10.5194/acp-9-4957-2009
https://doi.org/10.5194/acp-9-4957-2009
https://doi.org/10.1016/j.atmosenv.2012.04.056
https://doi.org/10.1016/j.atmosenv.2006.09.011
https://doi.org/10.1016/J.SCITOTENV.2020.141521
https://doi.org/10.1016/j.atmosenv.2015.08.087
https://doi.org/10.5094/APR.2012.004
https://doi.org/10.5094/APR.2012.004
https://doi.org/10.1016/j.scitotenv.2019.133890
https://doi.org/10.1016/j.scitotenv.2019.133890
https://doi.org/10.1007/s10653-019-00469-2
https://doi.org/10.1007/s10653-019-00469-2
https://doi.org/10.1016/j.envint.2014.10.005
https://doi.org/10.1016/j.jenvman.2018.03.027
https://doi.org/10.1016/j.jenvman.2018.03.027
https://doi.org/10.4209/AAQR.2018.03.0081
https://doi.org/10.4209/AAQR.2018.03.0081
https://doi.org/10.1016/j.jksus.2019.10.008
https://doi.org/10.1016/J.ATMOSENV.2021.118542
https://doi.org/10.1016/J.ATMOSENV.2021.118542
https://doi.org/10.1016/j.envint.2019.105030
https://doi.org/10.1021/es404751a
https://doi.org/10.1021/es404751a
https://doi.org/10.1016/j.envpol.2017.01.005
https://doi.org/10.1007/s10653-020-00757-2
https://doi.org/10.1007/s10653-020-00757-2
https://doi.org/10.1016/j.scitotenv.2020.144766
https://doi.org/10.1016/j.envint.2007.12.021
https://doi.org/10.2471/BLT.19.245704
https://doi.org/10.2471/BLT.19.245704
https://doi.org/10.1016/S0169-7439(96)00044-5
https://doi.org/10.1016/S0169-7439(96)00044-5
https://doi.org/10.1002/env.3170050203
https://doi.org/10.1002/env.3170050203
https://doi.org/10.1016/j.apr.2019.01.013
https://doi.org/10.1016/j.apr.2019.01.013
https://doi.org/10.1080/00401706.2017.1366948
https://doi.org/10.1080/00401706.2017.1366948
https://doi.org/10.1016/j.chemolab.2021.104280
https://doi.org/10.1016/j.chemolab.2015.08.021
https://doi.org/10.1016/j.chemolab.2015.08.021
https://doi.org/10.1016/j.chemosphere.2020.126371
https://doi.org/10.1016/j.chemosphere.2020.126371
https://doi.org/10.1021/es0107529
https://doi.org/10.1016/S1352-2310(02)00772-0
https://doi.org/10.1016/S1352-2310(02)00772-0


1 3

exposure. Environ Eng Res 27:210042. https://​doi.​org/​10.​4491/​
EER.​2021.​042

Shi GL, Liu GR, Tian YZ et al (2014) Chemical characteristic and 
toxicity assessment of particle associated PAHs for the short-term 
anthropogenic activity event: during the Chinese New Year’s Fes-
tival in 2013. Sci Total Environ 482–483:8–14

Shi X, Nenes A, Xiao Z et al (2019) High-resolution data sets unravel 
the effects of sources and meteorological conditions on nitrate and 
its gas-particle partitioning. Environ Sci Technol 53:3048–3057. 
https://​doi.​org/​10.​1021/​acs.​est.​8b065​24

Shiraiwa M, Ueda K, Pozzer A et al (2017) Aerosol health effects from 
molecular to global scales. Environ Sci Technol 51:13545–13567. 
https://​doi.​org/​10.​1021/​ACS.​EST.​7B044​17

Silva AV, Oliveira CM, Canha N et al (2020) Long-term assessment of 
air quality and identification of aerosol sources at setúbal, Portu-
gal. Int J Environ Res Public Health 17:1–23. https://​doi.​org/​10.​
3390/​IJERP​H1715​5447

Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust 
particulate matter from road traffic: a review. Sci Total Environ 
400:270–282. https://​doi.​org/​10.​1016/j.​scito​tenv.​2008.​06.​007

Tian Y, Zhang Y, Liang Y et al (2020) PM2.5 source apportionment 
during severe haze episodes in a Chinese megacity based on a 
5-month period by using hourly species measurements: Explore 
how to better conduct PMF during haze episodes. Atmos Environ 
224:117364. https://​doi.​org/​10.​1016/j.​atmos​env.​2020.​117364

Torkmahalleh MA, Yu C-H, Lin L et al (2013) Improved atmospheric 
sampling of hexavalent chromium. J Air Waste Manag Assoc 
63:1313

US-EPA (2014) EPA Positive Matrix Factorization (PMF) 5.0 Funda-
mentals and user guide. Environ Prot Agency Off Researc Dev 
Publushing House Whashington, DC 20460 136

US EPA (2009) Risk assessment guidance for superfund volume I: 
human health evaluation manual (Part F, Supplemental Guidance 
for Inhalation Risk Assessment). Off Superfund Remediat Technol 
Innov Environ Prot Agency I:1–68

US EPA (2013) Users’ guide and background technical document for 
US EPA region 9’s preliminary remediation goals (PRG) table. 
https://​semsp​ub.​epa.​gov/​work/​02/​103453.​pdf. Accessed 18 Aug 
2021

US EPA (2021) Regional Screening Levels (RSLs) Tables. https://​
www.​epa.​gov/​risk/​regio​nal-​scree​ning-​levels-​rsls-​gener​ic-​tables. 
Accessed 18 Aug 2021

Wang Q, Qiao L, Zhou M et al (2018) Source apportionment of PM2.5 
using hourly measurements of elemental tracers and major con-
stituents in an urban environment: investigation of time-resolution 

influence. J Geophys Res Atmos 123:5284–5300. https://​doi.​org/​
10.​1029/​2017J​D0278​77

Wang S, Ji Y, Zhao J et al (2020) Source apportionment and toxicity 
assessment of PM2.5-bound PAHs in a typical iron-steel indus-
try city in northeast China by PMF-ILCR. Sci Total Environ 
713:136428. https://​doi.​org/​10.​1016/j.​scito​tenv.​2019.​136428

Wang Y, Hopke PK, Xia X et al (2012) Source apportionment of air-
borne particulate matter using inorganic and organic species as 
tracers. Atmos Environ 55:525–532. https://​doi.​org/​10.​1016/j.​
atmos​env.​2012.​03.​073

Warner MSC (2018) Introduction to PySPLIT: A python toolkit for 
NOAA ARL’s HYSPLIT model. Comput Sci Eng 20:47–62. 
https://​doi.​org/​10.​1109/​MCSE.​2017.​33015​49

WHO (2005) WHO Air quality guidelines for particulate matter, ozone, 
nitrogen dioxide and sulfur dioxide: Global update 1–21. https://​
doi.​org/​10.​1016/​0004-​6981(88)​90109-6

Widziewicz K, Rogula-Kozłowska W, Loska K (2016) Cancer risk 
from arsenic and chromium species bound to PM2.5 and PM1 – 
Polish case study. Atmos Pollut Res 7:884–894. https://​doi.​org/​
10.​1016/J.​APR.​2016.​05.​002

Wu X, Vu TV, Shi Z et al (2018) Characterization and source appor-
tionment of carbonaceous PM2.5 particles in China - A review. 
Atmos Environ 189:187–212

Yang L, Cheng S, Wang X et al (2013) Source identification and health 
impact of PM2.5 in a heavily polluted urban atmosphere in China. 
Atmos Environ 75:265–269

Zhang L, Xu H, Fang B et al (2020) Source identification and health 
risk assessment of polycyclic aromatic hydrocarbon-enriched 
PM2.5 in Tangshan. China Environ Toxicol Chem 39:458–467. 
https://​doi.​org/​10.​1002/​etc.​4618

Zhao X, Liu Y, Han F et al (2021) Source profile and health risk assess-
ment of PM2.5 from coal-fired power plants in Fuxin. China 
Environ Sci Pollut Res 28:40151–40159. https://​doi.​org/​10.​1007/​
s11356-​020-​11378-8

Zhao Z, Lv S, Zhang Y et al (2019) (2019) Characteristics and source 
apportionment of PM2.5 in Jiaxing. China. Environ Sci Pollut Res 
26(8):7497–7511. https://​doi.​org/​10.​1007/​S11356-​019-​04205-2

Zong Z, Wang X, Tian C et al (2016) Source apportionment of PM 2.5 
at a regional background site in North China using PMF linked 
with radiocarbon analysis: insight into the contribution of biomass 
burning. Atmos Chem Phys 16:11249–11265. https://​doi.​org/​10.​
5194/​acp-​16-​11249-​2016

Publisher's note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

66604 Environmental Science and Pollution Research (2022) 29:66591–66604

https://doi.org/10.4491/EER.2021.042
https://doi.org/10.4491/EER.2021.042
https://doi.org/10.1021/acs.est.8b06524
https://doi.org/10.1021/ACS.EST.7B04417
https://doi.org/10.3390/IJERPH17155447
https://doi.org/10.3390/IJERPH17155447
https://doi.org/10.1016/j.scitotenv.2008.06.007
https://doi.org/10.1016/j.atmosenv.2020.117364
https://semspub.epa.gov/work/02/103453.pdf
https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
https://doi.org/10.1029/2017JD027877
https://doi.org/10.1029/2017JD027877
https://doi.org/10.1016/j.scitotenv.2019.136428
https://doi.org/10.1016/j.atmosenv.2012.03.073
https://doi.org/10.1016/j.atmosenv.2012.03.073
https://doi.org/10.1109/MCSE.2017.3301549
https://doi.org/10.1016/0004-6981(88)90109-6
https://doi.org/10.1016/0004-6981(88)90109-6
https://doi.org/10.1016/J.APR.2016.05.002
https://doi.org/10.1016/J.APR.2016.05.002
https://doi.org/10.1002/etc.4618
https://doi.org/10.1007/s11356-020-11378-8
https://doi.org/10.1007/s11356-020-11378-8
https://doi.org/10.1007/S11356-019-04205-2
https://doi.org/10.5194/acp-16-11249-2016
https://doi.org/10.5194/acp-16-11249-2016

	Health risk assessment and source apportionment of PM2.5-bound toxic elements in the industrial city of Siheung, Korea
	Abstract
	Introduction
	Materials and methods
	Study site, sampling, and analysis
	Positive matrix factorization modeling and combined analysis with meteorological data
	Health risk assessment

	Results and discussion
	PM2.5mass concentration and chemical speciation
	Source apportionment of PM2.5 by PMF modeling
	Carcinogenic health risks

	Conclusion
	Acknowledgements 
	References


