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Abstract
Because of global lock-downs caused by the unexpected COVID-19, the interactions between emission trading and related
markets have changed significantly compared to the pre-COVID-19 period. Considering the pandemic effect, this paper
established an integrated system to identify the relationship trajectories between carbon trading market and impact factors. A
noise-assisted multivariate empirical mode decomposition (N-A MEMD) method was utilized to simultaneously decompose
the original multi-dimensional time series into intrinsic mode functions (IMFs), after which the Lempel-Ziv (LZ) complexity
algorithm was applied to reconstruct the IMFs into high-frequency (HF), low-frequency (LF), and trend modules. Vector
autoregression (VAR) and vector error correction (VEC) models were then used to systematically simulate the correlations.
The time span was split into pre-COVID-19 and post-COVID-19 periods for comparison, and the mobility trends data during
the outbreak period released by the Apple company was chosen to reflect the pandemic effects. The empirical analysis
results revealed the energy prices, macroeconomic index, and exchange rate are the main external impact factors of carbon
price in the short term. Summarizing from the cointegration models over the long term, the market stability reserve (MSR)
mechanism was found to have ability on stabilizing the carbon price under the epidemic shock. Furthermore, the COVID-19
was found to complicate the relationships between carbon price and influence factors, which resulted in fluctuating markets.
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Introduction

The worldwide infectious COVID-19 pandemic has signif-
icantly affected the global economy around the since late
2019 (Wang and Zhang 2021). The International Energy
Agency reported that in 2020, primary energy demand had
dropped nearly 4% and global energy-related CO2 emis-
sions had fallen by 5.8%.1 These impacts have spread to the

1International Energy Agency. Global Energy Review: CO2 Emis-
sions in 2020 Understanding the impacts of Covid-19 on global
CO2 emissions: https://www.iea.org/articles/global-energy-review-
co2-emissions-in-2020
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emissions trading system (ETS) and relative energy markets
(Mintz-Woo et al. 2021). Under the effects of epidemic, the
evolutionary of relationship directions between the ETS and
potential drivers remains unclear.

To date, many studies have focused on the COVID-
19 pandemic effects on global and national economies,
such as impacts on air pollution levels and economic
loss (Dutheil et al. 2021; Rasheed et al. 2021). In
particular, the carbon price has also been heavily affected
by COVID-19 (Dong et al. 2020). Although some studies
have discussed the pandemic effects on carbon prices,
most have only considered a single relationship between
the carbon price and a particular commodity market
(Tiwari et al. 2021). However, carbon trading market has
complicated relationships with many factors, such as energy
consumption, macroeconomic status, and the pandemic.
Also, correlationships between carbon price and influence
factors may be different in short and long terms. To describe
these complicated relations, this paper considers a more
comprehensive carbon price analysis system in short and
long terms that encompasses key related factors including
energy markets, macroeconomic indexes, exchange rate,

/ Published online: 8 April 2022

Environmental Science and Pollution Research (2023) 30:61479–61495

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-19858-9&domain=pdf
http://orcid.org/0000-0002-9372-0992
mailto: zhibinwu@scu.edu.cn


and mobility trends in the epidemic period. The effect of
inner market mechanism in the carbon trading market is also
discussed.

Contributions of this paper include three distinct
aspects. First, differing with existing one-dimensional
decomposed method (Yang et al. 2020), the noise-assisted
multivariate empirical mode decomposition (N-A MEMD)
is introduced into the carbon price analysis, which can
simultaneously decompose the multivariate time series
and facilitate the further analysis. Second, the pandemic
impacts on carbon price fluctuation are verified through
the comparison between pre-COVID-19 and post-COVID-
19 periods. Unlike qualitative analysis of the epidemic
(Bagchi et al. 2020), the mobility trends data are utilized as
a meaningful and high relevant indicator to quantitatively
measure the pandemic effects. Third, this paper reveals the
dominant position of the market stability reserve (MSR)
mechanism in European Union emissions trading system
(EU ETS) on maintaining carbon price stability. Comparing
with previous literature that equally treated all impact
factors in different decomposed modules (Zhu et al. 2018),
the common determinants are found to be mainly effective
in the short term.

The remainder of this paper is organized as follows.
“Literature review” introduces the potential determinants
and effective models; research gaps are also provided in this
section. “Methodology” describes the methods designed
and proposed in this paper. “Data description” details
the statistical characteristics of the variables. “Empirical
analysis and results” discusses the characteristics of HF, LF,
and trend modules. “Discussion” summarizes the empirical
analysis and results, and “Conclusions” concludes this
study.

Literature review

Identifying the potential determinants is the first important
topic for the relationships analysis of carbon trading market
and related factors. As energy consumption is one of the
major sources of carbon emissions, energy prices for crude
oil, natural gas, and coal have generally been included when
assessing carbon price (Zhao et al. 2018). As for the crude
oil, some researchers held the point that a higher crude
oil price can stimulate households and industries to seek
cleaner, cheaper alternative energy sources, such as natural
gas (Ullah et al. 2020). These alternatives may improve
environmental quality and reduce carbon emissions, which
means lower carbon price. However, other researchers had
results that a rise in the crude oil price can lead to a stable
increase in the carbon price (Tan and Wang 2017). Coal

has also been found to have a strong price effect on the
European Union allowance (EUA) (Anke et al. 2020).

Except for the energy consumption effects, the influences
of macroeconomic indicators, such as the Goldman Sachs
Commodity Index (GSCI) and STOXX Europe 600 index
(STOXX), are also important to emission trading market
(Zhou and Li 2019). High index levels indicate a booming
economy, which means a high carbon allowance demand.
Carbon prices are also susceptible to exchange rate
fluctuations (Sun andWang 2020). Except for the influences
on carbon price, there are also correlationships between
impact factors. For example, the coal and the natural gas are
substitutes for each other (Aatola et al. 2013), the oil price
has strong significant links with STOXX Europe 600 index
(Arouri 2011).

Based on previous related studies, this paper selected
energy prices, macroeconomic indexes, and the exchange
rate as common determinants of the carbon price. Further,
impacts of the COVID-19 pandemic are also considered in
this paper. Although the epidemic has resulted in substantial
reductions in economic activities (Khurshid and Khan
2021), the decline of carbon allowance demand will not
last for a long time as the 2020 oil price dive may result
in a higher carbon emission so that rising carbon price
(Jefferson 2020; Malliet et al. 2013). Pandemic effects on
the carbon price and its potential drivers are also difficult
to be quantitatively measured (Wang et al. 2020). This
paper extends the research with considering the pandemic
factors when analyzing the linkages between carbon trading
market and influence factors. The mobility trends data,
which represent the social and economic status in the
COVID-19 period (Djilali et al. 2020), are considered one
of the possible carbon price determinants. In addition, the
economic recovery in the post-epidemic period may have
positive effects on mobility as the traffic and transport
reflect the economic activity (Bernardino et al. 2015).

Although the potential drivers of carbon price are
determined based on existing researches, direct analysis
on these series may cause spurious regression because
of their high nonlinearity and nonstationarity (Marmer
2008). Fortunately, data decomposition methods such as the
wavelet transform and the empirical mode decomposition
(EMD) have been utilized to solve this problem (Liu and
Shen 2019). Of these methods, EMD and its extensions
have been popular because of their ability on solving
nonstationarity and nonlinearity problems (Huang et al.
1998). As this paper seeks to analyze multi-dimensional
time series, the multivariate empirical mode decomposition
(MEMD) proposed by Rehman and Mandic (2010) is
deemed more appropriate. Furthermore, as the MEMD
has a similar mode mixing problem to the EMD, this
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paper introduces the N-A MEMD to decompose the multi-
dimensional series.

After choosing the suitable data decomposition method
for multi-dimensional time series analysis, the cross-
correlations between variables are needed to be simulated.
Many statistical methods have been developed to analyze
this problem. For example, the asymmetric effects of
oil price changes on environmental pollution have been
simulated by using a nonlinear autoregressive distributed
lag (ARDL) model (Ullah et al. 2020). These methods
have also been used on carbon price; for example, vector
autoregression (VAR) and vector error correction (VEC)
models have been utilized to explore relationships and
fluctuation characteristics of emission trading market and
related stock markets (Zhu et al. 2019; Zhou and Li 2019).
Considering the non-structural advantages of VAR and
VEC models, this paper also selects them to analyze the
complicated cross relationships between carbon price and
drivers.

Despite there were many methods have been utilized
in analyzing carbon price and its determinants, previous
researches have tended to analyze these relationships with-
out considering the short-term and long-term differences (Ji
et al. 2021); however, the short-term changes are reflected
in immediate fluctuations whereas long-term relationships
tend to show greater cointegration (Zhu et al. 2018). Fur-
thermore, the statistic model selections were distinctive
for short and long terms, which distinguishes this paper
from previous research. The evolution relationships in trend
modules were determined through comparison. After refer-
encing previous literature, the theoretical framework of this
research can be summarized in Fig. 1, including variables
selections, cross-relationships analysis, and methodology
establishing.

Methodology

Original multiple time series of carbon price and asso-
ciated drivers are difficult to analyze because of their
non-stationary and nonlinear characteristics. Further, rela-
tionships between the carbon price and its associated factors
have been significantly influenced by the COVID-19. The
erratic commodity markets and macroeconomic fluctuations
have weakened the performance of traditional econometrics
models. To alleviate these weaknesses and reveal the causal
relationships evolution between the carbon price and impact
factors, the multi-scale analysis framework is designed
based on the N-A MEMD algorithm and VAR-VEC models
as shown in Fig. 2.

First step in the analysis framework is collecting original
multi-dimensional series that incorporate the carbon price
and former discussed potential drivers. The multivariate
time series are initially decomposed into intrinsic mode
functions (IMFs) of different frequencies and a residual
through the N-A MEMD, which makes series become more
stationary and periodic. The Lempel-Ziv (LZ) complexity
algorithm proposed by Lempel and Ziv (1976) is utilized
to reconstruct the IMFs into high-frequency (HF) and
low-frequency (LF) modules, which respectively identify
the short- and long-term physical characteristics (Zhang
et al. 2008). After testing the unit root existence of HF
and LF modules, VAR and VEC models are respectively
applied to the stationary and non-stationary series, with
the trend module being assessed from the chart analysis.
The impulse response function (IRF) is used to explore
the reactions in response to endogenous variable shocks
in the VAR. As the variance decomposition (VD) captures
the response intensity of endogenous variables when there
are component shocks, the relative importance of each

Fig. 1 Theoretical framework
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VAR

VEC

Fig. 2 Framework for the N-A MEMD VAR-VEC system

random fluctuation effect on variables is accordingly
determined.

Data decomposition

The MEMD was proposed to extend the EMD to allow
for the processing of multichannel signals. Therefore,
comparing with the EMD, the MEMD can simultaneously
decompose multivariate input signals into corresponding
same number IMFs of different frequencies, which allows
for direct multichannel modeling. However, the MEMD
still has similar disadvantages to the EMD, such as the
mode mixing problem. Fortunately, a further extension to
the MEMD, the N-A MEMD, has been proposed to resolve
this problem.

Multivariate EMD extension

One important step in the MEMD is to calculate the
multivariate signal envelopes and local means. To this
end, Rehman and Mandic (2010) generated multiple real-
valued projections of the signal so that the extrema of these
projected signals can be interpolated to yield the desired
multi-dimensional envelopes, and the local means were then
determined by averaging the envelope curves. In Euclidean
coordinate system, the direction vectors in n-dimensional
spaces can be represented by points on corresponding unit
(n − 1) spheres. Therefore, the determination of suitable
direction vectors was treated by finding a uniform sampling
scheme on the hypersphere. A sequence of n-dimensional
vectors v(t) = (v1(t), v2(t), . . . , vn(t)) , t = 1, 2, ...T were
assumed to be the MEMD input. The MEMD is detailed in
the following.

Step 1: Generate the points set based on the low-
discrepancy Hammersley sequence for
sampling on an (n − 1) sphere. Assum-

ing θk =
[
θk
1 , θk

2 , . . . , θk
(n−1)

]
to be the

direction angles on an (n-1) sphere, with
Dθk = {

dk
1 , d

k
2 , . . . , d

k
n

}
, k = 1, 2, ..., K denoting

kth set of corresponding direction vectors. K is
the number of direction vectors sets. Details of
direction vectors determination on a hypersphere
can be found in relative mathematical researches
(Niederreiter 1992).

Step 2: Calculate a projection λθk (t) along the kth
direction vector set Dθk for the input signal v(t).
For all k, �θk (t) = {λθ1(t), λθ2(t), ..., λθK (t)} is
the whole set of projections.

Step 3: Find the time instants set
{
t
θk

l

}
, which corresponds

to the maxima of projected signals set �θk (t).
Step 4: The multivariate envelop curves set �θk (t) is

obtained by interpolating [tθk

l , v(tθk

l )].
Step 5: Average the multivariate envelop curves for K

direction vectors sets to get the vector m(t),

m(t) = 1

K

K∑
k=1

�θk (t). (1)

Step 6: Similar to the EMD method, sift the m(t)

repeatedly from the original input vectors v(t)
until the r(t) satisfies the multivariate IMF criteria.
Then, apply r(t) to IMF.

v(t) − m(t) = r(t). (2)

Step 7: When the stopping criteria is satisfied, all IMFs
extracted from the original signals are determined.
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The residual is calculated by subtracting all IMFs
from v(t).

Noise-assisted MEMD

By adding Gaussian noise into the MEMD, the N-AMEMD
was proposed by Rehman and Mandic (2011). The principle
of the N-A MEMD is detailed in this section.

Step 1: Create the uncorrelated Gaussian white noise time
series with w channels and the same length with
the input vectors v(t).

Step 2: Integrate the white noise (w-dimensions) with
the input signals v(t) (n-dimensions) to establish
new composite signals ((n + w)-dimensions)
before the decomposition. The composite
input signal vectors are (v(t),noise(t)) =
(v1(t), v2(t), . . . , vn(t), noise1(t), noise2(t), . . . ,

noisew(t)).
Step 3: Decompose the (n+w)-dimensional signals using

the MEMD algorithm listed above to determine
the multivariate IMFs. The input signals are
projected on an (n + w − 1)-sphere and the
multivariate envelop mean vector m′(t) is then
determined. The sifting process for the N-A
MEMD is,

(v(t),noise(t)) − m′(t) = r′(t). (3)

If r′(t) satisfies the IMF conditions, apply the
(n + w)-dimensional r′(t) to the IMF.

Step 4: Discard the w channels noise related IMFs
from the resulting (n + w)-dimensional IMFs.
The extracted n-variate IMFs correspond to the
original signal.

Module reconstitution based on LZ complexity

Based on Kolmogorov theory, the complexity definition is
the minimum binary code length for a string (Kolmogorov
1968). The LZ complexity algorithmmeasures the complex-
ity of the symbol sequences, which means the time series
need to be transformed into characters first. Each IMF is
binarized into a 0-1 character string, where 1 indicates the
value is larger than 0, and 0 indicates the value is less than
0. The algorithm for calculating the LZ complexity is as
follows,

Step 1: The input of LZ complexity is the one-dimensional
0-1-character string. Scan the 0-1 string from left
to right, with the LZ complexity increasing by 1
whenever a new sub-string appears. In this way,
the output c(T ), which is the LZ complexity value
of each 0-1 string in T periods, is determined.
Details of the LZ complexity algorithm can be

found in the research of Zozor et al. (2005).
To reduce the impact of the sequence length,
the normalized complexity lz is shown in the
following, where T is the time span for each
transformed IMF series.

lz = c(T )/(T /log2T ). (4)

Step 2: Based on the physical significance of the LZ
complexity, the higher the complexity, the more
complicated the time series, and the lower the
complexity, the more periodic the time series.
Similar to Zhu et al. (2018), this paper sets γ0 as
the critical value. The former Q IMFs are selected
as the HF module components, with the remaining
IMFs forming the LF module. The minimal value
forQ is determined from the following conditions.

Q∑
q=1

lzq ≥γ0. (5)

Step 3: After integrating the former Q IMFs as the HF
module and remaining IMFs as the LF module, the
residue is identified as the trend module.

VAR-VECmodels

Based on the statistical data characteristics, the VAR
estimates each endogenous variable in the system as a
function of all lagged endogenous variables (Hamilton
1994). This unstructured model analyzes the relationships
between the multivariate variables. The VAR model is
shown in Eq. (6).

yt =
p∑

i=1

�iyt−i+Hxt + εt , t = 1, . . . , T , (6)

where yt is the f -dimensional vectors for endogenous
variables assumed at period t , which are extracted
from the n-dimensional original variables based on the
economic senses of candidate variables. Dynamics of yt

are presumed to be governed by a pth-order Gaussian
vector autoregression. xt is the d-dimensional vector for
the exogenous variables divided from the n-dimensional
original variables, and T is the sample period. The (f ×
f ) vector �i and the (f × d) vector H are respectively
the coefficient matrices for the endogenous and exogenous
variables, and εt represents the f -dimensional residuals,
which are serially and mutually independent.

Although the VAR model is one of the most classic mul-
tivariate methods for economic analysis and forecasting, it
demands stationarity, which is rarely possible in the real
world. To resolve this problem, the VAR model has been
combined with cointegration constraints to be extended as
the VEC model (Johansen 1995). Johansen and Juselius
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(1990) assumed there was a long-run equilibrium relation-
ship between the non-stationary variables. The VEC model
combines the cointegration concept in the autoregressive
model framework with the Gaussian errors. After testing the
significance of the cointegration relationships between the
variables using the Johansen-Juselius method, there may be
e possible stationary linear combinations, that is, there are e

cointegration vectors. The VEC model is shown in Eq. (7).
The lag and the subscript t − 1 for the corresponding VEC
models are respectively p − 1 and t − 1 because of the
difference process.

�yt =
p−1∑
i=1

	i�yt−i+
yt−1 + Hxt + εt

=
p−1∑
i=1

	i�yt−i+AB′yt−1 + Hxt + εt

=
p−1∑
i=1

	i�yt−i+Aect t−1 + Hxt + εt , t = 1, . . . , T ,

(7)

� is the first-order difference process, which is also called
the I (1) process. 	i are the (f ×f ) coefficients matrices for
the first-order differences of endogenous variables �yt−i .
H, xt and εt are the same as in the VAR model. The (f ×f )

coefficients matrices 
 contain information about the long-
run relationships between variables, which are decomposed
into the product of two (f × e) matrices A and B, with the
first being the deviating variables adjustment speed, which
adjusts variables back to the long-term equilibrium state, the
second being stationary linear cointegration relationships
between variables, and ectt−1 is an error correction vector
in the VEC model.

The determination of endogenous and exogenous vari-
ables is based on their economic meaning, while the exoge-
nous variables are determined outside the model and are
imposed on the model, and the exogenous variables are
determined by the model (Chiang 1984; Mankiw 2000).
Based on the correlationships analysis of variables in “Liter-
ature review”, there are substitution patterns between energy
variables, close links between macroeconomic indexes and
energy prices, and the economic situation may affect the
transportation mobility. Therefore, this paper treats all vari-
ables as endogenous in VAR and VEC models.

Data description

The definition and statistical characteristics of variables
are shown in Table 1. All variables were transformed
using a logarithmic process without changing their function
characteristics. This paper chose the DEC21 contract
settlement price for the EUA futures to represent the carbon
price, with the trading period being from January 21, 2019,
to March 26, 2021, in the Intercontinental Exchange (ICE)
website (https://www.theice.com), which includes the pre-
and post-COVID-19 periods. The split time criterion was
based on the availability of Apple mobility trends data. The
energy futures series, the economic indexes, and the Apple
mobility trends data were extracted from related financial
sites, stock exchanges, and company reports, which are
detailed in the data availability statement.

Brent crude oil, which is the benchmark for European
oil prices, was extracted from the ICE Futures Europe. The
Rotterdam coal futures in the Netherlands was selected to
represent the coal market, which was also derived from ICE.
Because of the global impacts of US natural gas (Arora

Table 1 Variable definitions and statistical characteristics

Variable* Definition Descriptive statistics

Pre-COVID-19 Post-COVID-19

Mean Std Dev Min Max Mean Std Dev Min Max

LCP Carbon futures price for the DEC21 contract 3.2413 0.0833 2.9801 3.4108 3.2894 0.2150 2.7543 3.7610

LO Brent crude oil futures price 4.2798 0.0672 4.1485 4.4298 3.9416 0.2951 3.0454 4.4249

LC Rotterdam coal futures price 4.2034 0.1296 3.9973 4.5432 4.1114 0.1989 3.7314 4.4733

LNG Natural gas futures price 1.0206 0.0994 0.8435 1.3804 0.9305 0.2486 0.5099 1.3649

LGSCI Goldman Sachs Commodity Index 6.0412 0.0369 5.9596 6.1251 5.8822 0.1758 5.4304 6.2013

LSTOXX STOXX Europe 600 index 5.9554 0.0390 5.8704 6.0396 5.9270 0.0919 5.6336 6.0728

LEU EURUSD 0.1149 0.0115 0.0923 0.1425 0.1443 0.0413 0.0725 0.2099

LAD Apple mobility trend of driving – – – – 4.5567 0.3799 3.5932 5.2893

LAW Apple mobility trend of walking – – – – 4.4840 0.3937 3.3847 5.0506

*All variables are natural logarithms
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and CaiArora and Cai), the natural gas futures contract
was acquired from the Energy Information Administration
(EIA). The GSCI and the STOXX indexes were selected
to reflect the regional macroeconomic development levels
(Keppler and Mansanet-Bataller 2010; Lutz et al. 2013).
The exchange rate EURUSD was also chosen as it has
a direct influence on production decisions and investment
preferences.

Mobility trends can be measured quantitatively because
of the widespread availability of personal mobile devices.
Apple company has released a mobility report in the
COVID-19 period on driving, walking, and transit mobility
data, which indicated the social and economic influences
of the pandemic (Apple 2020). Following Ou et al. (2020),
the Apple mobility trends data, which were determined
based on the baseline day change rate, were selected for the
analysis. Because of the transit trend data dearth, only the
driving and walking trends data in the report were selected.
These mobility trends were set as the EU country median
except for Cyprus and Malta, which were not included in
the report. The Croatian mobility trends were eliminated
according to the interquartile range (IQR) criteria. The
median value changes in the mobility trends data were taken
to imply the economic and human activity fluctuations in
the EU region (Ou et al. 2020).

Variable statistical characteristics in Table 1 were
examined in both pre- and post-COVID-19 periods. It can
be seen from the mean value that except for oil, the carbon
price, energy prices, economic indexes, and exchange
rate have decreased slightly. The rapidly falling oil price
significantly brought down the minimal and the average oil
price. Although there were no great changes in the average,
the max-min value span was relatively wide, especially for
the carbon price. The standard deviation (Std Dev) values
of variables also had higher dispersion degrees in the post-
COVID-19 period. These statistical characteristics results
indicated that there had been a significant pandemic effect
on markets volatility.

Empirical analysis and results

The empirical analysis was conducted using data prepro-
cessing and regression modeling for both pre- and post-
pandemic periods, for which Matlab and Eviews were used
for the calculations.

Data preprocessing results

The multivariate time series in two periods were both
decomposed into eight IMFs and a residual from high
frequency to low frequency. As the economic relationships
in the initial multi-dimensional IMFs were difficult to

explain, this paper reconstructed IMFs into HF and LF
modules using LZ complexity, which can represent the
short- and long-term volatility respectively (Mensi et al.
2017). The LZ complexity value of each IMF can be found
in section 1 in Supplementary Information (SI). The criteria
value for γ0 was set at 0.8. The HF module was combined
using IMF1-IMF5 and the LF module was combined using
IMF6-IMF8, which are depicted in Figs. 3 and 4. The
trend modules are discussed later in this paper. The x axis
in Figs. 3 and 4 shows the time span, and the y axis
shows the decomposed logarithmic series values. For clearer
depictions, the variables were split into two line-charts both
for HF and LF modules.

Comparisons between HF and LF modules in Figs. 3 and
4 show that the fluctuations in HF modules are higher, and
LF modules are more stationary in both periods. Because
of the wide range of mobility trends, the HF and LF
modules for the LAD and LAW are independently depicted
for convenience. Combining the high levels of retail and
recreation trends collected in Google’s mobility trend
report, which is a similar mobility trend report released by
Google company (Google 2020), the rapid rise in Fig. 4c in
February 2020 could be the result of festivals and vocations,
with the falls in March 2020 and December 2020 in Fig. 4c
might be the results of serious pandemic cases and death
situations (Johns Hopkins University 2021).

The Phillips-Perron (PP) test, which null hypothesis is
having a unit root, was used to determine the existence
of unit roots, with the Bartlett kernel spectral estimation
method and the Newey-West bandwidth being selected in
this test. The existence of variable constants or trends was
determined based on the Akaike info criterion (AIC), the
Schwarz criterion (SC) and the Hannan-Quinn criterion
(HQC). Detailed unit root test results for each variable in
the two periods are given in section 2 in SI. In both the
pre- and post-COVID-19 periods, the HF modules for all
variables rejected the null hypothesis at a 1% significance,
which indicated that the HF modules were unequivocally
stationary. The LF modules analysis showed that the LCP
had no unit root in the pre-COVID-19 period; however,
while the other variables in this period were not stationary
at all, the first-order difference for each variable was
stationary, which meant they were I (1). Similarly, the LF
modules in the post-COVID-19 were also I (1). The unit
root test results supported the different HF and LF model
utilization. As this paper mainly focuses on carbon price
determinants, the following results report the impact of the
other endogenous variables on the carbon price.

Calculation on HFmodules

From the unit root test results, the VAR model was selected
for HF modules. Five criteria were selected to determine
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(a) HF module in the pre-COVID-19 period

(b) LF module in the pre-COVID-19 period

Fig. 3 Reconstructed series in the pre-COVID-19 period. (a) HF module in the pre-COVID-19 period. (b) LF module in the pre-COVID-19 period

the optimal number of lags in the VAR estimations; the
likelihood ratio (LR) test, the final prediction error (FPE),
AIC, SC, and HQC. The optimal lags for HF modules
in pre-COVID-19 and post-COVID-19 periods were both
1, with the estimation results shown in section 3 in SI.
Each equation in the VAR model was estimated separately
using ordinary least squares (OLS). The VAR models
satisfy the stability conditions and have no characteristic
polynomial roots. From the comparison of estimation results
in two periods, there were obvious short-term fluctuation
relationships differences between the carbon price and
factors. More visible coefficient changes are shown in
Fig. 5.

The columns in Fig. 5 show the elastic coefficient values
for the lagged variables. Except for the self-correlation,
effects of drivers were differently affected by the outbreak
of COVID-19, especially the exchange rate LEU, with its
effect varying from positive to negative. Other striking
variations were the oil coefficients, which were more

obvious in the post-COVID-19 period. In general, the coal,
natural gas, exchange rate, and STOXX effects on the
carbon price were weakened and the GSCI and oil effects
were strengthened by the pandemic.

Granger causality test results, which verified the causal
relationships between variables, are given in section 4 in SI.
The dynamic variable behaviors in the short term became
more complex because of COVID-19. The exchange rate
and natural gas were found to be the Granger reasons
for the carbon price in the pre-COVID-19 period, while
the exchange rate, GSCI, oil price, and STOXX were the
Granger reasons of carbon price in the post-COVID-19
period. The Apple mobility trends were shown to have direct
effects on the exchange rate and indirect effects on the
carbon price.

After combining the Granger causality relationships,
the IRF of carbon price to endogenous variables was
estimated. The aim of IRF was to analyze the effects of
imposing a one-time shock on the disturbance term on
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(a) HF module of common determinants in the post-COVID-19 period

(b) LF module of common determinants in the post-COVID-19 period

(c) HF module of mobility trends in the post-COVID-19 period

(d) LF module of mobility trends in the post-COVID-19 period

Fig. 4 Reconstructed series for the post-COVID-19 period. (a) HF
module of common determinants in the post-COVID-19 period. (b)
LF module of common determinants in the post-COVID-19 period. (c)

HF module of mobility trends in the post-COVID-19 period. (d) LF
module of mobility trends in the post-COVID-19 period
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Fig. 5 Parameters of carbon price endogenous variables

the current and future values for the response variable.
The Cholesky decomposition method was used to solve
the orthogonalization IRF process. Figure 6 shows the
responses and confidence intervals for the carbon price to
endogenous variables, where the y axis shows the response
and the x axis shows the lag period. The lag period was
set at 50 to show the fluctuation process. There was a
positive carbon price response to the exchange rate in the
pre-COVID-19 period (Fig. 6a) and a negative response
in the post-COVID-19 period (Fig. 6b). Oil was found
to have almost no impulse effect on the carbon price
in the pre-COVID-19 period according to the non-causal
relationship between oil and carbon price. However, the
oil effect obviously enhanced in the post-COVID-19 period
(Fig. 6b). Also, the carbon price response to the natural
gas was eliminated and the GSCI and STOXX effects were
strengthened in the post-COVID-19 period.

The Cholesky decomposition method was also utilized
in the VD factorization process. Figure 7 strengthens the
Granger causality test and IRF results, where the y axis was
the contribution rate and the x axis was the lag period, with
the lag period set at 15 to depict the variance decomposition
process. The carbon price was mainly self-impacted because
of the autocorrelation characteristics based on the high
degree of self-explanation. However, the explanation rate
decreased from almost 80% in the pre-COVID-19 in Fig. 7a
to 70% in the post-COVID-19 period in Fig. 7b. The
explanation ability of the exchange rate on the error variance
in the carbon price had no obvious differences, which
changed from 11 to 9% as shown in Fig. 7a and b. In Fig. 7b,
the STOXX explained nearly 8% of the error variance,
which was only second to the exchange rate. Both the
driving mobility and oil in Fig. 7b explained about 4% of
the error variance respectively when focused on the carbon
price.

Calculation on the LFmodules

The I (1) processes of LF modules were stationary,
which supported the utilization of the VEC model. After
determining the optimal lags based on the five criteria
above, a VEC model for each period was established. The
VEC model is an extension of the VAR model considering
the long-term cointegration relationships; therefore, it
is consistent with the physical characteristics of the
LF module. The number of cointegration relationships
determined by the Johansen-Juselius (JJ) test, which is a
classical method for testing the cointegration relationships
between multi-variables, were detailed in section 5 in SI.

Fig. 6 IRF results. (a) IRF of HF in pre-COVID-19 period. (b) IRF of HF in post-COVID-19 period
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Fig. 7 VD results. (a) Pre-COVID-19 VD for the HF module. (b) Post-COVID-19 VD for the HF module

The principle of the JJ test is to transfer the cointegration
tests on the original series yt into determining the number of
non-zero eigenvalues for the 
 in Eq. (7). A trace test was
utilized to ascertain the number of non-zero eigenvalues.
Because of the zero mean characteristics of the IMF
modules, the no intercept or trend condition was selected
as the deterministic trend specification for the cointegration
equations.

The JJ test indicated that there were respectively five
and eight cointegration equations in the error correction
term in the pre- and post-COVID-19 periods. As this paper
mainly focused on the carbon price fluctuation, the long-
term cointegration relationships for the carbon price in the
two periods were as follows:

aLCP = −0.049aLC − 0.0099aLEU + 0.037aLGSCI

−0.01aLNG + 0.0577aLO

+0.01379aLST OXX + aect2t , (8)

was the long-term relationship in the pre-COVID-19 period,
with the cointegration equation in the post-COVID-19
period being:

pLCP = 0.0568pLAD + 0.0618pLAW + 0.0313pLC

+0.0107pLEU + 0.0266pLGSCI

+0.0339pLNG + 0.0619pLO

+0.0215pLST OXX + pect4t , (9)

where the prefixes a− and p− were the indicators for
pre- and post-COVID-19 periods. aect2t and pect4t were
the linear combinations of variables in each period, which

were the residual terms for cointegration equations and
the error correction terms in VEC models. The subscripts
2 and 4 for aect2t and pect4t corresponded to the car-
bon price Cholesky order in the two periods. The coin-
tegration equations results were calculated using Eviews,
which has default normalization expressions for all coin-
tegration relations. However, as these expressions did not
directly explain the cointegration relationships, restrictions
were imposed on the cointegrating vectors to determine
the non-normalized cointegration vectors. Equations (8)
and (9) are the restricted carbon price cointegration equa-
tions in two periods, and the VEC model of carbon
price is shown in “Discussion” in SI. The Gaussian-
Jordan elimination method verified the feasibility of these
restrictions.

From Eqs. (8) and (9), the long-run cointegration
relationships in two periods were beyond expectations.
In the pre-COVID-19 period, there were negative and
positive effects of coal and oil respectively. As for the
natural gas, this model had different results with existing
researches, which the coefficient of natural gas was negative
but existing researches have commonly considered the
substitutional role of natural gas with coal may lead to
positive effect (Zhu et al. 2019). In post-COVID-19 period,
all variables had positive effects on the carbon price
according to Eq. (9). Although some unusual calculation
results were counter to the logical relationships, the effects
of these variables were weak. Because of the logarithmic
nature of the model, the estimated coefficients in the
cointegration equations could be perceived to be long-run
elasticity coefficients. For example, when the natural gas
price increased by 1%, the carbon price only decreased
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0.01% in the pre-COVID-19 period and only increased
0.0339% in the post-COVID-19 period.

These unusual calculation results for the post-COVID-
19 period indicated the eruption of epidemic had changed
the relationships between EU ETS and other stock markets.
Shocks at the beginning of the post-COVID-19 period and
the increasing trends in the latter recovery period caused
positive correlationships between carbon price and drivers.
In another hand, the decrease of carbon price was limited,
unlike previous continuous rapid declines in the financial
crisis period in 2008 and European debt crisis in 2011
(Zhu et al. 2015). This may be caused by the EU ETS
MSR mechanism; as the aim of MSR is addressing the
surplus of allowances and improving the system’s resilience
to major shocks (Bruninx et al. 2020). In addition, the LF
module cointegration equation calculation results indicated
that the external markets had less effects on the ETS over the
long term, and the autoregression characteristic of carbon
price was more powerful in this term. To verify the strong
autoregression of carbon price, the VD results for the VEC
models over the long term are shown in Table 2. The
VD results indicated the carbon price had almost 90%
contribution when there was a shock on the system in the
pre-COVID-19 period, and over 80% contribution in the
post-COVID-19 period, which strengthened the supposition
about MSR. Compared with the HF VD results in Fig. 7,
the carbon price explanation increased by about 10% in both
periods.

Trendmodule comparisons

After the decomposition process, the residual modules
became more stationary and the time series trends became
more legible as shown in Fig. 8, in which the left parts of the
vertical dashed line indicate the trends before the pandemic
and the right parts indicate the trends after the pandemic.

The downward trends of variables in the pre-COVID-
19 period were reversed in the post-COVID-19 period. As
for the exchange rate, there was no sudden slump when
epidemic erupted and had continual growth in the post-
COVID-19 period. Some rebounds, such as coal and GSCI,
almost reached the previous levels, and some, such as the
carbon price, the exchange rate and the natural gas, even
surpassed their previous peak values. The trends in Fig. 8
verified the LF module analytical results. The recovery
in post-COVID-19 period caused positive relationships
between carbon price and impact factors.

Discussion

The objective of this paper is to determine the relationships
evolution between the carbon price and impact factors
before and after the COVID-19 pandemic. Three aspects
including the pandemic impacts, the determinants evolution
in multi-scale, and the inner mechanism of ETS are
concluded from the calculation results.

Table 2 Long-term carbon price variance decomposition results

Period LAD LAW LC LCP LEU LGSCI LNG LO LSTOXX

Pre-COVID-19

1 – – 10.4706 89.5294 0.0000 0.0000 0.0000 0.0000 0.0000

3 – – 9.8763 89.6916 0.2845 0.0006 0.0295 0.0865 0.0310

6 – – 7.9928 89.5708 1.0054 0.016 0.3864 0.2371 0.7915

9 – – 5.9419 87.6849 1.5319 0.0371 1.2039 0.3734 3.2269

12 – – 4.2062 83.3231 1.8537 0.0293 2.4940 0.6923 7.4014

15 – – 2.8025 75.9222 2.1301 0.4929 4.6499 1.4621 12.5402

Post-COVID-19 period

1 10.1004 7.3152 0.2233 82.3611 0.0000 0.0000 0.0000 0.0000 0.0000

3 12.1178 7.2299 0.438 79.888 0.0054 0.0914 0.1779 0.0361 0.0154

6 15.3841 6.4754 0.7697 75.7092 0.0014 0.5430 0.7644 0.2550 0.0978

9 18.4419 5.1568 1.0532 71.5468 0.0453 1.4072 1.299 0.7747 0.2752

12 20.6048 3.5451 1.2564 67.6314 0.2954 2.7869 1.5222 1.7595 0.5984

15 21.3611 2.0159 1.3818 63.6002 0.8518 4.8208 1.4244 3.4025 1.1417

Note: Cholesky Ordering: (LAD LAW) LC LCP LEU LGSCI LNG LO LSTOXX
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Fig. 8 Trend modules. (a) LAD, LAW, LC, LCP and LO trends. (b) LEU trend. (c) LNG trend. (d) LGSCI and LSTOXX trends

Related studies have investigated the effects of the
COVID-19 pandemic and quarantine measures on energy
consumption and economies. For example, via a qualitative
analysis, Mintz-Woo et al. (2021) and Khurshid and
Khan (2021) found that the falling energy prices (e.g.,
oil) resulting from COVID-19 facilitated the carbon price
mechanism because of the less harm for producers and
more diversified government revenue. In this paper, the
oil impact was found to become more evident in the
post-pandemic period based on the higher impulse effect
and VD magnitude (Figs. 6 and 7) and the higher
coefficient (Eq. (9)). With the exception of determining the
influence of oil price collapse, this paper also examined
the effect trajectories of other potential determinants on the
carbon price with considering the mobility restrictions in
the COVID-19 period. The short-term calculation results
indicated that COVID-19 reinforced the driver effects, as
evidenced by the more complicated Granger relationships in
the post-COVID-19 period. Over the long term, the common
determinant effects abated and the mobility trends became
more powerful.

Except for exchange rate, the complete COVID-19
shutdown measures at the beginning of 2020 resulted in
steep declines in carbon price and all other influence factors.
Because the pandemic has resulted in unprecedented

economic crises, this may have resulted in a decrease in
emissions permits, and slumps in energy prices, which could
have led to greater fossil fuel consumption and increasing
emissions allowance demand (Smith et al. 2021). The
recovery policies established by governments were designed
to prevent their economies slipping into recession, which
was evidenced by the steady rebound in carbon prices,
energy prices, and the macroeconomic index in this study
(Fig. 8).

Previous studies have found that the energy markets and
macroeconomic indexes were the main carbon price impact
factors (Zhou and Li 2019; Li et al. 2020). However, the
carbon price drivers have been verified to be not fixed
over time (Batten et al. 2021), which was consistent with
the results in this paper. Beyond that, this paper further
determined the different factors on multiple timescales,
from which it was found that the HF module carbon price
was positively affected by the exchange rate and natural
gas in the pre-COVID-19 period, and the GSCI, oil price
and STOXX impacted the HF module carbon price in the
post-COVID-19 period. Comparing with the HF modules,
the impacts of drivers over the prolonged period were
weaker. Over the long term, around 90% of the carbon price
volatility was self-explained when the COVID-19 outbreak
was not considered.
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The carbon price has experienced continuous decreases
in global financial crisis and European debt crisis periods,
and the surplus allowance caused by the depressing
economy has made carbon price stay low (Zhu et al. 2015).
Even the economy recovery after its plunge did not revive
the gloomy carbon price (Ellerman et al. 2016). As the
purpose of the MSR mechanism is to avoid large structural
allowance surplus,2 the COVID-19 is a severe test for
MSR mechanism on stabilizing the carbon price. Some
researchers have considered the MSR mechanism to be an
effective instrument for dealing with the exogenous shock
brought by COVID-19 in short term (Gerlagh et al. 2020),
while others had opinions that the MSR can deal with the
exogenous shocks with considering more severe and longer
lasting impacts of the pandemic (Azarova and Mier 2021).
In this research, the characteristics of the LF and trend
module indicated that the MSR adjustments were flexible
and the MSR effect was more powerful over the long-term
period and in the trend modules, as evidenced by the high
autoregressive characteristics of carbon price in LF and
trend modules. Although the COVID-19 pandemic shock
increased the turmoil in markets and the MSR effect was
slightly weakened, the MSR mechanism still was one of the
most main reasons for the recovery of the carbon price.

Conclusions

The COVID-19 impact and the associated quarantine
measures have slowed economic development and social
mobility, and led to a reduction in overall carbon emissions.
This paper focuses on the EU ETS and related markets to
determine the evolution relationships between the carbon
price and the potential drivers in the pre- and post-COVID-
19 periods. The N-A MEMD method was employed
to simultaneously decompose the multi-dimensional time
series into multichannel IMFs and residuals to resolve
the nonstationarity and nonlinearity. The LZ complexity
algorithm was then used to reconstruct the IMFs into HF, LF
and trend modules to analyze the multi-scale relationships
between variables. After testing the unit roots of modules, a
VAR model was employed on the HF module to determine
the short fluctuations and a VEC model was applied to
the LF module to describe the long-term cointegration
between variables. By combining the trend descriptions,
the long-term carbon price autoregression characteristics
were determined. This paper also compared the pre- and

2Communication from the Commission. Publication of the total num-
ber of allowances in circulation for the purposes of the market sta-
bility reserve under the EU Emissions Trading System established by
Directive 2003/87/EC (2017/C 150/03): http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:52017XC0513(01).

post-COVID-19 periods, from which the following were
found.

(1) The IRF and VD results in both periods indicated that
common drivers were the main influences on the short
time of the carbon price, and these drivers were heavily
affected by market shocks, such as the COVID-19
outbreak. The MSR mechanism was found to be the
support of long-term carbon price stabilization, which
evidenced by the high autocorrelation characteristics
of carbon price.

(2) The comparison of the causal relationships between
carbon price and influence factors in pre- and post-
COVID-19 periods verified that the pandemic had
complicated the cross-correlations of the carbon price
and determinants, and the epidemic had amplified the
external markets effects on the ETS. These pandemic
effects determination results provide a reference for
future research to analyze the emergent events impact
to the carbon trading market, which is lack of sufficient
investigation but very important.

(3) A post-COVID-19 period economic rebound was veri-
fied. Because the energy prices were depressed at the
beginning of the outbreak, the energy consumption was
found to increase in the following year, which resulted
in a steady rise in the energy and carbon prices.

These findings can not only provide references on selecting
influence factors when forecasting the carbon price, but
also examine the effectiveness of current measures on
stabilizing the ETS when there are external extreme shocks.
According to the continuous raising trends of series in
Fig. 8, governments should pay attention on the possible
high energy consumption in economic recovery period,
which may hinder the emission reduction progress.

Since this paper mainly puts attention on exploring the
evolution of relationships between EU ETS and related
stock markets in pre- and post-epidemic periods, there are
some limitations in current research. First, this research
mainly explores the endogenous impact factors, and there
may be other possible exogenous drivers for carbon price
such as Baidu index. Second, this research only discusses
the European markets, while the ETS markets in other
regions, such as China, are also deserved to be explored
(Cong and Lo 2020). Future research plans to examine
the unstructured carbon price impact variables, such as the
emission reduction policies (Song et al. 2019) and search
indexes (Huang and He 2020). As the carbon emissions
trading markets in other countries may have had different
reactions to COVID-19, a comparative study with EU ETS
could be an interesting research direction, for example,
how did the immature emissions trading market in China
maintain stability and avoid a carbon price crash during the
pandemic?
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Nomenclature

Abbreviation Meaning Abbreviation Meaning

MEMD Multivariate empirical mode decomposition ARDL Autoregressive distributed lag
N-A MEMD Noise-assisted multivariate

empirical mode decomposition
IRF Impulse response function

IMFs Intrinsic mode functions VD Variance decomposition
IMF Intrinsic mode function ICE Intercontinental Exchange
LZ complexity Lempel-Ziv complexity EIA Energy Information Administration
HF High-frequency IQR Interquartile range
LF Low-frequency Std Dev Standard deviation
VAR Vector autoregression SI Supplementary Information
VEC Vector error correction PP test Phillips-Perron test
MSR Market stability reserve AIC Akaike info criterion
EU ETS European Union emissions trading system SC Schwarz criterion
ETS Emissions trading system HQC Hannan-Quinn criterion
EUA European Union allowance LR Likelihood ratio
GSCI Goldman Sachs Commodity Index FPE Final prediction error
STOXX STOXX Europe 600 index OLS Ordinary least squares
EMD Empirical mode decomposition JJ test Johansen-Juselius test
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