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Abstract
The increasing use of Bacillus thuringiensis (Bt)–based plant protection products (PPPs) has recently raised some concerns 
regarding their environmental accumulation and possible chronic exposure of non-target species, including pollinators, to 
higher than expected doses. The exposure level of such microbial PPPs in bee’s matrices under field conditions has not yet 
been described. Therefore, the current study aims at evaluating the realistic exposure level and comparing the distributions 
and persistence of Bt spores under field conditions. A field trial with spray application in oilseed rape (Brassica napus) as a 
representative bee-attractive crop was conducted. During the experimental period, different matrices, including honeybee-
collected and -stored matrices as well as bee larvae and dead bees, were collected and analyzed using newly established 
methods. The concentration of Bt spores in the various matrices was quantified. The results show high levels of Bt spores in 
honey sac and pollen pellets with reduction over time but no reduction of Bt spores in the stored matrices within the colony, 
i.e., nectar and bee bread, over time. Our results show for the first time the exposure level of bees to Bt spores under realistic 
field conditions and are fundamentally important for assessing potential exposure and risks for pollinators.
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Introduction

Nowadays, the growing world population requires constant 
high crop yields. To avoid losses caused by weeds, pests, 
and diseases, which can reach 37% of all potential crops 
(Pimentel 1997), farmers follow several approaches. Inte-
grated pest management (IPM) is a general approach, includ-
ing chemical plant protection products (PPPs) to suppress 
pest populations below the economic threshold (Peshin et al. 
2009). However, increasing numbers of studies have shown 
the potential adverse effects of chemical PPPs on insect 

pollinators, including Apis and non-Apis bees, leading to a 
wide range of microbial pest-controlling products (MPCPs) 
being developed as more specific and safer alternatives 
(Köhl et al. 2019). Among the MPCPs, several products con-
taining different strains and isolates of Bacillus thuringiensis 
(Bt) are applied worldwide as entomopathogen biocontrol 
agents against insect pests in agriculture and forest (Sanchis 
and Bourguet 2008; Lacey et al. 2015).

Currently, the commercial formulations based on different 
isolates of Bt subsp. kurstaki (Btk) and Bt subsp. aizawai 
(Bta) to control lepidopteran larvae are the most sprayed 
bioinsecticides in organic and conventional farming (Bravo 
et al. 2011). These products are recommended to be sprayed 
repeatedly within a short interval (3–8 days) due to the sen-
sitivity of toxin crystals or spores to abiotic conditions like 
UV (EFSA Biohaz Panel (EFSA Panel on Biological Haz-
ards), 2016). The formulations contain different compounds 
to protect spores and toxin crystals (Brar et al. 2006). Previ-
ous studies reported that Btk can persist on the leaves’ sur-
face over 72 h after application, decreasing within 28 days 
to the environmental background level (Bizzarri and Bishop, 
2008; Raymond et al. 2010).
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The increasing use of Bt–based products has recently 
raised concerns regarding environmental Bt accumulation 
which can lead to chronic exposure of non-target species, 
including entomophagous insects and pollinators, to higher 
doses than expected (Babin et al., 2020). Bt is known for 
synthesizing a wide range of toxins encoded on large plas-
mids. Therefore, each subspecies and/or strain can harbor 
different plasmids, encoding for synthesized toxins related 
to their biological activity and the potential target insects 
(Palma et al. 2014). The most studied insecticidal toxins are 
Cry-toxins as δ-endotoxins affecting the susceptible insects 
after oral uptake (Bravo et al. 2011 and Bravo et al., 2017; 
Mendoza-Almanza et al. 2020). Several reports regarding 
direct and indirect cross-effects of Bt formulations and their 
toxins across insect taxa and orders recently indicated the 
semi-specificity of Bt (van Frankenhuyzen 2017; Redmond 
et al. 2020; Coyle et al. 2000; Babin et al. 2020; Nawrot-
Esposito et al. 2020; Tudoran et al. 2020). Lepidopteran-
targeted formulation, containing Bta ABTS 1857, has 
demonstrated increasing mortality of adult and larvae of 
honeybees after chronic exposure under laboratory condi-
tions (Steinigeweg et al. 2021).

Their foraging activity may expose bees to Bt products, 
collecting nectar and pollen contaminated after spray appli-
cation during flowering on various crops and transporting 
them to the colony. In-hive conditions differ highly from 
field conditions, e.g., no more UV effects on the spores 
and/or the products along with higher humidity. With no 

information about the realistic exposure yet available, the 
viability and environmental fate of Bt spores in the collected 
matrices, i.e., nectar and pollen, after application in different 
bee-attractive crops have to be investigated. Recently, we 
considered the distribution of Bt spores within the colony 
in several matrices after an artificial in-hive feeding experi-
ment, resulting in the presence of Bt in all matrices at dif-
ferent concentrations over 2–3 weeks (Steinigeweg et al., 
2021).

The current study aims at (1) evaluating the realistic 
exposure level under field conditions after spray application 
in oilseed rape as a representative bee-attractive crop and (2) 
comparing the distributions and persistence of Bt spores in 
different bee-collected and -stored matrices. These results 
will be of great importance to assess potential exposure and 
risks for pollinators.

Materials and methods

Experimental setup and sample collection

The study was conducted in Celle, Germany, in 2020. Paired 
fields with treated and untreated winter oilseed rape (Bras-
sica napus) were used as representative bee-attractive crops. 
The distance between both fields was approximately 2.5 km.

Seven experimental honeybee colonies were set up as a 
block on the edge of each oilseed rape field. Figure 1 shows 

Fig. 1   Experimental design and sampling dates. Seven experimen-
tal honeybee colonies were set up as a block on the edge of each 
oilseed rape field 4  days before the oilseed rape was in full bloom. 
The Bt–based product containing Bta strain ABTS 1857 was applied 
during full flowering twice with an interval of 6 days. At the end of 

flowering, i.e., 16 days after exposure (day after application (DAA), 
DAA1 + 16), the colonies were transferred off the field. Various matri-
ces were collected, i.e., honey sac (HS), pollen pellets (PP), flowers 
(F), bee bread (BB), stored nectar (SN), and larvae (L)
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the time points of the field phase related to the application, 
i.e., day after application (DAA). The colonies were placed 
on the edge of the field, 4 days before the oilseed rape was 
in full bloom (DAA1 − 4; Fig. 1).

At full flowering of winter oilseed rape (BBCH 65), two 
applications (A1 and A2) were conducted with an interval of 
6 days of PPP containing Bta strain ABTS 1857, simulating 
multiple recommended applications (Fig. 1). The maximum 
recommended rate of 1.5 kg/ha was applied using calibrated 
commercial sprayers delivering 900 L/ha, during bee flight. 
At the end of flowering (BBCH 68–69), i.e., 16 days after 
exposure (DAA1 + 16), the colonies were transferred off the 
field (Fig. 1).

Various matrices, including honey sacs and pollen pel-
lets from forager bees, dead bees, larvae, bee bread, and 
stored nectar, were collected from each colony before 
application and at different times afterwards (Fig. 1). All 
samples were stored in the laboratory at − 20 °C until 
analysis. Approximately 50 foragers per sampling date 
were collected and then pollen pellets in the corbicu-
lae were sampled. The honey stomach, i.e., honey sac, 
of each bee was sampled after dissection of the abdo-
men and separated from the rest of the digestive tract. 
The flowers were collected from 10 places from each 
field and pooled into one sample for each sampling time 
(Fig. 1). Furthermore, the dead bees were collected from 
dead traps (modified Gary trap (Gary 1960)) and pooled 
for each sampling time, pooling at least two bees from 
each colony to get a sample of approximately 1 g.

Determination of Bt in the collected samples

Samples of different matrices were homogenized and dis-
solved 1:2 (w/v) in ddH2O. Tissue lysis was performed 
in Bead Tubes Type G (Macherey–Nagel, Germany) in 
a SpeedMill PLUS (Analytik Jena, Germany) for 30 s. 
Homogenates were used for serial dilution 10−1–10−6 in 
ddH2O in a final volume of 200 µL on an epMotion 5075 
(Eppendorf, Germany). Triplicates of 75 µL per dilu-
tion were plated on LB agar (10 g trypton (Carl Roth, 
Germany), 5 g yeast extract (Carl Roth, Germany), 10 g 
NaCl (Carl Roth, Germany), 15 g agar (Carl Roth, Ger-
many), and 1 L ddH2O) and incubated over night at 37 °C 
(Memmert HPP 750, Germany). Bt–typical colonies were 
finally quantified on each plate and their mean calculated 
(cfu/g).

Identification of potential Bt colonies

Colonies were identified as Bt by qPCR, amplifying a par-
tial sequence of the CryIAa gene (Ogunjimi et al. 2000; 
Steinigeweg et al. 2021). Accordingly, a random colony was 
resuspended in 50-µL ddH2O, followed by bacterial lysis at 

95 °C for 15 min. Cell debris were sedimented at 5000 × g 
for 5 min, and 1 µL of supernatant was used as template for 
qPCR. PCRs were performed using the LUNA® Universal 
qPCR Master Mix (New England Biolabs, USA) according 
to the manufacturer protocol on an AriaMX Real-Time PCR 
system (Agilent, USA). Samples were identified as Bt–posi-
tive when Cq < 30 and 80 °C < Tm < 81 °C was obtained 
(Ruiz-Villalba et al. 2017).

Statistical analysis

To analyze the differences between matrices over time, 
linear mixed models (LMMs) were used. Concentrations 
of Bt spores were set as dependent variables against sam-
pling date and matrices as independent variables; the 
colony ID served as a random factor. All statistical anal-
yses were conducted using software “R” version 4.0.3 
“Bunny-Wunnies Freak Out” (R Core Team 2020) at the 
significance level of 0.05. Models were performed with 
the function lme from the nlme package version 3.1–152 
(Pinheiro et  al. 2021). Plots used the library ggplot2 
(Wickham et al. 2020).

Results and discussion

Bt concentrations in fresh bee‑collected matrices 
(nectar and pollen)

Our results show significantly decreasing concentra-
tions in all matrices over 2 days after applications (Fig. 2; 
GLMM, p < 0.001). The level of Bt spores in the honey 

Fig. 2   Concentrations of Bt spores as colony-forming units per 
gram matrix (cfu/g) over 2 days after application. Sample size is 
n = 7 colonies for honey sac and pollen pellets from about 50 for-
agers per sampling date. One pooled sample of flowers per date 
was analyzed. A significant decreasing concentration in all matri-
ces over 2 days after applications was found (GLMM, p < 0.001). 
The level of Bt spores in the honey sac was significantly lower 
than in pollen pellets (GLMM, p = 0.045)
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sac was significantly lower than in pollen pellets (Fig. 2; 
GLMM, p = 0.045). The maximum detected concentra-
tion in pollen pellets was 30.33 × 107 cfu/g on DAA2 + 1 
and 3.01 × 107 cfu/g on DAA1 + 1 in the honey sac. Fur-
thermore, the maximum detected concentration on the flow-
ers of oilseed rape was 14.3 × 107 cfu/g on DAA1 + 0 and 
4.36 × 107 cfu/g on DAA2 + 0 (Fig. 2). Overall, no significant 
differences were found between A1 and A2 regarding the 
detected concentrations (GLMM, p > 0.05). The concentra-
tions spread among 105–108 cfu/g on the day of application 
and between 103 and 105 cfu/g after 2 days. No Bt spores 
were detected in samples collected before application from 
both fields or from the untreated field at subsequent dates, 
except in one sample of honey sacs with a trace concentra-
tion of 355 cfu/g indicating general low background con-
centrations of Bt.

Generally, few studies show persistence of Bt spores 
after application of Bt–based MPCPs in the environment, 
although wide use of Bt–based PPPs is approved worldwide. 
These PPPs are considered to have a low persistence on foli-
age under field conditions where the half-life period of via-
ble Bt spores was assumed as a few hours and up to 2 days 
(Pinnock et al. 1971; Ignoffo and Garcia 1978; Pedersen 
et al. 1995; Haddad et al. 2005). The rapid degradation of Bt 
spores is reportedly related to several abiotic factors like UV 
radiation, temperature, and humidity (Dunkle and Shasha 
1988; Ignoffo et al., 1974; Khorramvatan et al. 2014, San-
sinenea et al. 2015); therefore, several attempts to develop 
formulations with better Bt stability under field conditions 
like UV-protective adjuvants sought to increase efficacy 
(e.g., Maghsoudi and Jalali 2017). The detected concentra-
tions in our samples were still abundant at a high concentra-
tion > 106 cfu/g 2 days after application though significantly 
decreased in the detected concentrations, confirmed by the 
results in bee-collected matrices (i.e., pollen and nectar), 
showing a significant decrease of the Bt concentration 2 days 
after applications.

Bt concentrations in bee larvae and stored matrices 
(stored nectar and bee bread)

The results showed no reduction of the Bt spores in the stored 
matrices, i.e., nectar and bee bread, within the colony over 
the sampling time (Fig. 3; GLMM, p > 0.05). The maximum 
detected concentration in bee bread was 3.96 × 106 cfu/g, 
whereas stored nectar presented a range (3.67 × 106 cfu/g). 
These results indicate approximately 10 × lower concentra-
tions in the stored than the freshly collected matrices. The 
detected concentrations in bee larvae spread in a smaller 
interval, i.e., from undetectable to 2.99 × 104 cfu/g. Moreo-
ver, they differed significantly from the stored matrices 
(Fig. 3; GLMM, p = 0.009). No Bt spores were detected in 

all samples as well as in most samples from the colonies in 
the untreated field, except in two samples from one colony 
with trace concentrations 267 and 800 cfu/g.

These results concur with our previously published 
results (Steinigeweg et  al., 2021). We found that the 
detected concentrations in stored food within the colony 
after feeding Bt–contaminated sugar solution ranged 
between 105 and 106 cfu/g. Nevertheless, we observed 
decreasing detected concentrations over the 20-day 
experimental period, perhaps related to the experimental 
procedure under semi-field conditions, giving the colony 
only 2 L of Bt–contaminated sugar solution and uptake 
to store this amount within a short period. Vandenberg 
and Shimanuki (1990) investigated the presence of viable 
spores following storage of the Bt–treated combs against 
wax moth (Galleria mellonella and Achroia grisella), 
reporting a long-term presence at ranges of 107 cfu and 
104 cfu in comb pieces (5 × 10 cm) at 10 °C and 30 °C 
over 12 months storage, respectively. However, honey 
produced by bees on treated combs contained very low 
levels of viable Bt spores after 20 weeks. Thus, a long-
term presence of Bt spores can be expected despite the 
low detected levels.

European Food Safety Agencies (EFSA) suggested 
the threshold of 105 cfu/g on plant commodity at har-
vest time to cover the risk of food-borne poisonings 
(EFSA Biohaz Panel (EFSA Panel on Biological Haz-
ards), 2016). Our results show the detected concentra-
tions in collected pollen approximately 102–103 above 
this threshold. Moreover, the detected concentrations in 
stored nectar or later honey are mostly tenfold higher 

Fig. 3   Concentrations of Bt spores in the stored matrices (nectar 
and pollen pellets) and bee larvae as colony-forming units per gram 
matrix (cfu/g) 5 and 16  days after first application. Sample size is 
n = 7 colonies per sampling date. No reduction of the Bt spores in the 
stored matrices, i.e., nectar and bee bread, within the colony over the 
sampling time was observed (GLMM, p > 0.05). The detected con-
centrations in bee larvae differed significantly from the stored matri-
ces (GLMM, p = 0.009)
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than the threshold, although 10 days after the second 
application.

The detected concentrations in larvae were signifi-
cantly lower than the stored matrices, covering a range 
of 0–2.99 × 104 cfu/g. Assuming that the L4 larvae weigh 
about 55–88 mg (Zółtowska et al. 2011), about 12–18 
larvae represent the analyzed amount of 1 g; the maxi-
mum detected level of Bt spores can be assumed as about 
103 cfu/larvae. This level may still be tolerable for larvae, 
since they were alive during sampling. Steinigeweg et al. 
(2021) reported high larval mortality under laboratory 
conditions after exposure to a range of 0.16–32.00 µg 
product/larvae corresponding to concentrations of about 
104–106  cfu/larvae. These concentrations are calcu-
lated based on the reported maximum concentrations 
of 6 × 1013 cfu/kg of Bta ABTS 1857 in the formulated 
product (EFSA, 2020). Therefore, further research is 
needed to assess the tolerable level of Bt for larvae.

Bt concentrations in dead bees

Bt spores were detected in all samples collected from the 
treated field after applications. The concentrations ranged 
from 2.23 × 103 cfu/g to 3.42 × 107 cfu/g (Fig. 4). Remark-
ably, high concentrations of Bt spores were detected at a 
later date after applications, indicating the chronic Bt spore 
exposure of bees and possible infective properties of Bt. No 
Bt spores were detected in all samples taken from the treated 
field before application or from the control field at all sam-
pling dates.

Although Bt strains are assumed to be selective on 
target pests, recent reports indicate cross-order effects 
(van Frankenhuyzen et  al. 2017). For example, the 

Coleopteran-targeted formulation can cause nega-
tive effects on Lepidopteran (Redmond et  al. 2020), 
the Lepidopteran-targeted formulation on Coleopteran 
and the Dipteran (Coyle et al. 2000; Babin et al. 2020; 
Nawrot-Esposito et al. 2020), and Diptera-targeted for-
mulation on Coleopteran (Tudoran et al. 2020). Regard-
ing the effects on bees, differences in the sensitivity of 
adult worker bees to different Bt products were reported 
(Brighenti et al. 2007; Mommaerts et al. 2010; D’urso 
V, Mazzeo G, Vaccalluzzo V, Sabella G, Bucchieri F, 
Viscuso R, Vitale DG, , 2017; Libardoni et al. 2018; 
Potrich et al. 2018; Steinigeweg et al. 2021). Steinigeweg 
et al. (2021) reported increased mortality under labora-
tory conditions after exposure to Bta ABTS 1857 at a 
range of 106–107 cfu/g. Other Bt strains also reduced the 
survival duration of adult bees (Libardoni et al. 2018; 
Potrich et al. 2018). Studies considered the interactions 
between single species in the bee gut microbiome and 
their community dynamics in relation to the bees’ health 
(Engel et al. 2016). Since the applied MPCPs contain liv-
ing active ingredients, further studies should particularly 
determine their impact on the composition and develop-
ment of the honeybee gut microbiome.

Conclusion

Our study shows for the first time that the viability of Bt 
spores differs from honeybee colony conditions to field con-
ditions. Remarkably, although the most used microorganism 
isolated from the natural environment, the application inten-
sity and formulated products may cause significantly higher 
exposure levels than the background level. Thus, exhaus-
tive examinations of MPCPs’ effect on the honeybee and 
other bee species under field conditions will help understand 
the natural role and the behavior of “living active ingredi-
ents” for beneficial organisms. This should include several 
parameters to be long-term–investigated to enable proper 
risk assessment.
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