Skip to main content

Advertisement

Log in

Urban afforestation: using phytotoxicity endpoints to compare air pollution tolerance of two native Brazilian plants Aroeira (Schinus terebinthifolius) and Cuvatã (Cupania vernalis)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Urban afforestation can mitigate the effects of air pollution, but the suitability of plant species for this purpose needs to be determined according to pollution intensity and climate change. The goal of this study was to evaluate the sensitivity of different phytotoxicity endpoints using two native Brazilian plant species as models, Aroeira (Schinus terebinthifolius) and Cuvatã (Cupania vernalis). The sensitivity parameters evaluated could help in selecting the most air-pollution-tolerant plant species for use in urban afforestation programs. The two plant species were exposed, in a greenhouse, to the combustion gases of a diesel engine for 120 days, with daily intermittent gas exposure. Every 30 days, leaf injury (chlorosis and necrosis), biomass, and physiological/biochemical parameters (proteins, chlorophyll, and peroxidase enzyme activity) were evaluated for both plant species. For the two selected species, the endpoints studied can be ranked according to their sensitivity (or inversely the tolerance) to diesel oil combustion gases in the following order: peroxidase > biomass ≈ chlorophyll > protein > leaf injury. The endpoint responses of higher plants can be used to assess the suitability of particular plant species for use in urban afforestation areas with relatively intense vehicle traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abhijith KV, Kumar P, Gallagher J, McNabola A, Baldauf R, Pilla F, Broderick B, Di Sabatino S, Pulvirenti B (2017) Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – a review. Atmos Environ 162:71–86. https://doi.org/10.1016/j.atmosenv.2017.05.014

    Article  CAS  Google Scholar 

  • Acosta AL, d'Albertas F, de Souza LM, Saraiva AM, Metzger JPW (2018) Gaps and limitations in the use of restoration scenarios: a review. Restor Ecol 26:1108–1119

    Article  Google Scholar 

  • Agbaire PO (2009) Air pollution tolerance indices (APTI) of some plants around Erhoike-Kokori oil exploration site of Delta State, Nigeria. Int J Phys Sci 4:366–368

    CAS  Google Scholar 

  • Aguiar FC, Bentz J, Silva JMN, Fonseca AL, Swart R, Santos FD, Penha-Lopes G (2018) Adaptation to climate change at local level in Europe: an overview. Environ Sci Policy 86:38–63. https://doi.org/10.1016/j.envsci.2018.04.010

    Article  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, Tran LS (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347. https://doi.org/10.3389/fpls.2016.00347

    Article  Google Scholar 

  • Ahmed S (2007) Impact of air pollution on plant diseases – a review. Pakistan J Phytopathol 19:192–198

    Google Scholar 

  • Amato-Lourenço LF, Lobo DJA, Guimarães ET, Moreira TCL, Carvalho-Oliveira R, Saiki M, Saldiva PHN, Mauad T (2017) Biomonitoring of genotoxic effects and elemental accumulation derived from air pollution in community urban gardens. Sci Total Environ 575:1438–1444

    Article  CAS  Google Scholar 

  • Baek S, Woo S-Y (2010) Physiological and biochemical responses of two tree species in urban areas to different air pollution levels. Photosynthetica 48:23–29. https://doi.org/10.1007/s11099-010-0005-8

    Article  CAS  Google Scholar 

  • Bai X, Dawson RJ, Ürge-Vorsatz D, Delgado GC, Barau AS, Dhakal S, Dodman D, Leonardsen L, Masson-Delmotte V, Roberts DC (2018) Six research priorities for cities and climate change. Nature 555:23–25. https://doi.org/10.1038/d41586-018-02409-z

    Article  CAS  Google Scholar 

  • Baker CK, Fullwood AE (1986) Leaf damage following crop spraying in winter barley exposed to sulphur dioxide. Crop Prot 5:365–367

    Article  CAS  Google Scholar 

  • Banerjee S, Palit D, Banerjee A (2021) Variation of tree biochemical and physiological characters under different air pollution stresses. Environ Sci Pollut Res 28:17960–17980. https://doi.org/10.1007/s11356-020-11674-3

    Article  CAS  Google Scholar 

  • Bell JNB, Honour SL, Power SA (2011) Effects of vehicle exhaust emissions on urban wild plant species. Environ Pollut 159:1984–1990

    Article  CAS  Google Scholar 

  • Benincasa MMP (2003) Análise de crescimento de plantas; noções básicas, 2nd edn. Embrapa Jaboticabal, Brasil [in Portuguese]

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brilhante O, Klaas J (2018) Green city concept and a method to measure green city performance over time applied to fifty cities globally: influence of GDP, population size and energy efficiency. Sustainability 10:2031–2054. https://doi.org/10.3390/su10062031

    Article  Google Scholar 

  • Brimbecomble P (1996) Air, composition and chemistry. 2nd, Ed. Cambridge University Press, Cambridge

  • Byl TD, Sutton HD, Klaine SJ (1994) Evaluation of peroxidase as a biochemical indicator of toxic chemical exposure in the aquatic plant Hydrilla verticillata Royle. Environ Toxicol Chem 13:509–515. https://doi.org/10.1002/etc.5620130322

    Article  CAS  Google Scholar 

  • Carvalho PER (2006) Espécies arbóreas brasileiras. v. 2, 627 p., Ed. Embrapa Informação Tecnológica, Brasília, Brazil

  • Cassia R, Nocioni M, Correa N, Lamattina L (2018) Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00273

  • Cassimiro JC, Moraes RM (2016) Responses of a tropical tree species to ozone: visible leaf injury, growth, and lipid peroxidation. Environ Sci Pollut Res 23:8085–8090. https://doi.org/10.1007/s11356-015-5961-x

    Article  CAS  Google Scholar 

  • Castán-Broto V, Bulkeley H (2013) A survey of urban climate change experiments in 100 cities. Glob Environ Change 23:92–102. https://doi.org/10.1016/j.gloenvcha.2012.07.005

    Article  Google Scholar 

  • Cernusak LA, Haverd V, Brendel O, Le Thiec D, Guehl J-M, Cuntz M (2019) Robust response of terrestrial plants to rising CO2. Trends Plant Sci 24:578–586. https://doi.org/10.1016/j.tplants.2019.04.003

    Article  CAS  Google Scholar 

  • CONAMA (Conselho Nacional Do Meio Ambiente). Resolução n° 491, de 19 de novembro de 2018. Dispõe sobre padrões de qualidade do ar. Diário Oficial da República Federativa do Brasil, Brasília, DF, 21 de novembro de 2018. [in Portuguese]

  • Emilsson T, Ode Sang Å (2017) Impacts of climate change on urban areas and nature-based solutions for adaptation. In: Kabisch N, Korn H, Stadler J, Bonn A (eds) Nature-based solutions to climate change adaptation in urban areas. Theory and practice of urban sustainability transitions. Springer, Cham. https://doi.org/10.1007/978-3-319-56091-5_2

    Chapter  Google Scholar 

  • Esmat AS (1993) Damage to plants due to industrial pollution and their use as bioindicators in Egypt. Environ Pollut 81:251–255

    Article  Google Scholar 

  • Falla J, Laval-Gilly P, Henryon M, Morlot D, Ferard J-F (2000) Biological air quality monitoring: a review. Environ Monit Assess 64:627–644

    Article  CAS  Google Scholar 

  • Ferrini F, Fini A, Mori J, Gori A (2020) Role of vegetation as a mitigating factor in the urban context. Sustainability 12:4247-4269 doi: 10.3390/su12104247

  • Fineschi S, Loreto F (2020) A survey of multiple interactions between plants and the urban environment. Front For Glob Change 3:30. https://doi.org/10.3389/ffgc.2020.00030

    Article  Google Scholar 

  • Fleck A d S, Moresco MB, Rhoden CR (2016) Assessing the genotoxicity of traffic-related air pollutants by means of plant biomonitoring in cities of a Brazilian metropolitan area crossed by a major highway. Atmos Pollut Res 7:488–493

    Article  Google Scholar 

  • Foyer CH, Descourvières P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Furlan CM, Moraes RM, Bulbovas P, Sanz MJ, Domingos M, Salatino A (2008) Tibouchina pulchra (Cham.) Cogn., a native Atlantic Forest species, as a bio-indicator of ozone: visible injury. Environ Pollut 152:361–365

    Article  CAS  Google Scholar 

  • Giri S, Shrivastava D, Deshmukh K, Dubey P (2013) Effect of air pollution on chlorophyll content of leaves. Curr Agric Res J 1:93–98

    Article  Google Scholar 

  • Güçlü YS, Dabanl İ, Şişman E, Şen Z (2019) Air quality (AQ) identification by innovative trend diagram and AQ index combinations in Istanbul megacity. Atmos Pollut Res 10:88–96. https://doi.org/10.1016/j.apr.2018.06.011

    Article  CAS  Google Scholar 

  • Haase D, Larondelle N, Andersson E, Artmann M, Borgström S, Breuste J, Gomez-Baggethun E, Gren Å, Hamstead Z, Hansen R, Kremer P, Langemeyer J, Rall EL, McPhearson T, Pauleit S, Qureshi S, Schwarz N, Voigt A, Wurster D, Elmqvist T (2014) A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43:413–433

    Article  Google Scholar 

  • Hasanuzzaman M, Borhannuddin Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Al Mahmud J, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681–733. https://doi.org/10.3390/antiox9080681

    Article  CAS  Google Scholar 

  • Hijano CF, Domínguez MDP, Gimínez RG, Sínchez PH, García IS (2005) Higher plants as bioindicators of sulphur dioxide emissions in urban environments. Environ Monit Assess 111:75–88

    Article  CAS  Google Scholar 

  • Hippeli S, Elstner EF (1996) Mechanisms of oxygen activation during plant stress: biochemical effects of air pollutants. J Plant Physiol 148:249–257

    Article  CAS  Google Scholar 

  • Hu YB, Sun GY (2010) Leaf nitrogen dioxide uptake coupling apoplastic chemistry, carbon/sulfur assimilation, and plant nitrogen status. Plant Cell Rep 29:1069–1077

    Article  CAS  Google Scholar 

  • Hugget R, Kimerle R, Mehrle P, Bergman H (1992) Biomarkers: biochemical, physiological and histological markers of anthropogenic stress. Lewis Publishers, Boca Raton

    Google Scholar 

  • Hunt A, Watkiss P (2011) Climate change impacts and adaptation in cities: a review of the literature. Clim Chang 104:13–49

    Article  Google Scholar 

  • Irmak MA, Yilmaz S, Mutlu E, Yilmaz H (2018) Assessment of the effects of different tree species on urban microclimate. Environ Sci Pollut Res 25:15802–15822. https://doi.org/10.1007/s11356-018-1697-8

    Article  Google Scholar 

  • Jennings V, Larson L, Yun J (2016) Advancing sustainability through urban green space: cultural ecosystem services, equity, and social determinants of health. Int J Environ Res Public Health 13:196. https://doi.org/10.3390/ijerph13020196

    Article  Google Scholar 

  • Joshi PC, Swami A (2009) Air pollution induced changes in the photosynthetic pigments of selected plant species. J Environ Biol 30:295–298

    CAS  Google Scholar 

  • Kammerbauer J, Dick T (2000) Monitoring of urban traffic emissions using some physiological indicators in Ricinus communis L. plants. Arch Environ Contam Toxicol 39:161–166

    Article  CAS  Google Scholar 

  • Kaur M, Nagpal AK (2017) Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban áreas. Environ Sci Pollut Res 24:18881–18895. https://doi.org/10.1007/s11356-017-9500-9

    Article  CAS  Google Scholar 

  • Khan AA, Malhotra SS (1982) Peroxidase activity as an indicator of SO2 injury in jack pine and white birch. Biochem Physiol Pflanz 177:643–650

    Article  CAS  Google Scholar 

  • Khanoranga SK (2019) Phytomonitoring of air pollution around brick kilns in Balochistan province Pakistan through air pollution index and metal accumulation índex. J Clean Prod 229:727–738

    Article  CAS  Google Scholar 

  • Lee HK, Khaine I, Kwak MJ, Jang JH, Lee TY, Lee JK, Kim IR, Kim WI, Oh KS, Woo SY (2017) The relationship between SO2 exposure and plant physiology: a mini review. Hortic Environ Biotechnol 58:523–529. https://doi.org/10.1007/s13580-017-0053-0

    Article  CAS  Google Scholar 

  • Linzon SN (1971) Economic effects of sulfur dioxide on forest growth. J Air Pollut Control Assoc 21:81–86

    Article  Google Scholar 

  • Linzon SN (1972) Effects of sulphur oxides on vegetation. For Chron 48:182–186

    Article  Google Scholar 

  • Lohbeck M, Poorter L, Martinez-Ramos M, Bongers F (2015) Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96:1242–1252. https://doi.org/10.1890/14-0472.1

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. v.1, 368 p., 4ed. Ed. Instituto Plantarum, Nova Odessa, Brazil

  • Lüttge U, Buckeridge M (2020) Trees: structure and function and the challenges of urbanization. Trees 4. https://doi.org/10.1007/s00468-020-01964-1

  • Mansfield TA, Feer-Smith PH (1981) Effects of urban air pollution on plant growth. Biol Rev 56:343–368. https://doi.org/10.1111/j.1469-185X.1981.tb00353.x

    Article  CAS  Google Scholar 

  • Most WB, Weissman S (2012) Trees and power lines: minimizing conflicts between electric power infrastructure and the urban forest. UC Berkeley: Berkeley Law. Retrieved from https://escholarship.org/uc/item/8kg6t2jx

  • Mulgrew A, Williams P (2000) Biomonitoring of air quality using plants. Energy Technology Data Exchange (ETDE), World Energy Base, Berlin, Germany. ISSN 0938-9822

  • Pandey J, Agrawal M (1994) Evaluation of air pollution phytotoxicity in a seasonally dry tropical urban environment using three woody perennials. New Phytologist 126:53–61. https://doi.org/10.1111/j.1469-8137.1994.tb07529.x

    Article  CAS  Google Scholar 

  • Pandey AK, Pandey M, Mishra A, Tiwary SM, Tripathi BD (2015) Air pollution tolerance index and anticipated performance index of some plant species for development of urban forest. Urban For Urban Green 14:866–871. https://doi.org/10.1016/j.ufug.2015.08.001

    Article  Google Scholar 

  • Paull NJ, Irga PJ, Torpy FR (2018) Active green wall plant health tolerance to diesel smoke exposure. Environ Pollut 240:448–456. https://doi.org/10.1016/j.envpol.2018.05.004

    Article  CAS  Google Scholar 

  • Paull NJ, Krix D, Irga PJ, Torpy FR (2021) Green wall plant tolerance to ambient urban air pollution. Urban For Urban Green 63:127201. https://doi.org/10.1016/j.ufug.2021.127201

    Article  Google Scholar 

  • Puccinelli P, Anselmi N, Bragaloni M (1998) Peroxidases: usable markers of air pollution in trees from urban environments. Chemosphere 36:889–894

    Article  CAS  Google Scholar 

  • Rabe R, Kreeb KH (1979) Enzyme activities and chlorophyll and protein content in plants as indicators of air pollution. Environ Pollut 19:119–137. https://doi.org/10.1016/0013-9327(79)90143-5

    Article  CAS  Google Scholar 

  • Rai PK (2016) Impacts of particulate matter pollution on plants: implications for environmental biomonitoring. Ecotox Environ Safe 129:120–136

    Article  CAS  Google Scholar 

  • Rai PK, Panda LLS (2013) Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: an Indo-Burma hot spot region. Air Qual Atmos Health 7:93–101

    Article  CAS  Google Scholar 

  • Ram SS, Majumder S, Chaudhuri P, Chanda S, Santra SC, Chakraborty A, Sudarshan M (2015) A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Crit Rev Env Sci Tec 45:2489–2522. https://doi.org/10.1080/10643389.2015.1046775

    Article  CAS  Google Scholar 

  • Ramaiah M, Avtar R (2019) Urban green spaces and their need in cities of rapidly urbanizing India: a review. Urban Sci 3:94–110. https://doi.org/10.3390/urbansci3030094

    Article  Google Scholar 

  • Rashidi F, Jalili A, Kafaki SB, Sagheb-Talebi K, Hodgson J (2012) Anatomical responses of leaves of Black Locust (Robinia pseudoacacia L.) to urban pollutant gases and climatic factors. Trees 26:363–375

    Article  CAS  Google Scholar 

  • Rebelato GS, Rabe AP (2010) Arborização viária do município de Colorado, RS - Brasil: Análise quali-quantitativa. REVSBAU 5:183–199. https://doi.org/10.5380/revsbau.v5i1.66260

    Article  Google Scholar 

  • Rędzińska K, Piotrkowska M (2020) Urban planning and design for building neighborhood resilience to climate change. Land 9:387–402. https://doi.org/10.3390/land9100387

    Article  Google Scholar 

  • Sæbø A, Benedikz T, Randrup TB (2003) Selection of trees for urban forestry in the Nordic countries. Urban For Urban Green 2:101–114

    Article  Google Scholar 

  • Seyyednejad SM, Niknejad M, Koochak H (2011) A review of some different effects of air pollution on plants. Res J Environ Sci 5:302–309. https://doi.org/10.3923/rjes.2011.302.309

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14. https://doi.org/10.7150/ijbs.4.8

    Article  CAS  Google Scholar 

  • Sheng Q, Zhu Z (2019) Effects of nitrogen dioxide on biochemical responses in 41 garden plants. Plants 8:45. https://doi.org/10.3390/plants8020045

    Article  CAS  Google Scholar 

  • Shokry G, Connolly JJT, Anguelovski I (2020) Understanding climate gentrification and shifting landscapes of protection and vulnerability in green resilient Philadelphia. Urban Clim 31:100539. https://doi.org/10.1016/j.uclim.2019.100539

    Article  Google Scholar 

  • Singh SK, Rao DN, Agrawal M, Pandey J, Narayan D (1991) Air pollution tolerance index of plants. J Environ Manag 32:45–55

    Article  Google Scholar 

  • Sjöman H, Watkins H (2020) What do we know about the origin of our urban trees? -a north European perspective. Urban For Urban Green 56:126879. https://doi.org/10.1016/j.ufug.2020.126879

    Article  Google Scholar 

  • Sjöman H, Slagstedt J, Wiström B, Ericsson T (2015) Nature as a model in Swedish (Naturen som förebild). In: Sjöman H, Slagstedt J (eds) Trees in urban landscape. In Swedish (Träd i Urbana Landskap). Studentlitteratur, Sweden

    Google Scholar 

  • Souza VC, Lorenzi H (2005) Botânica Sistemática: guia ilustrado para identificação das famílias das Angiospermas da flora brasileira, baseado em APGII. Ed. Instituto Plantarum, Nova Odessa, Brazil [in Portuguese]

    Google Scholar 

  • Storch-Böhm RF, Somensi CA, Cotelle S, Deomar-Simões M, Poyer-Radetski L, Dalpiaz FL, Pimentel-Almeida W, Radetski CM (2020) Sensitivity of different parameters for selection of higher plants in urban afforestation: exposure of Guabiroba (Campomanesia xanthocarpa O. Berg.) to diesel engine exhaust. Environ Pollut 265:114675. https://doi.org/10.1016/j.envpol.2020.114675

    Article  CAS  Google Scholar 

  • Sun D(J), Wu S, Shen S, Xu T (2021) Simulation and assessment of traffic pollutant dispersion at an urban signalized intersection using multiple platforms. Atmos Pollut Res 12:101087. 10.1016/j.apr.2021.101087

  • Swanepoel JW, Krüger GHJ, van Heerden PDR (2007) Effects of sulphur dioxide on photosynthesis in the succulent Augea capensis Thunb. J Arid Environ 70:208–221. https://doi.org/10.1016/j.jaridenv.2006.12.014

    Article  Google Scholar 

  • Tan PJ, Jim CY (2017) Greening cities: forms and functions. Springer, Singapore ISBN 9811041121

    Book  Google Scholar 

  • Thompson JW, Sorvig K (2000) Sustainable landscape construction: a guide to green building outdoors. Ed. Island Press, Washington D.C.

  • Tripathi AK, Gautam M (2007) Biochemical parameters of plants as indicators of air pollution. J Environ Biol 28:127–132

    CAS  Google Scholar 

  • Tripathi BD, Prajapathi SK (2008) Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J Environ Qual 37:865–870

    Article  CAS  Google Scholar 

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32:1144–1150

    Article  CAS  Google Scholar 

  • Vos PEJ, Maiheu B, Vankerkom J, Janssen S (2013) Improving local air quality in cities: to tree or not to tree? Environ Pollut 183:113–122. https://doi.org/10.1016/j.envpol.2012.10.021

    Article  CAS  Google Scholar 

  • Vwioko ED, Akendolor A (2017) Stress measurements of Solanum melongena L. and Celosia argentea L. plants exposed to SO2 and NO2 gases separately in chambers. NISEB J 15:71–79

    Google Scholar 

  • Wallace KJ, Clarkson BD (2019) Urban forest restoration ecology: a review from Hamilton, New Zealand. J Royal SocNew Zealand 49:347–369. https://doi.org/10.1080/03036758.2019.1637352

    Article  Google Scholar 

  • Wellburn AR, Higginson C, Robinson D, Walmsley C (1981) Biochemical explanations of more than additive inhibitory effects of low atmospheric levels of sulphur dioxide plus nitrogen dioxide upon plants. New Phytol 88:223–237

    Article  CAS  Google Scholar 

  • WHO (2017) World Health Organization. Air quality guidelines: global update 2017: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. WHO Regional Office for Europe, Copenhagen, Denmark

  • Wolfe DA (1996) Insights on the utility of biomarkers for environmental impact assessment and monitoring. Hum Ecol Risk Assess 2:245–250

    Article  Google Scholar 

  • Xing Y, Brimblecombe P (2019) Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos Environ 201:73–83

    Article  CAS  Google Scholar 

  • Zeydan Ö, Pekkaya M (2021) Evaluating air quality monitoring stations in Turkey by using multi criteria decision making. Atmos Pollut Res 12:101046. https://doi.org/10.1016/j.apr.2021.03.009

    Article  CAS  Google Scholar 

  • Zhang W, Zhang Y, Gong J, Yang B, Zhang Z, Wang B, Zhu C, Shi J, Yue K (2020) Comparison of the suitability of plant species for greenbelt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system. Environ Pollut 263:114615. https://doi.org/10.1016/j.envpol.2020.114615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UNIVALI and IFC for their research support and grants (Bolsas-PROBIQ/IFC-CC). C.A. Somensi gratefully acknowledges a grant from SETEC/MEC-Brasil (Public Call Notice 02/2020 - IFES). R.F. Storch-Böhm gratefully acknowledges CAPES for a doctorate grant number 001/2015. C.M. Radetski acknowledges a grant from CNPq-Brasil (Process 302124/2019-5).

Author information

Authors and Affiliations

Authors

Contributions

R.F. Storch-Böhm, S. Cotelle, J.-F. Férard, U.B. Rossa, and C.M. Radetski: conceptualization, writing — original draft preparation, writing — review and editing, resources, supervision. R.F. Storch-Böhm, R.C. Testolin, C.A. Somensi, R, Corrêa, R. Ariente-Neto and G.I. Almerindo: visualization, methodology, investigation, data curation.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Corresponding author

Correspondence to Claudemir M. Radetski.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storch-Böhm, R.F., Somensi, C.A., Testolin, R.C. et al. Urban afforestation: using phytotoxicity endpoints to compare air pollution tolerance of two native Brazilian plants Aroeira (Schinus terebinthifolius) and Cuvatã (Cupania vernalis). Environ Sci Pollut Res 29, 56579–56591 (2022). https://doi.org/10.1007/s11356-022-19890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19890-9

Keywords

Navigation