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Abstract
The presence of negative air ions (NAI) is suggested to be a beneficial factor in improving psychological status and used in 
treating depression as an alternative approach. However, more biological evidence from animal models is needed to ensure 
the effects of NAI on the mood regulation, through which can facilitate identification of possible underlying mechanisms. 
In this study, the chronic mild stress (CMS) protocol was used to induce depressive-like behaviors in mice, and the effects 
of NAI exposure on CMS-induced depression-like behaviors were examined. Thirty-day NAI exposure prevented the CMS-
induced depression-like behaviors as shown by the restoration of sucrose preference and reduced immobility time in the tail 
suspension test. In addition, the elevation of serous corticosterone was present in CMS-treated mice but not existed in those 
with the NAI exposure. Furthermore, we observed altered ratios of some cytokines secreted by type 1 T helper (Th1) cells 
and Th2 cells in CMS-treated mice, but it could be restored after NAI exposure. In conclusion, NAI intervention is able to 
ameliorate CMS-induced depression-like behaviors in mice, and this effect is associated with the alteration of corticosterone 
and functional rebalance between Th1 and Th2 cells.
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Introduction

Air ions are molecules of ionized particles present in the 
atmosphere and generated in a variety of natural or artificial 
ways (Jiang et al. 2018). It has been speculated that exposure 

to positive air ions is harmful to human health, while expo-
sure to negative air ions (NAI) has beneficial health effects. 
Several explorations have focused on the biological effects 
of air ions on mood and behaviors (Bachman et al. 1966; 
Della Vecchia et al. 2020; Olivereau et al. 1981). A meta-
analysis reported that the exposure to the air ions show no 
consistent results on the performances of wheel running, 
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spontaneous locomotion, brain electrical activity, and sleep 
patterns in animals (Bailey et al. 2018), while other studies 
measuring the effects of air ionization on various psycho-
logical parameters related to mood or emotional state have 
demonstrated that higher concentrations of NAI exposure 
are positively associated with mental health (Chu et al. 2019; 
Jiang et al. 2018; Perez et al. 2013).

The etiology of depression is complex and diverse 
(Duman et  al. 2016; Krishnan et  al. 2008). Etiological 
hypotheses of this disorder include the dysfunctions of 
brain monoaminergic system, hyperactivity of hypotha-
lamic–pituitary–adrenal (HPA) axis, inflammatory altera-
tions, and neurotrophic abnormalities (Villas Boas et al. 
2019). The hyperactivity of HPA axis is shown by the fact 
that high serous level of cortisol is present in a large popula-
tion of depressed patients (Hinkelmann et al. 2009; Leonard 
2018) and also in animal models (Wang et al. 2021; Zaletel 
et al. 2016). Cortisol (corticosterone in rodents) is released 
in response to stress and regulates immune and inflamma-
tory processes, energy metabolism, and neuronal survival 
(Nikkheslat et al. 2018; Zunszain et al. 2011). Increasing 
data have evidenced that inflammation and HPA axis hyper-
activity often coexist in the episodes of depression (Cernac-
kova et al. 2020; Gold 2015).

Inflammation has been shown to interact with almost all 
pathophysiological domains known to be related to depres-
sion (Kim et al. 2016; Miller A. H. et al. 2009). Cytokines 
are polypeptides or glycoproteins synthesized and secreted 
by peripheral monocytes, macrophages, lymphocytes, and 
multiple cell types in the brain such as neurons, astrocytes, 
and microglia. They play important roles in the bidirec-
tional immune communication between the brain and the 
periphery (Leonard 2018). Specifically, cytokines produced 
in the periphery can access and together with those gen-
erated within the brain influence the function state of the 
brain through humoral and neural pathways (Capuron et al. 
2011). Cytokines affect many biological processes related to 
brain functions such as neurotransmitter metabolism and its 
activity, neuroendocrine, and neurocircuits relevant to mood, 
depression, and anxiety (Himmerich et al. 2019). Previous 
studies have found that the administration of interferon-γ 
(IFN-γ) and inflammation inducers, lipopolysaccharides, 
in rodents results in altered behaviors similar to those of 
depressed patients (Dantzer et al. 2008; Kentner et al. 2008). 
On the other hand, cytokine antagonists, such as interleu-
kin-1 (IL-1) receptor antagonist and prebiotics, attenuate 
social and/or anxiety behavior in rodents (Arakawa et al. 
2009; Dantzer 2004; Savignac et al. 2016). Besides, it has 
been reported that antidepressant treatment could decrease 
peripheral levels of IL-6, IL-10, tumor necrosis factor 
(TNF)-α, and IFN-γ (Chen et al. 2018; Kohler et al. 2018).

Chronic mild stress (CMS) is a crucial trigger of 
depression (Willner 2017), and CMS-treated animals 

exhibit depression-like behaviors, which can be reflected 
by increase of immobility time in the forced swimming 
and tail suspension tests and reduction of sucrose intake 
in the sucrose preference test (Chen et al. 2021; Garcia 
et al. 2009; Wang et al. 2021). The objective of this study 
is to investigate if NAI exposure affects depression-like 
behaviors in CMS-treated mouse model. To explore pos-
sible contribution of immune responses and HPA axis in 
this process, we measured contents of corticosterone and 
cytokines in the serum. Our results revealed that the NAI 
exposure could ameliorate CMS-induced depression-like 
behaviors in mice as shown by the data from the sucrose 
preference test and tail suspension test. In addition, the 
NAI exposure also interfered with the alterations of cor-
ticosterone and multiple cytokines in the serum of CMS-
treated mice, which may contribute to the behavioral 
changes in CMS-treated mice.

Material and methods

Animals

Six-week-old male C57BL/6 mice were obtained from 
Shanghai Lingchang Biotechnology Co. Ltd, China. Animals 
were maintained in the specific pathogen-free animal facil-
ity and provided regular rodent chow and water ad libitum 
under a 12-h light/dark cycle (lights on at 7:00 a.m.), with a 
temperature of 25 ± 1 °C and a humidity level of 50 ± 10%. 
Prior to the experimental procedure, mice were accommo-
dated in the experiment room for 2 weeks. All procedures 
were carried out in compliance with the Animal Experimen-
tal Ethics Committee (DSF-2020–041) of Shanghai Medical 
School, Fudan University.

Apparatus

Filtered air (FA) box and NAI box (50 cm length × 40 cm 
width × 100  cm height) were equipped with a fan 
(ERF500D1N, Honeywell). The NAI box contained a 
negative ion generator (Shanghai Sailumei Environmen-
tal Protection Technology Co., Ltd, China) and provided 
approximately 4 ×  104 small NAIs per cubic centimeter 
(high-density exposure) at 1 m to the feeding cages; this 
concentration was determined by a combination of the clini-
cal data and previous studies in mouse (Bailey et al. 2018; 
Flory et al. 2010; Terman et al. 1995). Automatic observa-
tion system of atmospheric negative ions (Wide Creative 
Science & Technology, Beijing, China) was used to monitor 
the concentration of NAIs whose ion mobility is not less 
than 0.4  cm2/(V·s).
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Experimental procedure

Mice were housed either in the FA box or NAI box. In each 
box, animals were randomly assigned into two groups: one 
suffered from CMS for 30 days and the other served as con-
trol without CMS treatment. Therefore, the research was 
consisted of 4 groups: (1) control mice in FA box, (2) CMS-
treated mice in FA box, (3) control mice in NAI box, and (4) 
CMS-treated mice in NAI box. Mouse body weight between 
groups was evaluated before and after 30-day exposure. 
After the 30-day exposure, behavioral tests were performed, 
and mice were sacrificed after completing these tests for 
examination of contents of corticosterone and cytokines in 
the serum. Blood samples for corticosterone assays were 
collected at 2:00 p.m.

CMS paradigms

The CMS protocol was conducted according to the well-
established methods with minor modifications (Chen et al. 
2021; Wang et al. 2021; Zhao et al. 2021). The mouse was 
restrained in a 50-mL tube with no space to turn over for 6 h 
every day, along with unpredictable 3-min shaking for 5–7 
times during this period.

Behavioral testing

Behavioral experiments were performed in a sound-proof 
room with a neutral environment. All behavioral tests were 
conducted during the light phase of the light/dark cycle. 
All mice were given a 30-min habituation in the behavio-
ral room before the test. After each animal completed the 
behavioral test, the equipment was thoroughly cleaned to 
eliminate olfactory effects. The experimenter was blind to 
the group identity of the tested mice. Some behavioral tests 
were recorded by a video camera, and then the footages were 
analyzed by a trained researcher.

Open field test

A black square arena (45 × 45 × 30 cm) was used to exam-
ine locomotor activity. Mice were placed in the center of 
the arena and allowed to explore the apparatus freely for 
5 min (Wang et al. 2018). Total distance moving in the field 
was analyzed by the EthoVision XT video tracking software 
(Ver. 12).

Sucrose preference test

All stages of the test were carried out at the same time of the 
day (Zhang et al. 2019). Each cage was provided with two 
drinking tubes containing sucrose water (2% w/v) during 
the first 24-h training phase. Then the next day, one bottle 

with 2% sugar solution and another bottle with regular water 
were provided to mice. After training, mice were deprived 
of water and food for 24 h, then the mice were given the free 
choice to drink from two bottles for 24 h: one was filled with 
a sucrose solution, and the other was filled with water. The 
positions of the bottles in the cage were switched after the 
first 12 h. Sucrose and water consumptions were recorded 
separately before and after the test. Sucrose preference 
% = (sucrose intake/total intake) × 100%; lower preference 
serves an indicator of increased depressed-like behaviors. 
The total intake value is the sum of water intake value and 
sucrose intake value.

Forced swimming test

Animals were individually placed in a transparent acrylic 
cylinder (height 30 cm, diameter 15 cm) for 6 min (Zhao 
et al. 2021), which was filled with tap water to a depth of 
20 cm. The first 2 min were spent for adaptation, and the 
last 4 min were analyzed. Immobility time was evaluated as 
floating or no active movements except those necessary for 
the mouse to keep its head above water. Longer immobil-
ity time serves as an indicator of increased depression-like 
status.

Tail suspension test

In the TST, mice were suspended 30 cm above the floor 
with an adhesive tape applied approximately 1 cm from the 
end of the tail on a metal hook (Xu et al. 2021). At the 
beginning of the test, nearly all the mice attempted to escape 
from hanging, but after a period of struggling, it showed 
intermittent immobility, displaying a state of “behavioral 
despair.” The duration of this state was considered as the 
immobility time. The activities of the mice were recorded 
by a video camera, and then the immobility time during the 
last 4 min of a 6-min testing period was evaluated. Again, 
longer immobility time serves as an indicator of increased 
depression-like status.

Rotarod test

Mice were habituated to the rod for 2 min while it slowly 
rotated (10  rpm-rotations per minute), and they were 
replaced on the rod if they fell off during the 2 min. Testing 
consisted of three trial sessions; each session had a progres-
sively increasing speed from 4 to 40 rpm within 5 min. On 
each of the three trials, the mouse was placed on the rod 
and left there until either 300 s elapsed or until the mouse 
fell off. There was a 1-h break between trials. The average 
performance of total time on the rod for the three-trial ses-
sion was analyzed.
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Y maze

Working memory was evaluated by spontaneous alternation 
Y-maze test (Pontifex et al. 2021). The apparatus comprised 
three identical arms (30 cm × 5 cm × 10 cm), spaced 120° apart. 
The mouse was placed in one arm of the maze and allowed to 
explore freely for 8 min. At the same time, zone transitions 
were recorded by tracking software (EthoVision XT video 
tracking software, Ver. 12). Spontaneous alternation was cal-
culated using the following formula: spontaneous alternation 
% = (number of alternations/total arm entries − 2) × 100.

Cytokine and corticosterone measurement

Blood was collected from orbital sinus in anesthetized mice. The 
serum from blood was isolated by centrifugation for 20 min at 
1000 × g at 4 ℃; then, the aliquots of the samples were stored at 
– 80 °C before they were measured. Cytokines, including gran-
ulocyte-colony stimulating factor (G-CSF), granulocyte–mac-
rophage colony-stimulating factor (GM-CSF), IL-1α, IL-1β, 
IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p70, IL-13, 
IL-15, IL-17, IL-21, IL-23, IFN-γ, and TNF-α in the serum, 
were determined using commercial Interleukin Antibody Arrays 
(QAM-INT-1, RayBiotech Inc.). Corticosterone content was 
determined by using an enzyme-linked immunosorbent assay kit 
(Enzo, ADI-900–071). Experiments were performed in accord-
ance with the manufacturer’s protocols. The concentrations of 
IL-4, 5, 6, 10, and 13 were divided by those of IL-2 and IFN-
γ, respectively, and the ratios were used to evaluate functional 
balance of anti-inflammatory and proinflammatory cytokines.

Statistical analysis

All figures were performed using GraphPad Prism 6 and IBM 
SPSS statistics 20.0. Data were expressed as the mean ± standard 
error of mean (SEM). One-way analysis of variance (ANOVA) 
was used for statistical analysis of data, followed by post hoc 
multiple comparisons with Bonferroni (test of homogeneity of 
variance α is more than 0.05) or Tamhane’s T2 (test of homo-
geneity of variance α is less than 0.05) correction. Statistical 
significance was defined as *P < 0.05, **P < 0.01, ***P < 0.001.

Results

NAI exposure ameliorates CMS‑induced 
depression‑like behaviors

During the 30-day experiment, the concentration of negative 
oxygen ions was monitored (Fig. 1), showing a consistent 
supply of NAIs.

The CMS design and timeline of behavioral observations 
are shown in Fig. 2a. The reduction of preference to sucrose 
reflects the core depression-like behaviors in CMS-induced 
depression animal model (Czeh et al. 2016). As expected, 
the CMS treatment reduced the consumption of sucrose 
solution in FA group (Fig. 2b). Importantly, the negative 
ion intervention restored the sucrose preference in CMS-
treated mice in NAI group compared with those in FA group 
(Fig. 2b).

To further evaluate the effect of NAI on depression-
like behaviors, the tail suspension test and forced swim-
ming tests were performed. In the tail suspension test, the 
CMS treatment led to significantly increased immobility 
time in FA group, but did not do so in NAI group as 
shown by similar immobility time compared with con-
trol mice in NAI group (Fig. 2c). However, in the forced 
swimming test, there were no significant differences 
between control and CMS-treated mice in either FA or 
NAI group (Fig. 2d). In addition, short-term memory 
(Czaczkes 2018), a type of working memory responsible 
for the temporary storage of information, was examined 
using Y maze, and there were no differences among the 
four groups (Fig. 2e).

It is well known that the CMS treatment prevents the 
increase of body weight during the 1-month CMS period 
(Lu et al. 2014). The body weight before the experiment 
was not significantly different among the four groups 
(Fig. 2f). After 30-day experiment, in FA group, there was 
no weight gain in the CMS-treated mice, whereas control 
mice gained more weight than before (Fig. 2f, g). How-
ever, the unchanged body weight during the research in 
CMS-treated mice was also present in NAI group (Fig. 2f, 

Fig. 1  The concentration of negative air ions detected daily. Six air 
samples per minute to detect the concentration, removes the maxi-
mum and minimum values, and average value of the remaining 4 
times are shown by NAI numbers/cm3 in Y axis
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g; Fig. S1), showing that the NAI exposure has no effects 
on the alteration of body weight in CMS-treated mice, 
although it ameliorates CMS-induced depression-like 
behaviors as mentioned above.

To exclude the possibility that the behavioral altera-
tions were associated with inability of locomotion activity, 
we carried out the rotarod test and open-field test, which 
are used to examine motor coordination and spontaneous 
locomotion (Moniruzzaman et al. 2018; Ramshini et al. 
2018). It was found that there was no significant differ-
ence among the groups in the two tests in terms of time 
stayed on the rod and traveled distance in the open field 
(Fig. 2h, i). Taken together, we demonstrate that NAI 
exposure prevents the occurrence of “anhedonia” behav-
ior and some aspects of “despair” behaviors induced by 
the CMS treatment.

Effects of NAI exposure on corticosterone levels 
of CMS‑treated mice

Hyperactivity of the HPA axis is one of well-docu-
mented factors in the etiology of depression, which can 
be reflected by the increased level of cortisol in serum 
(Dean et al. 2017; Kim et al. 2016). Consistently, the 
CMS treatment did induce an increase of the concentra-
tions of serous corticosterone in FA group, but not in 
CMS-treated mice in NAI group (Fig. 3), showing that 
1-month NAI exposure relieves the HPA axis hyperactiv-
ity induced by CMS in mice.

Effects of NAI exposure on cytokine levels 
of CMS‑treated mice

The CMS treatment increases the levels of corticosterone, 
which is known to negatively regulate immune responses 
(Villas Boas et al. 2019; Zaletel et al. 2016). To explore 
possible mechanisms underlying the effects of NAI expo-
sure on CMS-induced depression-like behaviors, we 
next measured the contents of a panel of cytokines in the 
serum, based on the concept that cytokines play impor-
tant roles in immune responses and HPA axis activation 
(Kim et al. 2016). Comparing the data from control and 
CMS-treated mice in FA group would be useful to evalu-
ate if CMS treatment itself interferes the serous levels of 
cytokines. Our results showed that the levels of IL-15 were 
upregulated in CMS-treated mice, while those of IL-7 
were downregulated in the serum (Fig. 4a, b). Comparing 
the data from control mice in NAI and FA groups would 
provide the information if the NAI exposure itself has any 
contribution to alterations of cytokines, and it showed that 
the levels of IL-15 and IL-21 were increased, and those 
of IL-7 and TNF-α were decreased (Fig. 4a–d). In this 
study, a total of 20 cytokines were examined, and only a 

small number of them displayed the changes in the serum, 
showing that specific cytokines are affected by the CMS 
or NAI exposure. The data showing unchanged levels of 
cytokines are included in Fig. S2.

Next, we asked if the NAI exposure contributes to the 
alteration of cytokines in CMS-treated mice. The increased 
levels of IL-15 were no longer existed, while the deceased 
levels of IL-7 were still present in CMS-treated mice with 
the NAI exposure, as compared with those without NAI 
exposure (Fig. 4a, b). There were increasing tendency of 
IL-13 and TNF-α levels in CMS-treated mice although 
the p value was not statistically significant relative to con-
trol mice in FA group; while in NAI group, their levels 
of CMS-treated mice were reduced to the control levels 
(Fig. 4d, e). These results showed that the NAI exposure 
interferes with the changes of serous cytokines in CMS-
treated mice.

Leukocytes, especially T cell population, play a key 
role in immune responses. Th1 cells and Th2 cells are 
the two major subgroups of T cells that are character-
ized primarily on the basis of cytokines secreted (Varade 
et al. 2021). Th1 cells secret type I cytokines (e.g., IL-2 
and IFN-γ) which are mainly pro-inflammatory, while 
Th2 cells secrete type II cytokines (e.g., IL-4, IL-5, IL-6, 
IL-10, and IL-13) which are mainly anti-inflammatory 
(Gharagozloo et al. 2013; Maher et al. 2014). Accumu-
lated evidence supports the idea that stress leads to an 
increase of pro-inflammatory cytokines (Li et al. 2016, 
2020). However, the data from animal models and clinical 
research revealed significant variabilities in type I and 
type II cytokine profiles (Cuervo et al. 2021; Koivisto 
et al. 2019; Razali et al. 2020). It seems to be clear that 
the examination of a single cytokine or small groups of 
cytokines is not sufficient to evaluate the alterations of 
cytokines in depression-related animal models. Instead, 
one way to gain a better insight might be achieved by 
examining the ratios between the two types of cytokines, 
which reflects the balance between them and the tilt 
of immune response (Rostaing et al. 1999; Yoon et al. 
2012). To this end, the ratios of type II (i.e., IL-4, IL-5, 
IL-6, IL-10, and IL-13) and type I cytokines (i.e., IL-2 
and IFN-γ) were calculated. We found that these ratios 
of IL-4/IL-2, IL-5/IL-2, and IL-13/IL-2 were elevated 
in CMS-treated mice, and remarkably, the elevations of 
IL-4/IL-2 and IL-13/IL-2 were prevented by NAI expo-
sure (Fig. 5a, c). There is also a decreased tendency of 
the ratio of IL-5/IL-2 after NAI exposure, although the p 
value was not statistically significant (Fig. 5b). The others 
were not significantly different, and the data are shown 
in Fig. S3. Taken together, it can be concluded that the 
NAI exposure is likely having the ability of preventing 
the functional shift of cytokines to inflammatory status 
in CMS-treated mice.
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Discussion

In this study, we showed that NAI intervention can 
improve the depression-like behaviors and prevent the 
increase of serous corticosterone in CMS-treated mice. 
The data from the comparison of cytokine ratios suggest 

a role of NAI intervention in functional rebalancing type 
I and type II cytokines in CMS-treated mice.

The core depressive symptom of CMS model is 
decreased sucrose preference in rodents (Czeh et  al. 
2016; Willner 2005), and it was confirmed in our CMS-
treated mice. The role of NAI exposure in alleviating 
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depression-like behaviors is supported by the data of the 
restoration of sucrose preference and the reduction of 
immobility time in the tail suspension test in CMS-treated 
mice. However, the immobility time in the forced swim-
ming test was not different between the CMS-treated mice 
with and without NAI exposure, showing that our CMS 
protocol does not fully reflect depression-like behaviors 
and thus is not an ideal model for evaluation of the effects 
of NAI intervention on depression-like behaviors under 
our experimental condition.

Clinical data have shown that high-density negative air 
ionization is effective in treating seasonal affective disorders 
including major depression (Terman et al. 2006; Terman 
et al. 1998). In addition to therapeutic application, it is also 
recommended that NAI exposure either in natural environ-
ment or by artificial way can be used in preventing the onset 
of mental illness for people who had experienced chronic/
acute stress and/or displayed a trend of developing the dis-
orders. Thus, the previous and present findings strongly 

support the idea that NAI intervention is a useful tool or 
providing as an alternative way in treating depression.

Glucocorticoids are the final products of the HPA axis 
and regulate stress-triggered responses through a negative 
feedback with the hypothalamus and pituitary gland (van 
Bodegom et al. 2017). A wealth of evidence documented 
that chronic stress exposure leads to an impairment of the 
negative feedback of the HPA axis with increased levels of 
cortisol (Barfield et al. 2018; Kvarta et al. 2015). The hyper-
activity of HPA axis is observed in the majority of depressed 
patients (Nemeroff et al. 2005; Pruessner et al. 2003). In this 
study, we showed that the elevation of corticosterone in the 
CMS-treated mice could be prevented by the NAI interven-
tion, and this may be one of possible mechanisms underly-
ing its role in ameliorating CMS-induced depression-like 
behaviors in mice.

Patients with depression often show signs of inflamma-
tion, which was illustrated by the increased concentrations of 
cytokines such as IL-1, IL-6, and TNF-α in the peripheral blood 
and cerebrospinal fluid (Leonard 2007; Paudel et al. 2018). It 
has been reported that administration of IFN-α, used to treat 
infective diseases, is a significant risk factor in inducing major 
depressive episode (Miller Andrew H. et al. 2009; Su et al. 
2019). Among 20 cytokines examined, two (IL-15 and IL-7) 
were altered in CMS-treated mice, and more (IL-7, IL-15, IL-21, 
and TNF-α) were changed by NAI exposure either in control 
mice or CMS-treated mice. To evaluate possible contribution of 
cytokines in the ameliorated depression-like behaviors by NAI 

Fig. 2  NAI intervention alleviates depression-like behavior in 
mice after stress exposure. a Diagram of experiment design and 
timeline. b Sucrose preference in the Sucrose preference (SPT). 
The one-way ANOVA test measured the significant differences 
between these groups {F[3,92] = 11.247, ***P < 0.0001; Tam-
hane’s T2 multiple comparisons test showed **P = 0.003 (Con 
vs. CMS); *P = 0.012 (CMS vs. CMS + NAI); **P = 0.009 (CMS 
vs. Con + NAI)}. c Time spent immobile in the tail suspension test 
(TST). The one-way ANOVA test measured the significant differ-
ences between these groups {F[3,90] = 10.431, ***P < 0.0001; Tam-
hane’s T2 multiple comparisons test showed ***P < 0.0001 (Con 
vs. CMS); **P = 0.003 (CMS vs. Con + NAI); ***P < 0.0001 (CMS 
vs. CMS + NAI)}. d Time spent immobile in the forced swimming 
test (FST). The one-way ANOVA test with Tamhane’s T2 multiple 
comparisons test measured the significant differences between these 
groups {F[3,98] = 2.475, P = 0.066}. e Spontaneous alternation in Y 
maze  test (YMT). The one-way ANOVA test with Bonferroni mul-
tiple comparisons test measured the significant differences between 
these groups {F[3,122] = 0.366, P = 0.778}. f Body weight evalu-
ated before the experiment. The one-way ANOVA test with Bonfer-
roni multiple comparisons test measured the significant differences 
between these groups {F[3,87] = 2.509, P = 0.064}. g Body weight 
evaluated after 30-day CMS treatment in mice with or without NAI 
exposure. The one-way ANOVA test measured the significant differ-
ences between these groups {F[3,87] = 45.286, ***P < 0.0001; Bon-
ferroni multiple comparisons test showed ***P < 0.0001 (Con vs. 
CMS); ***P < 0.0001 (Con vs. CMS + NAI); ***P < 0.0001 (CMS 
vs. Con + NAI); ***P < 0.0001 (CMS + NAI vs. Con + NAI)}. h Time 
spent on the rod in the rotarod test (RTT). The one-way ANOVA test 
with Tamhane’s T2 multiple comparisons test measured the signifi-
cant differences between these groups {F[3,81] = 2.681, P = 0.052}. 
i Distance traveled in the open field test (OFT). The one-way 
ANOVA test with Bonferroni multiple comparisons test measured 
the significant differences between these groups {F[3,77] = 2.338, 
P = 0.08}. *P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as 
mean ± S.E.M

◂

Fig. 3  Effects of NAI intervention on corticosterone levels in the 
serum of mice with CMS. A significant difference is observed 
between control (Con) and CMS-treated (CMS) mice in FA group but 
not NAI group. The one-way ANOVA test measured the significant 
differences between these groups {F[3,73] = 2.924, *P = 0.039; Bon-
ferroni multiple comparisons test showed *P = 0.027 (Con vs. CMS)}
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intervention, we analyzed the alterations of ratios of proinflam-
matory and anti-inflammatory cytokines, which may provide a 
whole view concerning the net effects of altered cytokines in 
modulating brain functions of CMS-treated mice. The ratios of 
IL-4/IL-2, IL-5/IL-2, and IL-13/IL-2 were elevated in CMS-
treated mice. After NAI treatment, two of them (IL-4/IL-2 and 
IL-13/IL-2) were reduced significantly, each with the level simi-
lar to that of control mice respectively. The ratio of IL-5/IL-2 
was also reduced although it did not reach the statistical differ-
ence. As IL-2 functions as a type I cytokine, the alterations of 
IL-2-related ratios support the idea that CMS treatment may 
lead to the shift of Th1 inflammatory pathway with deleterious 
effects on mood-related brain functions in mice, whereas NAI 
intervention may prevent or reduce the activation whereby it 
displays beneficial effect in mood regulation.

Limitation of this study

Our results indicated that NAI exposure is capable of pre-
venting the onset of depression-like behaviors induced by 
CMS in mice. The elevation of corticosterone and alteration 
of some cytokine in the serum of the CMS-treated mice is 
dismissed after the NAI intervention, but it should be noted 
that these events are associated with behavioral phenotypes, 
lacking data for showing any causality between them. This 
question can be addressed by using cytokine-deficient mice 
in future studies. It is also unclear how these alterations con-
tribute to brain functions (e.g., the behaviors examined in 
this study). In addition, it is also interest of investing long-
term beneficial effects of NAI exposure for depression-like 
behaviors.

Fig. 4  Effects of NAI intervention on inflammatory cytokine levels 
in serum of mice with CMS. a The concentration of IL-15. The one-
way ANOVA test measured the significant differences between these 
groups {F[3,35] = 4.055, *P = 0.014; Bonferroni multiple compari-
sons test showed *P = 0.033 (CMS vs. Con); *P = 0.015 (Con + NAI 
vs. Con); *P = 0.024 (CMS vs. CMS + NAI); *P = 0.011 (CMS + NAI 
vs. Con + NAI)}. b The concentration of IL-7. The one-way ANOVA 
test measured the significant differences between these groups 
{F[3,34] = 4.485, **P = 0.009; Bonferroni multiple comparisons 
test showed P = **0.003 (CMS vs. Con); **P = 0.003 (CMS + NAI 
vs. Con); *P = 0.032 (Con vs. Con + NAI)}. c The concentration of 
IL-21. The one-way ANOVA test measured the significant differences 
between these groups {F[3,35] = 4.703, P = **0.007; Bonferroni 
multiple comparisons test showed **P = 0.004 (Con vs. Con + NAI); 

*P = 0.029 (CMS vs. Con + NAI); **P = 0.002 (CMS + NAI vs. 
Con + NAI)}. d The concentration of TNF-α. The one-way ANOVA 
test measured the significant differences between these groups 
{F[3,35] = 6.485, **P = 0.001; Tamhane’s T2 multiple comparisons 
test showed *P = 0.033 (CMS + NAI vs. Con); **P = 0.005 (Con vs. 
Con + NAI); *P = 0.044 (CMS vs. Con + NAI)}. e The concentra-
tion of IL-13. The one-way ANOVA test measured the significant 
differences between these groups {F[3,34] = 3.328, *P = 0.031; Bon-
ferroni multiple comparisons test showed **P = 0.003 (CMS vs. 
CMS + NAI)}. f The concentration of IL-6. The one-way ANOVA 
test measured the significant differences between these groups 
{F[3,33] = 3.304, *P = 0.032; Bonferroni multiple comparisons test 
showed **P = 0.006 (CMS vs. Con + NAI); *P = 0.025 (CMS + NAI 
vs. Con + NAI)}. (*P < 0.05, **P < 0.01). 9 ≤ n ≤ 11/group
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Conclusions

Chronic stress is the risk factors in development of depres-
sion, and the CMS protocol is widely used in depression 
animal model, by which we demonstrated beneficial effects 
of NAI exposure on depression-like behaviors in mice. The 
present data together with previous findings highly recom-
mend application of NAI in mood-related clinical practice.
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