Skip to main content

Advertisement

Log in

Non-destructive mercury exposure assessment in the Brandt’s hedgehog (Paraechinus hypomelas): spines as indicators of endogenous concentrations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to its persistence, bioaccumulation characteristics, and toxicity, environmental contamination with mercury (Hg) is of high concern for human health, living organisms, and ecosystems, and its biological monitoring is highly relevant. In this study, the levels of total Hg were measured in organs, tissues, and spines of 50 individuals of Brandt’s hedgehog collected in Iran in 2019. The Hg median levels in kidneys, liver, muscle, and spines were 156, 47, 47, and 20 ng/g dry weight, respectively. The results showed a significant positive correlation between the levels of Hg in kidneys and liver (r = 0.519; p < 0.01) and in spines and muscle (r = 0.337, p < 0.01) and kidneys (r = 0.309, p < 0.05). Significant differences (p < 0.05) in Hg levels in organs and tissues were also observed depending on the sex, weight, length, and age of the individuals. In addition, the median levels of total Hg in kidneys of Brandt’s hedgehogs from an agricultural ecotype (median 190 ± 65) were significantly higher (p < 0.05) than those collected from a forest ecotype (median 126 ± 50), suggesting that the habitat could have a significant impact on animal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data and materials for this work are available upon request.

References

  • Alleva E, Francia N, Pandolfi M et al (2006) Organochlorine and heavy-metal contaminants in wild mammals and birds of Urbino-Pesaro Province, Italy: an analytic overview for potential bioindicators. Arch Environ Contam Toxicol 51:123–134. https://doi.org/10.1007/s00244-005-0218-1

    Article  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K et al (2007) Decreased N-methyl-D-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. Neurotoxicology 28:587–593

    Article  CAS  Google Scholar 

  • Becker DJ, Chumchal MM, Broders HG et al (2018) Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs. Environ Pollut 233:1076–1085. https://doi.org/10.1016/j.envpol.2017.10.010

    Article  CAS  Google Scholar 

  • Ben-David M, Duffy LK, Blundell GM, Bowyer RT (2001) Natural exposure of coastal river otters to mercury: relation to age, diet, and survival. Environ Toxicol Chem An Int J 20:1986–1992

    Article  CAS  Google Scholar 

  • Benhaiem S, Delon M, Lourtet B et al (2008) Hunting increases vigilance levels in roe deer and modifies feeding site selection. Anim Behav 76:611–618. https://doi.org/10.1016/j.anbehav.2008.03.012

    Article  Google Scholar 

  • Beyer WN, Meador JP (2011) Environmental contaminants in biota: interpreting tissue concentrations. CRC Press

    Google Scholar 

  • Bilandžić N, Dežđek D, Sedak M et al (2010) Concentrations of trace elements in tissues of red fox (Vulpes vulpes) and stone marten (Martes foina) from suburban and rural areas in Croatia. Bull Environ Contam Toxicol 85:486–491. https://doi.org/10.1007/s00128-010-0146-2

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  Google Scholar 

  • Braune B, Chételat J, Amyot M et al (2015) Mercury in the marine environment of the Canadian Arctic: review of recent findings. Sci Total Environ 509:67–90

    Article  Google Scholar 

  • Bull KR, Roberts RD, Inskip MJ, Goodman GT (1977) Mercury concentrations in soil, grass, earthworms and small mammals near an industrial emission source. Environ Pollut 12:135–140. https://doi.org/10.1016/0013-9327(77)90016-7

    Article  Google Scholar 

  • Crowe W, Allsopp PJ, Watson GE et al (2017) Mercury as an environmental stimulus in the development of autoimmunity—a systematic review. Autoimmun Rev 16:72–80

    Article  CAS  Google Scholar 

  • Crowley SM, Hodder DP (2019) Factors influencing exposure of North American river otter (Lontra canadensis) and American mink (Neovison vison) to mercury relative to a large-scale reservoir in northern British Columbia, Canada. Ecotoxicology 28:343–353. https://doi.org/10.1007/s10646-019-02027-z

    Article  CAS  Google Scholar 

  • D’Havé H, Scheirs J, Mubiana VK et al (2005) Nondestructive pollution exposure assessment in the European hedgehog (Eriaceus europaeus): I. Relationships between concentrations of metals and arsenic in hair, spines and soil. Environ Toxicol Chem 24(2356). https://doi.org/10.1897/04-597R.1

  • D’Havé H, Scheirs J, Covaci A et al (2006a) Nondestructive pollution exposure assessment in the European hedgehog (Eriaceus europaeus): III. Hair as an indicator of endogenous organochlorine compound concentrations. Environ Toxicol Chem 25:158. https://doi.org/10.1897/05-208R.1

    Article  Google Scholar 

  • D’Havé H, Scheirs J, Mubiana VK et al (2006b) Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations. Environ Pollut 142:438–448. https://doi.org/10.1016/j.envpol.2005.10.021

    Article  CAS  Google Scholar 

  • Dahmardeh Behrooz R, Poma G (2020) Evaluation of mercury contamination in Iranian wild cats through hair analysis. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02148-1

  • Dahmardeh Behrooz R, Poma G, Covaci A (2020) Assessment of persistent organic pollutants in hair samples collected from several Iranian wild cat species. Environ Res 183:109198. https://doi.org/10.1016/j.envres.2020.109198

    Article  CAS  Google Scholar 

  • Dainowski BH, Duffy LK, McIntyre J, Jones P (2015) Hair and bone as predictors of tissular mercury concentration in the Western Alaska red fox, Vulpes vulpes. Sci Total Environ 518:526–533

    Article  Google Scholar 

  • de Castro N, de Oliveira LM (2018) Hair as a biomarker of long term mercury exposure in Brazilian Amazon: a systematic review. Int J Environ Res Public Health 15:500

    Article  Google Scholar 

  • Delbeke K, Joiris C, Decadtt G (1984) Mercury contamination of the Belgian avifauna sampling two-hundred-and-one birds found dead in Belgium between 1970 and analytical procedure six different procedures to determine the total mercury concentrations in. 7:

  • Demesko J, Markowski J, Demesko E et al (2019) Ecotype variation in trace element content of hard tissues in the European roe deer (Capreolus capreolus). Arch Environ Contam Toxicol 76:76–86. https://doi.org/10.1007/s00244-018-0580-4

    Article  CAS  Google Scholar 

  • Dietz R, Born EW, Riget F et al (2011) Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ Sci Technol 45:1458–1465

    Article  CAS  Google Scholar 

  • Dip R, Stieger C, Deplazes P et al (2001) Comparison of heavy metal concentrations in tissues of red foxes from adjacent urban, suburban, and rural areas. Arch Environ Contam Toxicol 40:551–556

    Article  CAS  Google Scholar 

  • Eisler R (1987) Mercury hazards to fish, wildlife, and invertebrates: a synoptic review. Fish and Wildlife Service, US Department of the Interior

  • Eltsova L, Ivanova E (2021) Total mercury level in tissues of commercial mammalian species (wild boar, moose) of the Russky Sever National Park (north-west of Russia). E3S Web Conf 265:05009. https://doi.org/10.1051/e3sconf/202126505009

  • Eyrikh S, Boeskorov G, Serykh T et al (2020) Mercury in hair of mammoth and other prehistorical mammals as a proxy of Hg level in the environment associated with climate changes. Appl Sci 10:8664

    Article  CAS  Google Scholar 

  • Flache L, Czarnecki S, Düring R-A et al (2015) Trace metal concentrations in hairs of three bat species from an urbanized area in Germany. J Environ Sci 31:184–193. https://doi.org/10.1016/j.jes.2014.12.010

    Article  CAS  Google Scholar 

  • Frodello JP, Romeo M, Viale D (2000) Distribution of mercury in the organs and tissues of five toothed-whale species of the Mediterranean. Environ Pollut 108:447–452

    Article  CAS  Google Scholar 

  • Gamberg M, Boila G, Stern G, Roach P (2005) Cadmium, mercury and selenium concentrations in mink (Mustela vison) from Yukon, Canada. Sci Total Environ 351:523–529

    Article  Google Scholar 

  • Gerstenberger SL, Cross CL, Divine DD et al (2006) Assessment of mercury concentrations in small mammals collected near Las Vegas, Nevada, USA. Environ Toxicol An Int J 21:583–589

    Article  CAS  Google Scholar 

  • Gutiérrez-Mosquera H, Marrugo-Negrete J, D’iez S et al (2021) Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: focus on human health. J Hazard Mater 404:124080

    Article  Google Scholar 

  • Hendriks AJ, Ma W-C, de Brouns JJ et al (1995) Modelling and monitoring organochlorine and heavy metal accumulation in soils, earthworms, and shrews in Rhine-delta floodplains. Arch Environ Contam Toxicol 29:115–127

    Article  CAS  Google Scholar 

  • Horai S, Minagawa M, Ozaki H et al (2006) Accumulation of Hg and other heavy metals in the Javan mongoose (Herpestes javanicus) captured on Amamioshima Island, Japan. Chemosphere 65:657–665

    Article  CAS  Google Scholar 

  • Ikemoto T, Kunito T, Watanabe I et al (2004) Comparison of trace element accumulation in Baikal seals (Pusa sibirica), Caspian seals (Pusa caspica) and northern fur seals (Callorhinus ursinus). Environ Pollut 127:83–97

    Article  CAS  Google Scholar 

  • Kosik-Bogacka D, Osten-Sacken N, Łanocha-Arendarczyk N et al (2020) Selenium and mercury in the hair of raccoons (Procyon lotor) and European wildcats (Felis s. silvestris) from Germany and Luxembourg. Ecotoxicology 29. https://doi.org/10.1007/s10646-019-02120-3

  • Lanocha N, Kalisinska E, Kosik-Bogacka DI et al (2014) Mercury levels in raccoons (Procyon lotor) from the Warta Mouth National Park, northwestern Poland. Biol Trace Elem Res 159:152–160. https://doi.org/10.1007/s12011-014-9962-2

    Article  CAS  Google Scholar 

  • Li Y-F, Chen C, Li B et al (2008) Scalp hair as a biomarker in environmental and occupational mercury exposed populations: suitable or not? Environ Res 107:39–44

    Article  CAS  Google Scholar 

  • Lord CG, Gaines KF, Boring CS et al (2002) Raccoon (Procyon lotor) as a bioindicator of mercury contamination at the US Department of Energy’s Savannah River Site. Arch Environ Contam Toxicol 43:356–363

    Article  CAS  Google Scholar 

  • Malvandi H, Ghasempouri SM, Esmaili-Sari A, Bahramifar N (2010) Evaluation of the suitability of application of golden jackal (Canis aureus) hair as a noninvasive technique for determination of body burden mercury. Ecotoxicology 19:997–1002. https://doi.org/10.1007/s10646-010-0504-1

    Article  CAS  Google Scholar 

  • Martinková B, Janiga M, Pogányová A (2019) Mercury contamination of the snow voles (Chionomys nivalis) in the West Carpathians. Environ Sci Pollut Res 26:35988–35995. https://doi.org/10.1007/s11356-019-06714-6

    Article  CAS  Google Scholar 

  • May Junior JA, Quigley H, Hoogesteijn R et al (2018) Mercury content in the fur of jaguars (Panthera onca) from two areas under different levels of gold mining impact in the Brazilian Pantanal. An Acad Bras Cienc 90:2129–2139

    Article  Google Scholar 

  • Morton J, Carolan VA, Gardiner PHE (2002) Removal of exogenously bound elements from human hair by various washing procedures and determination by inductively coupled plasma mass spectrometry. Anal Chim Acta 455:23–34

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1995) Heavy metal contaminants in inorganic and organic fertilizers: nutrient cycling in agroecosystems

  • Navarro RR, Sumi K, Fujii N, Matsumura M (1996) Mercury removal from wastewater using porous cellulose carrier modified with polyethyleneimine. Water Res 30:2488–2494

    Article  CAS  Google Scholar 

  • Nogara PA, Oliveira CS, Schmitz GL et al (2019) Methylmercury’s chemistry: from the environment to the mammalian brain. Biochim Biophys Acta - Gen Subj 1863:129284. https://doi.org/10.1016/j.bbagen.2019.01.006

    Article  CAS  Google Scholar 

  • Orlowski G, Polechonski R, Dobicki W, Zawada Z (2008) Heavy metal concentrations in the tissues of the black-headed gull Larus ridibundus L. nesting in the dam reservoir in south-western Poland. Polish J Ecol 55:783–793

    Google Scholar 

  • Pastorinho MR, Sousa ACA (2020) Pets as sentinels of human exposure to neurotoxic metals. In: Pets as sentinels, forecasters and promoters of human health. Springer International Publishing, Cham, pp 83–106

  • Poma G, Malarvannan G, Covaci A (2020) Pets as sentinels of indoor contamination. In: Pets as sentinels, forecasters and promoters of human health. Springer, pp 3–20

  • Rautio A, Kunnasranta M, Valtonen A et al (2010) Sex, age, and tissue specific accumulation of eight metals, arsenic, and selenium in the European hedgehog (Erinaceus europaeus). Arch Environ Contam Toxicol 59:642–651

    Article  CAS  Google Scholar 

  • Reeve N, Lindsay R (1994) Hedgehogs: T. & AD Poyser London

  • Reinecke AJ, Reinecke SA, Musilbono DE, Chapman A (2000) The transfer of lead (Pb) from earthworms to shrews (Myosorex varius). Arch Environ Contam Toxicol 39:392–397

    Article  CAS  Google Scholar 

  • Rendón-Lugo AN, Santiago P, Puente-Lee I, León-Paniagua L (2017) Permeability of hair to cadmium, copper and lead in five species of terrestrial mammals and implications in biomonitoring. Environ Monit Assess 189:640

    Article  Google Scholar 

  • Rezayi M, Esmaeli AS, Valinasab T (2011) Mercury and selenium content in Otolithes ruber and Psettodes erumei from Khuzestan Shore. Iran. Bull Environ Contam Toxicol 86:511–514

    Article  CAS  Google Scholar 

  • Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:70

    Article  Google Scholar 

  • Smart NA, Hill ARC (1968) Pesticides residues in foodstuffs in Great Britain. VI.—mercury residues in rice. J Sci Food Agric 19:315–316

    Article  CAS  Google Scholar 

  • Solgi E, Ghasempouri SM (2015) Application of brown bear (Ursus arctos) records for retrospective assessment of mercury. J Toxicol Environ Heal Part A 78:342–351. https://doi.org/10.1080/15287394.2014.968816

    Article  CAS  Google Scholar 

  • Sun J, Bustnes JO, Helander B et al (2019a) Temporal trends of mercury differ across three northern white-tailed eagle (Haliaeetus albicilla) subpopulations. Sci Total Environ 687:77–86. https://doi.org/10.1016/j.scitotenv.2019.06.027

    Article  CAS  Google Scholar 

  • Sun R, Jiskra M, Amos HM et al (2019b) Modelling the mercury stable isotope distribution of Earth surface reservoirs: implications for global Hg cycling. Geochim Cosmochim Acta 246:156–173

    Article  CAS  Google Scholar 

  • Talmage SS, Walton BT (1993) Food chain transfer and potential renal toxicity of mercury to small mammals at a contaminated terrestrial field site. Ecotoxicology 2:243–256. https://doi.org/10.1007/BF00368533

    Article  CAS  Google Scholar 

  • Tang Z, Fan F, Wang X et al (2018) Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment. Ecotoxicol Environ Saf 150:116–122

    Article  CAS  Google Scholar 

  • Tang Z, Fan F, Deng S, Wang D (2020) Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - a critical review. Ecotoxicol Environ Saf 202:110950. https://doi.org/10.1016/j.ecoenv.2020.110950

    Article  CAS  Google Scholar 

  • Treu G, Krone O, Unnsteinsdóttir ER et al (2018) Correlations between hair and tissue mercury concentrations in Icelandic arctic foxes (Vulpes lagopus). Sci Total Environ 619–620:1589–1598. https://doi.org/10.1016/j.scitotenv.2017.10.143

    Article  CAS  Google Scholar 

  • Wagner-Döbler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol 62:124–133

    Article  Google Scholar 

  • Wang X, Yuan W, Lin C-J et al (2019) Climate and vegetation as primary drivers for global mercury storage in surface soil. Environ Sci Technol 53:10665–10675

    Article  CAS  Google Scholar 

  • Witt JC, Spriggs MC, Veverica T et al (2020) Bioaccumulation of mercury in terrestrial carivor American marten (Martes americana). J Wildl Dis 56:388. https://doi.org/10.7589/2019-05-138

    Article  CAS  Google Scholar 

  • Wren CD (1986) A review of metal accumulation and toxicity in wild mammals. Environ Res 40:210–244. https://doi.org/10.1016/S0013-9351(86)80098-6

    Article  CAS  Google Scholar 

  • Yamanashi Y (2018) Is hair cortisol useful for animal welfare assessment? review of studies in captive chimpanzees. Aquat Mamm

  • Yasuda Y, Matsuyama A, Yasutake A et al (2004) Mercury distribution in farmlands downstream from an acetaldehyde producing chemical company in Qingzhen City, Guizhou, People’s Republic of China. Bull Environ Contam Toxicol 72:445–451

    Article  CAS  Google Scholar 

  • Yoshida M, Watanabe C, Satoh H et al (1994) Milk transfer and tissue uptake of mercury in suckling offspring after exposure of lactating maternal guinea pigs to inorganic or methylmercury. Arch Toxicol 68:174–178

    Article  CAS  Google Scholar 

  • Zarrintab M, Mirzaei R (2017) Evaluation of some factors influencing on variability in bioaccumulation of heavy metals in rodents species: Rombomys opimus and Rattus norvegicus from central Iran. Chemosphere 169:194–203. https://doi.org/10.1016/j.chemosphere.2016.11.056

    Article  CAS  Google Scholar 

  • Zheng DM, Wang QC, Zheng N, Zhang SQ (2007) The spatial distribution of soil mercury in the area suffering combined pollution by zinc smelting and chlor-alkai production. Chinese J Soil Sci 38:361–364

    CAS  Google Scholar 

  • Zhong S, Qiu G, Feng X et al (2018) Sulfur and iron influence the transformation and accumulation of mercury and methylmercury in the soil-rice system. J soils sediments 18:578–585

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the University of Zabol, Project code PR-UOZ 1400-2.

Author information

Authors and Affiliations

Authors

Contributions

RDB—conceptualization, formal analysis, data curation, investigation, writing—original draft preparation; GP and MB—methodology, writing—review and editing. All authors have read and agreed to the current version of the manuscript.

Corresponding author

Correspondence to Reza Dahmardeh Behrooz.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee University of Zabol with reference number 004.1399.REC.UOZ.IR.

Consent for publication

I understand that the text and any pictures published in the article will be freely available on the internet and may be seen by the general public. The pictures, and text may also appear on other websites or in print, may be translated into other languages or used for commercial purposes.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahmardeh Behrooz, R., Poma, G. & Barghi, M. Non-destructive mercury exposure assessment in the Brandt’s hedgehog (Paraechinus hypomelas): spines as indicators of endogenous concentrations. Environ Sci Pollut Res 29, 56502–56510 (2022). https://doi.org/10.1007/s11356-022-19926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19926-0

Keywords

Navigation