Skip to main content
Log in

Genotoxic and cytotoxic effects of pethoxamid herbicide on Allium cepa cells and its molecular docking studies to unravel genotoxicity mechanism

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 21 May 2022

This article has been updated

Abstract

Pethoxamid is chloroacetamide herbicide. Pethoxamid is commonly used to kill different weeds in various crops. Pethoxamid can leach in the water and soil and can cause toxic effects to other non-target species. Current study is therefore aimed to perform the investigation of the cytotoxic and genotoxic effects of pethoxamid on Allium cepa cells.The root growth, mitotic index (MI), chromosomal aberrations (CAs), and DNA damage were assessed through root growth inhibition, A. cepa ana-telophase, and alkaline comet assays, respectively. Furthermore, molecular docking was performed to evaluate binding affinity of pethoxamid on DNA and very-long-chain fatty acid (VLCFA) synthases. In root growth inhibition test, onion root length was statistically significantly decreased in a concentration dependent manner. Concentration- and time-dependent decreases in MI were observed, whereas increase in CAs such as disturbed ana-telophase, chromosome laggards, stickiness, anaphase bridges, and DNA damage was caused by the pethoxamid on A. cepa root cells. Molecular docking revealed that pethoxamid binds selectively to GC-rich regions in the minor groove of the DNA structure and showed remarkable binding affinity against all synthases taking part in the sequential biosynthesis of VLCFAs. It was concluded that the pethoxamid-induced genotoxicity and cytotoxicity may be through multiple binding ability of this herbicide with DNA and VLCFA synthases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available on demand.

Change history

References

  • El-Ghamery AA, El-Nahas AI, Mansour MM (2000) The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia 65(3):277–287

    Article  CAS  Google Scholar 

  • Al-Khafaji K, Al-Duhaidahawi D, Taskin Tok T (2021) Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. J Biomol Struct Dyn 39(3):3387–3395

    CAS  Google Scholar 

  • Ali MM, Cigerci IH (2017) Anti-cancerous efficacy of alcoholic and aqueous extracts from an endemic plant Thermopsis turcica on Liver Carcinoma Br. J Pharm Res 16:1–5

  • Ali MM, Ciğerci İH (2019a) Genotoxic evaluation of an endemic plant Thermopsis turcica extracts on liver cancer cell line. Pak J Zool 51:355–357

  • Ali MM, İbrahim Hakkı CİĞERCİ (2019b) Evaluation of anti-cancerous and genotoxic mechanisms via gene expression analysis of various extracts from Thermopsis turcica in HepG2 cell line. proceeding in Gut 2019b A1-A166. IDDF2019-ABS-0018 Suppl

  • Amaç E, Liman R (2021) Cytotoxic and genotoxic effects of clopyralid herbicide on Allium cepa roots. Environ Sci Pollut Res Int 28(35):48450–48458. https://doi.org/10.1007/s11356-021-13994-4

  • Amin A (2002) Cytotoxicity testing of sewage water treatment using Allium cepa chromosome aberrations assay. Pak J Biol Sci 5:1184–1888

    Google Scholar 

  • Authority EFS, Arena M, Auteri D, Barmaz S, Brancato A, Brocca D, Bura L, Carrasco Cabrera L, Chiusolo A, Court Marques D (2018) Peer review of the pesticide risk assessment of the active substance spinosad. EFSA J 16(5):e05252

    Google Scholar 

  • Batsale M, Bahammou D, Fouillen L, Mongrand S, Joubès J, Domergue F (2021) Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses. Cells 10(6):1284

    Article  CAS  Google Scholar 

  • Biovia DS (2016) Discovery studio. Dassault Systèmes BIOVIA

  • Böger P, Matthes B, Schmalfuß J (2000) Towards the primary target of chloroacetamides–new findings pave the way. Pest Manag Sci 56(6):497–508

    Article  Google Scholar 

  • Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Menicucci F, Pesnya DS, Popescu A, Romanovsky AV (2018) An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 71(3):191–209

    Article  Google Scholar 

  • Boutin C (2015) Encyclopedia of environmental management. 1st edition. Chapter: Herbicides: non-target species effects. 1st Edition. eBook ISBN 9781351235860

  • Cabuga CC Jr (2017) Allium cepa test: an evaluation of genotoxicity. Proc Int Acad Ecol Environ Sci 7(1):12

    CAS  Google Scholar 

  • Cildir DS, Liman R (2020) Cytogenetic and genotoxic assessment in Allium cepa exposed to imazalil fungicide. Environ Sci Pollut Res 27(16):20335–20343

    Article  CAS  Google Scholar 

  • Ciğerci IH, Ali MM, Kaygısız ŞY, Liman R (2016) Genotoxicity assessment of cobalt chloride in Eisenia hortensis earthworms coelomocytes by comet assay and micronucleus test. Chemosphere 144:754–757

    Article  CAS  Google Scholar 

  • De Campos Ventura Camargo B, Marin Morales MA, Desk S (2016) Micronuclei and chromosome aberrations derived from the action of Atrazine herbicide in Allium cepa meristematic cells. J Earth Sci Environ Stud 1 (1)

  • Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67(17):1907–1924

    Article  CAS  Google Scholar 

  • Dhareesank A, Kobayashi K, Usui K (2005) Phytotoxic activity of pethoxamid in soil under different moisture conditions. Weed Biol Manage 5(4):197–202

    Article  CAS  Google Scholar 

  • Dhareesank A, Kobayashi K, Usui K (2006) Residual phytotoxic activity of pethoxamid in soil and its concentration in soil water under different soil moisture conditions. Weed Biol Manage 6(3):50–54

    Article  CAS  Google Scholar 

  • Eberhardt J, Santos MD, Tillack A, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model 61(8):3891–8 (19)

    Article  CAS  Google Scholar 

  • Fiskesjo G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102(3):99–112

  • Fuerst EP (1987) Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides. Weed Technol 1(3):270–277

    Article  CAS  Google Scholar 

  • García-Medina S, Galar Martínez M, Manuel Gomez-Olivan L, del Consuelo Torres- Bezaury RM, Islas- Flores H, Gasca- Perez E (2020) The relationship between cyto genotoxic damage and oxidative stress produced by emerging pollutants on a bioindicator organism (Allium cepa): the carbamazepine case. Chemosphere 253:126675

    Article  CAS  Google Scholar 

  • Gaulden M (1987) Hypothesis: some mutagens directly alter specific chromosomal proteins (DNA topoisomerase II and peripheral proteins) to produce chromosome stickiness, which causes chromosome aberrations. Mutagenesis 2(5):357–365

    Article  CAS  Google Scholar 

  • Glei M, Schneider T, Schlormann W (2016) Comet assay: an essential tool in toxicological research. Arch Toxicol 90(3):2315–2336

    Article  CAS  Google Scholar 

  • Graves AP, Brenk R, Shoichet BK (2005) Decoys for docking. J Med Chem 48(11):3714–3728

    Article  CAS  Google Scholar 

  • Godwin J, Norsworthy JK, Scott RC (2018) Weed control and selectivity of pethoxamid alone and in mixture as a delayed preemergence application rice. Weed Technol 32(3):537–543. https://doi.org/10.1017/wet.2018.57

    Article  Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an open-source molecular builder and visualization tool. J Chem 4(1):17

    Article  CAS  Google Scholar 

  • Hasenbein S, Peralta J, Lawler SP (2017) Environmentally relevant concentrations of herbicides impact non-target species at multiple sublethal endpoints. Sci Total Environ 607–608:733–743

    Article  CAS  Google Scholar 

  • Jevtic S, Vukojevic V, Djurdjic S, Pergal MV, Manojlovic DD, Petkovic BB, Stankovic DM (2018) First electrochemistry of herbicide pethoxamid and its quantification using electroanalytical approach from mixed commercial product. Electrochim Acta 277:136–142

    Article  CAS  Google Scholar 

  • Jursík M, Kočárek M, Hamouzová K, Soukup J, Venclová V (2013) Effect of precipitation on the dissipation, efficacy and selectivity of three chloroacetamide herbicides in sunflower. Plant Soil Environ 59(4):175–182

    Article  Google Scholar 

  • Kocyigit A, Keles H, Selek S, Guzel S, Celik H, Erel O (2005) Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. Mutat Res/Gen Toxicol Environ Mut 585(1–2):71–78

    Article  CAS  Google Scholar 

  • Kucuk D, Liman R (2018) Cytogenetic and genotoxic effects of 2-chlorophenol on Allium cepa L. root meristem cells. Environ Sci Pollut Res 25(36):36117–36123

    Article  CAS  Google Scholar 

  • Kumari A, Arora S, Kaur R (2021) Comparative cytotoxic and genotoxic potential of benzyl-butyl phthalate and di-n-butyl phthalate using Allium cepa assay. Energ Ecol Environ 6(3):244–257

    Article  Google Scholar 

  • Lewis K, Tzilivakis J, Green A, Warner D (2006) Pesticide Properties DataBase (PPDB)

  • Liman R, Ciğerci İH, Öztürk NS (2015) Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pestic Biochem Physiol 118:38–42. https://doi.org/10.1016/j.pestbp.2014.11.007

  • Liman R, Acikbas Y, Ciğerci İH, Ali MM, Kars M (2020) Cytotoxic and genotoxic assessment of silicon dioxide nanoparticles by Allium and Comet tests. Bull Environ Contam Toxicol 104(2):215–221. https://doi.org/10.1007/s00128-020-02783-3

    Article  CAS  Google Scholar 

  • Liman R, Ali MM, Ciğerci İH, İstifli ES, Sarıkurkcu C (2021) Cytotoxic and genotoxic evaluation of copper oxychloride through Allium test and molecular docking studies. Environ Sci Pollut Res 28(33):44998–45008

  • Madsen JT, Sherson DL, Kralund HR, Kyndi M, Bælum J, Andersen KE (2016) Occupational allergic airborne contact dermatitis caused by pethoxamid–a new herbicide. Contact Derm 74(5):315–316

    Article  Google Scholar 

  • Ma X, Zhang Y, Guan M, Zhang W, Tian H, Jiang C, Tan X, Kang W (2021) Genotoxicity of chloroacetamide herbicides and their metabolites in vitro and in vivo. Int J Mol Med 47(6):1–10

    Article  CAS  Google Scholar 

  • Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281(32):22684–22694

    Article  CAS  Google Scholar 

  • Miskovic K, Bujak M, Baus LM, Glavas OL (2013) Antineoplastic DNA-binding compounds: intercalating and minor groove binding drugs. Arh Hig Rada Toksikol 64(4):593–602

    Article  CAS  Google Scholar 

  • Mitscher LA (2005) Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105(2):559–592

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(1):2785–2791

    Article  CAS  Google Scholar 

  • Nefic H, Musanovic J, Metovic A, Kurteshi K (2013) Chromosomal and nuclear alterations in root tip cells of Allium cepa L. induced by alprazolam. Med Arch 67(3):388

    Article  Google Scholar 

  • Obermeier M, Schröder CA, Helmreich B, Schröder P (2015) The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide. Environ Sci Pollut Res 22(23):18495–18507

    Article  CAS  Google Scholar 

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Chem 3(3):33

    Article  CAS  Google Scholar 

  • Olorunfemi D, Duru E, Okieimen F (2012) Induction of chromosome aberrations in Allium cepa L. root tips on exposure to ballast water. Caryologia 65(2):147–151

    Article  Google Scholar 

  • Pandey AK, Gurbani D, Bajpayee M, Parmar D, Ajmani S, Dhawan A (2009) In silico studies with human DNA topoisomerase-II alpha to unravel the mechanism of in vitro genotoxicity of benzene and its metabolites. Mutat Res/Fundamen Mol Mech Mutagen 661(1–2):57–70

    Article  CAS  Google Scholar 

  • Pedretti A, Villa L, Vistoli G (2004) VEGA–an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des 18(3):167–173

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  • Pirozzi AVA, Stellavato A, Schiraldi C, Giuliano M (2020) Herbicide widespread: the effects of pethoxamid on nonalcoholic fatty liver steatosis in vitro. J Toxicol

  • Price AC, Zhang YM, Rock CO, White SW (2001) Structure of β-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: negative cooperativity and its structural basis. Biochemistry 40(43):12772–12781

    Article  CAS  Google Scholar 

  • Rodríguez-Cruz MS, Pose-Juan E, Marín-Benito JM, Igual JM, Sanchez-Martín MJ (2019) Pethoxamid dissipation and microbial activity and structure in an agricultural soil: effect of herbicide rate and organic residues. Appl Soil Ecol 140:135–143

    Article  Google Scholar 

  • Rosculete CA, Bonciu E, Rosculete E, Olaru LA (2019) Determination of the environmental pollution potential of some herbicides by the assessment of cytotoxic and genotoxic effects on Allium cepa. Int J Environ Res Public Health 16(3):75

    CAS  Google Scholar 

  • Sabeen M, Mahmood Q, Bhatti ZA, Irshad M, Bilal M, Hayat MT, Irshad U, Akbar TA, Arslan M, Shahid N (2020) Allium cepa assay based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation. Saudi J Biol Sci 27(5):1368–1374

    Article  CAS  Google Scholar 

  • Salazar MS, Quintero CJ, Rojas SJ (2020) Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere 249:126–193

    Google Scholar 

  • Saxena P, Chauhan L, Gupta S (2005) Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: spectroscopic basis of chromosome damage. Toxicology 216(2–3):244–252

  • Silveira GL, Lima MGF, Dos GB, Palmieri MJ, Andrade LF (2017) Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178:359–367

    Article  CAS  Google Scholar 

  • Sivaram AK, Logeshwaran P, Surapaneni A, Shah K, Crosbie N, Rogers Z, Lee E, Venkatraman K, Kannan K, Naidu R (2021) Evaluation of cyto-genotoxicity of perfluorooctane sulfonate (PFOS) to Allium cepa. Environ Toxicol Chem 40(3):792–798

    Article  CAS  Google Scholar 

  • Soltani N, Brown LR, Sikkema PH (2018) Weed control in white bean with pethoxamidtank-mixes applied preemergence. Int J Agronomy 2018(3)

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki Y (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  CAS  Google Scholar 

  • Torres PH, Sodero AC, Jofily P, Silva FP Jr (2019) Key topics in molecular docking for drug design. Int J Mol Sci 20(18):45–74

    Article  CAS  Google Scholar 

  • Valverde JR, Marin S, Mellado RP (2014) Effect of herbicide combinations on Bt-maize rhizobacterial diversity. J Microbiol Biotechnol 24(3):1473–1483

    Article  CAS  Google Scholar 

  • Verma SK, Soni R, Gupta P (2021) Chloroacetamide herbicide pretilachlor induces genotoxicity in the fresh water fish Clarias batrachus. Toxicol Environ Chem 2021:1–14

    Google Scholar 

  • WeisshaarBoger HP (1987) Primary effects of chloroacetamides. Pestic Biochem Physiol 28(2):286–293

    Article  Google Scholar 

  • Wang G, Zhu W (2016) Molecular docking for drug discovery and development: a widely used approach but far from perfect. Future Sci 8(14):1707–1710

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Idea was conceived, and supervision was carried by Recep Liman. Data analysis and drafting of article was done by Muhammad Muddassir Ali. Experiments were performed by İbrahim Hakkı Ciğerci and Recep Liman. Molecular docking was performed by Erman Salih Istifli. Editing and proofreading of data were carried by Elena Bonciu.

Corresponding author

Correspondence to Muhammad Muddassir Ali.

Ethics declarations

Ethical approval

Not applicable.

Consent to participation

Not applicable.

Consent for publication

All the authors are agreeing for the publication.

Additional information

Responsible Editor: Gangrong Shi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Part e is missing in the caption of Figure 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liman, R., Ali, M.M., Istifli, E.S. et al. Genotoxic and cytotoxic effects of pethoxamid herbicide on Allium cepa cells and its molecular docking studies to unravel genotoxicity mechanism. Environ Sci Pollut Res 29, 63127–63140 (2022). https://doi.org/10.1007/s11356-022-20166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20166-5

Keywords

Navigation