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Abstract
Yard waste is one of the key components of municipal solid waste and can play a vital role in implementing zero-waste 
strategy to achieve sustainable municipal solid waste management. Therefore, the objective of this study is to predict yard 
waste generation using the grey theory from the predicted municipal solid waste generation. The proposed model is imple-
mented using municipal solid waste generation data from the City of Winnipeg, Canada. To identify the generation factors 
that influence municipal solid waste generation and yard waste generation, a correlation analysis is performed among eight 
socio-economic factors and six climatic factors. The GM (1, 1) model is utilized to predict individual factors with overall 
MAPE values of 0.06%−10.39% for the in-sample data, while the multivariable GM (1, N) grey model is employed to fore-
cast the quarterly level of municipal solid waste generation with overall MAPE values of 5.64%−7.54%. In this study, grey 
models predict quarterly yard waste generation from the predicted municipal solid waste generation values using only twelve 
historical data points. The results indicate that the grey model (based on the error matrices) performs better than the linear 
and nonlinear regression-based models. The outcome of this study will support the City of Winnipeg’s sustainable planning 
for yard waste management in terms of budgeting, resource allocation, and estimating energy generation.

Keywords Municipal solid waste · Yard waste · Zero waste strategy · GM (1, 1) model · GM (1, N) model

Introduction

Solid waste management (SWM) constitutes a challenging 
and prevalent issue for authorities due to health problems 
wrought by improper waste management and the various 
related atmospheric issues, such as odour pollution, air 
pollution, and soil degradation (Ferronato et al. 2021). In 
developed countries with growing populations and econo-
mies, there has been a steady increase among both urban and 
rural populations in the level of waste generation (Kamare-
hie et al. 2020; Llanquileo-Melgarejo & Molinos-Senante 
2021). This increase has made researchers highly concerned 
about the sustainable management of municipal solid waste 
(MSW) (Xiao et al. 2020). In response to this issue, many 
cities—including Adelaide, San Francisco, and Vancou-
ver—have adopted a zero-waste strategy (ZWS) as part of 
their waste-management system (Ayeleru et al. 2018; Zaman 
2015). ZWS is a concept aimed at resource recovery and the 
conservation of scarce natural resources, as waste is being 
diverted from landfills for permanent disposal. This strat-
egy can be achieved by minimizing, composting, recycling, 
and reusing waste and modifying the ways in which people 
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and businesses use limited resources; additionally, it urges 
businesses to product designing so that waste can be elimi-
nated from manufacturing processes (Lombardi and Bailey 
2015; Moazzem et al. 2021). In addition, ZWS supports a 
circular economy (Kurniawan et al. 2021), which can be 
defined as an economic structure aimed at the reduction of 
waste and the consistent recycling of energy (Cocker and 
Graham 2019). To construct a closed-loop structure, circular 
systems encourage reuse, sharing, maintenance, refurbish-
ment, remanufacturing, and recycling to minimize the use 
of resource inputs and limit deforestation, carbon emissions, 
and the generation of waste (Pecorini et al. 2020; Rathore 
and Sarmah 2020). Like SWM, one of its key components, 
yard waste management is also becoming increasingly popu-
lar among cities in developed countries in the pursuit of a 
ZWS. Yard waste accounted for 11–27% of total MSW in 
urban centres across Australia, Canada, and the USA (Lee 
et al. 2020; Vu et al. 2019).

The accurate prediction of MSW plays a significant role 
in the development of a sustainable and efficient waste man-
agement system (Ferronato et al. 2020; Singh and Satija 
2016). If MSW predictions are inaccurate, waste manage-
ment programs and facilities can be designed or operated 
inefficiently (Vu et al. 2019). The univariate prediction of 
MSW is challenging, as it relies on a wide array of multivari-
ate factors. Population, per capita gross domestic product 
(GDP), household income, urbanization, standard-of-living 
parameters, geographical location, climate, and local envi-
ronmental laws all influence waste generation (Boumanchar 
et al. 2019; Wang et al. 2018). However, the scarcity of reli-
able data constitutes a major challenge for the implementa-
tion of waste management (Mohammadi et al. 2019).

Compared to other industrialized nations, Canada pro-
duced more MSW per capita and diverted less waste to land-
fills (Pan et al. 2019; Richter et al. 2018). This study uses 
the CoW as its study area because yard waste accounted 
for a mean of 25% of the total MSW reported in the CoW 
(CoW-a 2020a) from 2007 to 2018. On October 19, 2011, 
the Winnipeg City Council approved a holistic waste man-
agement strategy; it raised the city-wide waste-diversion rate 
to 50% or higher, a proposal first made for the public sector 
by the City Council on 23 June 2010 (CoW-a 2011a). This 
strategy, which aimed to boost the recycling of household 
garbage, was formally implemented in early October 2012. 
The principles of this plan are in line with the concept of a 
ZWS. To support the CoW’s MSW-management plan, this 
study aims to predict quarterly YWG through the accurate 
prediction of MSW generation up to the target year of 2025 
using only the twelve historical MSW data points from the 
year 2007 to 2018. Some studies used five years (Abbasi and 
El Hanandeh 2016; Liu et al. 2021) while some presented 
ten years (Ghinea et al. 2016; Mushtaq et al. 2020a, b) of 
prediction time. As there is no specific guideline, this study 

used seven years of forecasting period for the planning pur-
pose. The term yard waste refers to decomposable waste 
materials such as grass, leaves, and small tree branches that 
have been trimmed during a growth phase.

Furthermore, the independent factors related to MSW 
generation require accurate forecasting which largely 
depends on the actual amount of MSW, which constitutes 
the motivation behind this study. Additionally, an accurate 
MSW generation forecast is required to quantify the poten-
tial amount of yard waste for the city to the assessment of 
energy recovered from MSW. To increase the prediction 
accuracy, unlike previous waste-prediction studies (Al-
Salem et al. 2018; Ayeleru et al. 2018), this study considers 
both socio-economic and climatic factors together in MSW 
generation prediction. At the same time, a correlation analy-
sis approves the key independent factors relevant to the gen-
eration of the MSW for the city.

There are many data-intensive models, e.g. artificial neu-
ral network (ANN) (Ali and Ahmad 2019; Kontokosta et al. 
2018), support vector (Meza et al. 2019; Niska and Serkkola 
2018), and multiple linear regression (MLR) (Abdulredha 
et al. 2018; Golbaz et al. 2019), aimed at MSW prediction. 
However, due to high variability considered as the uncer-
tainty (Singh 2019; Tsai et al. 2020) and an insufficient 
amount of historical data associated with MSW management 
and forecasting, grey forecasting models are more appro-
priate than data-intensive models approaches, as they are 
more effective at limiting forecasting error (Duman et al. 
2019; Wang et al. 2018). As a result, this study uses the 
grey model, which is appropriate for forecasting future data 
with less prediction error (Liu et al. 2011). The grey model 
is a well-established forecasting model for predicting grey-
type data and dealing with uncertainty (Zhang et al. 2019). 
For example, Ren et al. (2013) and Ren (2018) used a grey 
model to predict the yield of biohydrogen under scanty data 
conditions and proved its superiority over the ANN model 
and support vector machine.

Most prediction methods based on time series involve 
moving averages and exponential smoothing (Gooijer & 
Hyndman, 2006), neural networks (Tealab 2018), and grey 
models (Kayacan et al. 2010; Liu et al. 2011). The appli-
cability of exponential smoothing and the moving-average 
method is limited to linear time series data. Excellent per-
formance is shown by neural networks in both linear and 
nonlinear time-series data. However, for high accuracy, most 
neural networks require large quantities of data to train the 
system. In contrast, the grey model can be implemented in 
both linear and nonlinear data with uncertainty and does not 
require its sample to be as substantial for an accurate predic-
tion (Liu et al. 2016).

There are two prominent types of prediction models com-
monly used to analyse time-series data in the method of the 
grey theory: GM (1, 1) for single time-varying factors and 
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GM (1, N) for multiple time-varying factors (Kayacan et al. 
2010). Grey forecasting includes the sequence forecasting, 
calamity forecasting, prediction of seasonal calamities, topo-
logical forecasting, and systematic forecasting (Lü and Lu 
2012). One of the grey theory’s most significant features 
is the use of accumulated generation operation (AGO) to 
minimize data randomness (Zeng et al. 2020). The AGO 
approach efficiently eliminates noise by transforming 
random time series data into a monotonically increasing 
sequence, which can rapidly evaluate systematic regularity 
(Liu et al. 2016). Given the simplicity of the grey model 
and its potential for the prediction of time-series data, many 
researchers have begun to employ this model. It has been 
successfully used to study climate (Dengiz et al. 2019), 
energy (Li and Zhang 2019; Lu 2019), healthcare (Rahman 
et al. 2019), industrial technology and safety (Lü and Lu 
2012), and petroleum exploration (Wang and Song 2019) 
among many subjects. Finally, the results obtained from the 
grey models are compared with the result obtained from the 
simple regression model as it has been applied in various 
waste prediction studies (Abdulredha et al. 2018; Golbaz 
et al. 2019).

The outcome of this study will support the efforts of 
urban planners, engineers, legislators, and researchers—
especially those in the CoW—in sustainable planning for 
yard waste management in terms of budgeting, resource 
allocation, and estimating energy generation.

The rest of the paper is organized as follows: Section 2 
gives the related materials and methods. Section 3 presents 
the results and discussions. Finally, Section 4 concludes this 
paper.

Materials and Methods

Three climatic factors with two conditions—temperature 
(average/maximum), humidity (average/maximum), and 
wind speed (average/maximum)—and eight socio-eco-
nomic factors—population, number of households, number 
of labour force, employment number, household income, 
unemployment, income per employee, and GDP were con-
sidered as the independent factors for each quarter (winter, 
spring, summer, and fall) during the study period, as MSW 
generation largely depends on socio-economic and climatic 
factors (Kannangara et al. 2018; Vu et al. 2019). Quarterly 
waste data were used instead of annual waste data to ensure 
prediction accuracy, as MSW generation is not consist-
ent throughout the year. Sections 2.2 and 2.3 discuss the 
available data on the independent factors and detail each 
of these factors, respectively. Key independent variables 
were screened out by the correlation analysis with respect 
to the target variable, MSW tonnage. Since the time length 
and sample size of the historical data on the independent 

factors and target variable were not identical, an identical 
time length and sample size of the independent variables’ 
data are considered to the target variable, MSW generation.

The independent factors related to the target variable 
were used to develop the GM (1, N) model, with individual 
factor modelling applying the GM (1, 1) model and sin-
gle regression analysis (SRA). The grey models were con-
structed using MATLAB (v. 2017a). The accuracy of the 
models was then determined through five common statistical 
indices, including mean square error (MSE), mean absolute 
percentage error (MAPE), mean absolute error (MAE), root 
mean square error (RMSE), and correlation coefficient (R2) 
and one additional metric normalized-RMSE (NRMSE). 
The most accurate model was used to forecast the independ-
ent factors, and the GM (1, N) model was applied to pre-
dict MSW generation for the CoW. These values were then 
used to estimate the city’s YWG. To calculate the amount 
of YWG, the percentage of YWG out of total MSW was 
measured using historical data. The future percentage of 
YWG was estimated for the target period using the GM (1, 
1) model. Quarterly YWG was then evaluated by multiply-
ing this percentage by the predicted quarterly MSW. Fig. 1 
illustrates the methodology followed in this study.

Study area

The CoW is located in the south-central part of Manitoba, 
Canada, where the Red River meets the Assiniboine River, 
as shown in Electronic Supplementary Material (ESM) (Fig. 
S1). It comprises Manitoba’s provincial capital as well as 
its surrounding municipalities, towns, and cities. Due to its 
flat topography, clay soils, and heavy snowfall, the CoW is 
subjected to yearly flooding (CoW-b 2011b). The city covers 
an area of 464.08  km2 with a population density of 1,430 
persons per  km2 (Statistics Canada 2011).

The CoW’s position in the Canadian Prairies gives it a 
continental tropical climate with very cold winters. Sum-
mers have a mean high temperature of 25.9°C and a mean 
low of 13.5°C (Weather Atlas 2020). Winter is the coldest 
and driest season of the year with the temperature rang-
ing from −21.4°C to −11.3°C in January (Weather Atlas 
2020). Winnipeg is a regional economic hub. According 
to a report on the city’s economic development, it has one 
of the most diversified economies in the world, with large 
commercial (15.2 %), manufacturing (9.8 %), education (7.7 
%), and healthcare and community support (15.2 %) sectors 
(Economic Development Winnipeg 2016). The CoW had 
an average population of 719,269 in 2007—though this is 
expected to rise to 809,800 by 2023 (CoW 2019; Statistics 
Canada 2016). From 2002 to 2015, the number of house-
holds in the CoW has increased from around 249,000 to 
around 291,900—an increase of 17% (CoW-b 2018b).
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Waste data availability

While there are no available quarterly historical data on 
yard waste for the CoW, there are annual historical data on 
yard waste. However, there are both quarterly and annual 
historical data on MSW for the CoW. The descriptive 
statistics about the historical MSW data and the selected 
factors between 2007 and 2018 are presented in Table 1, 

and the quarterly historical data are displayed in ESM 
S1 (Table S1.1, Table S1.2, Table S1.3, and Table S1.4). 
Table 1 represents the four descriptive statistics: mean, 
standard deviation (St. Dev.), minimum (min.), maximum 
(max.), and coefficient of variation (CV) values of the tar-
get variable and the independent factors for four quarters. 
According to the table, the mean and the St. Dev. of the 
MSW generation in Q2 and Q3 are higher than that in Q1 

Fig. 1  Framework for YWG 
prediction from an estimated 
amount of MSW for the CoW
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and Q4. Among the independent factors, the mean and the 
St. Dev. of population, income, and GDP are nearly the same 
across all four quarters, but they increase from the first quar-
ter to the fourth quarter. The mean and the St. Dev. for the 
number of households are constant throughout each year. 
Since the climatic factors vary by season, their changes are 
random across the four quarters. Mean of the temperature 
and wind speed go higher in the third quarter and humidity 
goes higher in the second quarter. As seen in Table 1, the 
CV values of MSW are similar to those of Q2, Q3, and Q4, 
but are lower than those of MSW in Q1. Throughout the four 
quarters, the CVs of the independent components are more 
uniform for socio-economic components than for climatic 
elements. Humidity takes a uniform CV compared to wind 
speed and temperature.

The socio-economic data were collected from various 
open data sources related to the CoW (Conference Board 
of Canada 2020; CoW-a 2018a, b, 2016, 2019; Economic 
Development Winnipeg 2016, 2019; Statistics Canada 2011, 
2016), and the climatic data were collected from the Weath-
erstats Winnipeg (Weatherstats 2020). The weather data 
were then transformed from monthly to quarterly on two 
levels: average and maximum. The minimum conditions for 
temperature, wind speed, and humidity have a negligible 
effect on YWG; as a result, they were not considered.

In the CoW, yard waste was collected in two ways: depot 
and self-haul collection and curbside collection. The total 
amount of yard waste corresponds to the summation of these 
collections. Figure 2 illustrates the annual yard waste infor-
mation for the city from 2007 to 2018. This figure indicates 
that YWG is gradually increasing over time. The figure 
also indicates that the CoW started yard waste collection 
in 2007, which was extended in 2010, and began to give it 
more attention in 2013. Additionally, yard waste prediction 
is important to quantify the amount of YWG beforehand to 
assess the energy recovery and to support the ZWS as well 
as to efficient MSW management.

Socio‑economic parameters selection

The key criteria for choosing socio-economic factors were 
statistical significance and availability at the municipal 
level. After examining previous studies (Ayeleru et al. 2018; 
Kumar and Samadder 2017), this study initially considered 
eight socio-economic factors and six climatic factors (Vu 
et al. 2019) related to MSW generation, as established in 
Table 2. Ultimately, four major socio-economic factors 
(population, number of households, household income, 
and GDP) and four sets of three major climatic factors (one 
set per quarter) were selected for the study. To make these 

Table 1  Descriptive statistics of factors selected for the modelling of MSW generation

Statistics Factors

MSW (tonne) Population 
(number)

Household 
(number)

Income ($) GDP (M $, 2012) Wind 
speed 
(Km/h)

Temperature (°C) Humidity (%)

Q1 Mean 39,003 762,191 275,549 31,330 37,352 18.381 10.470 76.871
St. Dev. 2,708 36,442 14,730 4,484 2,963 0.310 0.130 0.257
Min. 34,971 718,004 257,281 24,874 33,398 18.000 10.240 76.310
Max. 43,748 827,569 295,410 38,506 42,257 19.000 10.690 77.170
CV 0.069 0.048 0.053 0.143 0.079 0.017 0.013 0.003

Q2 Mean 56,643 764,648 275,549 31,657 37,641 16.582 16.946 92.761
St. Dev. 9,816 37,338 14,730 4,479 3,090 0.190 0.080 0.460
Min. 46,584 718,833 257,281 25,472 33,881 16.500 16.810 92.070
Max. 70,610 830,791 295,410 38,840 43,160 17.000 17.070 93.230
CV 0.173 0.049 0.053 0.141 0.082 0.012 0.005 0.005

Q3 Mean 55,042 767,141 275,549 31,996 37,875 31.310 23.080 90.370
St. Dev. 8,654 38,165 14,730 4,490 3,105 0.180 0.100 0.530
Min. 45,800 719,683 257,281 25,768 33,978 31.160 22.940 89.490
Max. 68,491 833,797 295,410 39,063 43,062 31.730 23.250 90.900
CV 0.157 0.050 0.053 0.140 0.082 0.006 0.004 0.006

Q4 Mean 46,895 769,671 275,549 32,269 38,053 29.620 −1.070 88.270
St. Dev. 5,951 38,927 14,730 4,532 3,187 0.200 0.130 0.270
Min. 41,246 720,556 257,281 25,955 33,948 29.420 −1.250 87.890
Max. 55,904 836,587 295,410 39,523 43,469 30.140 −0.830 88.620
CV 0.127 0.051 0.053 0.140 0.084 0.007 0.124 0.003
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selections, correlation analysis was performed between the 
target variable—MSW—and the initial 14 independent fac-
tors. Significant correlations among the factors were estab-
lished to limit multicollinearity between the inputs (Daoud 
2018). Due to increased standard errors, multicollinearity 
has statistical consequences, such as making an independ-
ent variable statistically insignificant. It makes the model 
difficult to comprehend and introduces an overfitting issue. 
To avoid this difficulty, highly related sets of parameters 
with correlation coefficients greater than absolute 0.95 were 
excluded (Abdoli et al. 2011). The correlation matrix for the 
first quarter is displayed in Table 2. The correlation matri-
ces for the other three quarters are presented in ESM S3 
(Table S3.1, Table S3.2, and Table S3.3).

These coefficients indicate the existence of collinearity 
between the independent factors and also represent a measure 
of the linear association between two variables. To validate the 

calculated values of the correlation coefficients, R, they were 
compared with the critical Pearson correlation coefficients, RCrit 
(Sousa et al. 2007) which is used to determine the linear correla-
tion between two data sets. It can be calculated using the ratio of 
two variables' covariances to the product of their standard devia-
tions. As a result, RCrit is effectively a normalized measurement 
of covariances, with the result always lying between −1 and 1. If 
the absolute value of a correlation coefficient exceeds the critical 
Pearson value, then the correlation coefficient is valid. RCrit was 
calculated using the following equation:

where DF stands for degrees of freedom, which are the num-
ber of independent values that can vary in a statistical analy-
sis without violating any constraints. For the n sample of 

(1)
Rcrit =

tcrit√
DF + t2

crit

Fig. 2  Annual yard waste col-
lection data for the CoW (CoW 
2020b)
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Table 2  Correlation matrix of dependent and independent factors for the first quarter (Q1)

Factors Q1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

MSW (tonne) X1 1.00
Population (number) X2 -0.65 1.00
Household (number) X3 -0.74 0.95 1.00
Labour force X4 -0.64 0.98 0.95 1.00
Employment (number) X5 -0.65 0.97 0.95 0.99 1.00
Income ($) X6 -0.69 0.99 0.97 0.99 0.98 1.00
Unemployment (number) X7 -0.49 0.89 0.85 0.90 0.84 0.90 1.00
Income per Employee ($) X8 -0.69 0.98 0.96 0.97 0.95 0.99 0.92 1.00
GDP (M $, 2012) X9 -0.67 0.99 0.96 0.99 0.98 1.00 0.89 0.98 1.00
Average wind speed (Km/h) X10 -0.54 0.80 0.79 0.79 0.80 0.81 0.68 0.82 0.80 1.00
Average temperature (°C) X11 -0.22 0.79 0.59 0.79 0.78 0.74 0.73 0.70 0.77 0.54 1.00
Average humidity (%) X12 -0.69 0.87 0.86 0.88 0.86 0.90 0.84 0.93 0.89 0.73 0.66 1.00
Maximum wind speed (Km/h) X13 -0.18 0.42 0.24 0.37 0.41 0.35 0.20 0.29 0.38 1.00
Maximum temperature (°C) X14 -0.48 0.87 0.85 0.89 0.89 0.87 0.77 0.84 0.88 0.22 1.00
Maximum humidity (%) X15 -0.46 0.40 0.42 0.40 0.37 0.45 0.46 0.52 0.42 -0.41 0.36 1.00
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observations and k number of grouped variables, the DF can 
be calculated as DF = n − k. The term, tcrit refers to the ‘cut-
off point’ on the t-distribution which may be found in the 
t-distribution table. In this study, the total number of obser-
vations was 12 for each quarter and the number of grouped 
variables was two; hence, the degrees of freedom (12-2) 
were 10. Simultaneously, at 0.05 level of significance (two-
tailed test), tCrit was 2.228, resulting in RCrit equal to 0.576.

According to Table 2, the socio-economic factors are 
strongly correlated with the climatic factors in their rela-
tion to the target variable, MSW. The following five socio-
economic factors—labour force, employment, household 
income, unemployment, and income per employee—can be 
considered by only one factor, household income, which has 
a strong correlation with MSW. Climatic factors showed a 
little significant effect on MSW generation but they are more 
responsible for YWG. This study selected three climatic fac-
tors—average wind speed, average humidity, and maximum 
temperature—for the first quarter based on a strong correla-
tion with the MSW and among themselves. Following this 
way, a set of four socio-economic factors and three climatic 
factors are selected for the other three quarters.

Grey theory

This study utilizes the two basic grey models for individual 
factors and multivariable MSW prediction. The following 
subsections detail the models’ solution procedures.

GM (1, 1) Prediction Model

The basic principles and modelling mechanism of GM (1, 
1) is as follows (Liu et al. 2016):

Step 1. For n samples, the original time sequence, X(0), 
is given as:

To reduce the noise and disorderliness of the raw data, 
the AGO is applied to a new series, X(1) = [x(1)(1), x(1)(2), …
, x(1)(n)], where x(1) is obtained as follows:

The generated mean sequence, Z(1) = [z(1)(1), z(1)(2), …, z
(1)(n)] of X(1) is as follows:

Here, α is called the positioned coefficient of the inter-
val grey number. The value of α is generally set as 0.5 for 

(2)X(0) =
[
x(0)(1), x(0)(2),… , x(0)(n)

]
n ≥ 4

(3)x(1)(k) =

k∑
i=1

x(0)(i), k = 1, 2, 3,… , n

(4)
z(1)(k) = �x(1)(k) + (1 − �)x(1)(k − 1), k = 2, 3,… , n

the generation of mean sequence; but, its value can be 
varied in the range of [0, 1].

Step 2. The first-order grey differential equation can be 
constructed as follows:

The mean sequence generating equation of Eq. (5) is 
called the differential equation:

where a and b are called the development and control coeffi-
cients, respectively. These coefficients can be obtained using 
the least-squares estimation method as follows:

Where, B =

⎡⎢⎢⎢⎢⎢⎣

−z(1)(2) 1

− z(1)(3) 1

⋮ ⋮

−z(1)(n) 1

⎤⎥⎥⎥⎥⎥⎦

, and Y =
[
x(0)(2)x(0)(3), ...x(0)(n)

]T 

Step 3. The grey prediction equation can be described 
as follows:

where x̂(1)(k) indicates the prediction of x(1)(k) at time point 
k and the initial condition, x(1)(1) = x(0)(1). The inverse AGO 
(IAGO) sequence can be obtained as follows:

GM (1, N) Prediction Model

The multivariable grey forecasting model, represented 
by GM (1, N), consists of a dependent variable sequence 
(system characteristic sequence) and (N-1) independent 
variable sequences (related factor sequences). The basic 
modelling methods of the GM (1, N) model (Ren 2018; 
Ren et al. 2013) are as follows:

Step 1. Assume that there are N variables denoted by Xi, 
where (1, 2, 3, ……, N) and each variable have n number 
of initial sequences. Let the original sequence of the 
variables be X(0)

i
.

(5)x(0)(k) + az(1)(k) = b

(6)dx(1)

dt
+ ax(1) = b

(7)â =

[
a

b

]
=
[
BTB

]−1
BT Y

(8)x̂(1)(k) =
[
x(0)(1) −

b

a

]
e−a(k−1) +

b

a

(9)x̂(0)(k) = x̂(1)(k) − x̂(1)(k − 1), k = 2, 3,… , n

(10)
X
(0)

i
=
[
X
(0)

i
(1),X

(0)

i
(2),… ,X

(0)

i
(n)

]
(i = 1, 2, 3,… ,N)
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Applying the AGO to convert the original data into a new 
series, X(1)

i
=
[
X
(1)

i
(1),X

(1)

i
(2),… ,X

(1)

i
(n)

]
(i = 1, 2,… ,N) , 

where X(1)

i
 can be obtained as follows:

T h e  g e n e r a t e d  m e a n  s e q u e n c e 
Z
(1)

1
=
[
Z
(1)

1
(2), Z

(1)

1
(3),… , Z

(1)

1
(n)

]
 of X(1)

1
 can be calculated 

as follows:

Step 2. The first-order grey differential equation can be 
constructed as follows:

The image equation of Eq. (13) is:

where the coefficients a and bi can be calculated as follows:

where B =

⎡
⎢⎢⎢⎢⎣

−Z
(1)

1
(2) X

(1)

2
(2)

−Z
(1)

1
(3) X

(1)

2
(3)

… X
(1)

N
(2)

… X
(1)

N
(3)

⋮ ⋮

−Z
(1)

1
(n) X

(1)

2
(n)

… ⋮

… X
(1)

N
(n)

⎤⎥⎥⎥⎥⎦
 , 

and Y =

⎡
⎢⎢⎢⎢⎣

X
(0)

1
(2)

X
(0)

1
(3)

⋮

X
(0)

1
(n)

⎤⎥⎥⎥⎥⎦
Step 3. Using a and bi, the grey prediction equation can 
be expressed as follows:

where X̂(1)

1
(k + 1) indicates the prediction of X(1)

1
(k) at time 

point k with the initial condition, X(1)

1
(1) = X

(0)

1
(1) . The 

IAGO sequence can be obtained as follows:

(11)X
(1)

i
(k) =

k∑
j=1

X
(0)

i
(j), k = 1, 2, 3,… , n

(12)
Z
(1)

1
(k) = �x

(1)

1
(k) + (1 − �)x

(1)

1
(k − 1), k = 2, 3,… , n

(13)X
(0)

1
(k) + aZ

(1)

1
(k) =

N∑
i=2

biX
(1)

i
(k)

(14)
dX

(1)

1
(k)

dt
+ aX

(1)

1
(k) =

N∑
i=2

biX
(1)

i
(k)

For, n ≤ N + 1,

(15)P̂ =
(
a, b2, b3,… , bN

)T
= B−1 Y

For, n > N + 1,

(16)P̂ =
(
a, b2, b3,… , bN

)T
=
[
BTB

]−1
BT Y

(17)X̂
(1)

1
(k + 1) =

[
X
(1)

1
(1) −

1

a

N∑
i=2

biX
(1)

i
(k + 1)

]
e
−ak +

1

a

N∑
i=2

biX
(1)

i
(k + 1)

Metrics of Forecasting Error Analysis

Performance analysis is important for assessing the accu-
racy of forecasting models. The model’s predictive perfor-
mance was assessed using five metrics that are common in 
studies of waste prediction (Kumar and Samadder 2017; 
Younes et al. 2015). These metrics—MAPE, MAE, MSE, 
RMSE, and R2—are specified below.

where

n  Number of raw data points
Yi  The actual mass of MSW
Ŷi  Predicted mass of MSW
Yi  The mean of actual MSW

In these formulations, the first four metrics require a 
value close to zero, while the last metric requires a value 
close to one. Besides these five metrics, St. Dev. (observed 
data)-based NRMSE is also used to evaluate and compare 
the prediction accuracy of the GM (1, N) model. Among the 
five error metrics, the MAPE is the most popular goodness-
of-fit indicator for forecasting problems (Islam et al. 2021). 
Following the Lewis scale (Javed et al. 2020), as shown 
below, a MAPE of less than 20% is indicative of a reliable 
forecast. However, the forecasting accuracy of the predic-
tion models used in this study is evaluated with the help of 
the aforementioned five metrics simultaneously.

(18)X̂
(0)

1
(k + 1) = X̂

(1)

1
(k + 1) − X̂

(1)

1
(k), k = 2, 3,… , n

(19)MAPE =
1

n
×
∑n

i=1

|||||
Yi − Ŷi

Yi

|||||
× 100

(20)MAE =
1

n

n∑
i=1

|||Yi − Ŷi
|||

(21)MSE =
1

n
×
∑n

i=1

(
Ŷi − Yi

)2

(22)RMSE =

√
1

n
×
∑n

i=1

(
Ŷi − Yi

)2

(23)R2 = 1 −

∑n

i=1

�
Ŷi − Yi

�2
∑n

i=1

�
Yi − Yi

�2
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Results and Discussion

Independent factors prediction

The details of the comparative analysis—including the simu-
lation errors—of independent factors are presented in ESM 

MAPE (%) =

⎧⎪⎨⎪⎩

< 10

10 ∼ 20

20 ∼ 50

> 50

Highly accurate forecast

Good forecast

Reasonable forecast

Inaccurate forecast

S2 (Table S2.1-Table S2.6). To avoid unnecessary repetition 
and ensure a clear understanding of the forecasting accuracy 
of the GM (1, 1) model over SRA, Fig. 3 only demonstrates 
the forecasting error of the ‘population’. Three types of 
errors have been measured for each factor: in a sample (9 
data points), out of a sample (3 data points), and overall (12 
data points) for each forecasting error metric. According to 
Fig. 3 and the tables displayed in ESM S2, the GM (1, 1) 
model outperforms the SRA model across all of the factors.

For climatic factors, such as humidity, temperature, and 
wind speed, the two models’ prediction accuracy is very 
closer to the socio-economic factors. In some quarters, the 
climatic factors have small R2 values for both predictive 

Fig. 3  Forecasting error in 
prediction of the population 
for GM (1, 1) model and SRA 
[A-E]
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models. Additionally, in some quarters the out-of-sample 
error is higher than the in-sample error, and in some cases, 
both errors are higher. All of these phenomena are somewhat 
statistically insignificant and one of the reasons behind these 
errors could be the bias and variance errors of regression and 
prediction model. The bias-variance trade-off can be used to 
address these issues more accurately. However, examining 
the overall accuracy of the five-metrics described in ESM 
S2, it is clear that the GM (1, 1) model generates a more 
accurate prediction for the climatic factors than the SRA 
model.

The prediction accuracy for the ‘household’ factor was 
the same across all four quarters, as the number of house-
holds in the CoW was constant throughout each year. This 
analysis supports the GM (1, 1) model’s applicability in the 
prediction of individual factors of MSW generation. Based 
on this error analysis, the GM (1, 1) model was selected to 
predict the independent factors over the next seven years, 
from 2019 to 2025, which was then used to forecast MSW 
generation up to the target period. And finally, the predicted 

amount of MSW is used to estimate the YWG for the city 
up to the target period. This process will, theoretically, con-
tinue in five-year increments throughout the course of the 
CoW’s master-plan target year—2045. This stepwise pre-
diction will help the city to examine its seasonal variation 
in waste generation. By examining the historical data, it is 
clear that waste generation is not consistent throughout the 
year; as a result, quarterly MSW prediction is warranted. The 
forecasted results for each factor obtained from the GM (1, 
1) model are shown in Table 3.

Table 3 indicates that the predicted results of the target 
variable and the independent factors are increasing over 
time. Among the indecent factors, the four selected socio-
economic factors are highly increasing as their historical 
data were increasing in trend. However, the changes for the 
climatic factors are reasonably small for their less variability 
in each quarter. These results for the independent factors 
constitute the input for the GM (1, N) model for the MSW 
prediction up to the year 2025. After computing the MSW 

Table 3  Forecasted results for 
each independent factor for the 
entire four quarters

Quarter Factors Year

2019 2020 2021 2022 2023 2024 2025

Q1 Population (number) 831,678 843,260 855,003 866,909 878,981 891,221 903,631
Household (number) 302,722 307,254 311,853 316,522 321,260 326,069 330,950
Income ($) 40,126 41,742 43,423 45,171 46,990 48,882 50,850
GDP (millions $, 2012) 43,044 44,023 45,023 46,047 47,094 48,164 49,260
Wind speed (km/h) 18.82 18.89 18.96 19.03 19.10 19.18 19.25
Temperature (°C) 10.70 10.74 10.78 10.81 10.85 10.89 10.93
Humidity (%) 77.25 77.31 77.36 77.42 77.47 77.53 77.58

Q2 Population (number) 835,834 847,703 859,741 871,950 884,332 896,890 909,626
Household (number) 302,722 307,254 311,853 316,522 321,260 326,069 330,950
Income ($) 40,514 42,146 43,844 45,611 47,449 49,361 51,350
GDP (millions $, 2012) 43,665 44,713 45,786 46,885 48,010 49,163 50,343
Wind speed (km/h) 16.68 16.71 16.73 16.75 16.78 16.80 16.82
Temperature (°C) 17.07 17.10 17.12 17.14 17.16 17.18 17.20
Humidity (%) 93.53 93.65 93.77 93.89 94.01 94.13 94.25

Q3 Population (number) 839,880 852,010 864,315 876,798 889,461 902,307 915,339
Household (number) 302,722 307,254 311,853 316,522 321,260 326,069 330,950
Income ($) 40,834 42,458 44,148 45,905 47,731 49,630 51,605
GDP (millions $, 2012) 43,846 44,880 45,939 47,022 48,132 49,267 50,429
Wind speed (km/h) 31.59 31.63 31.68 31.73 31.78 31.82 31.87
Temperature (°C) 23.21 23.23 23.25 23.28 23.30 23.32 23.34
Humidity (%) 91.23 91.36 91.50 91.63 91.76 91.89 92.03

Q4 Population (number) 843,815 856,178 868,723 881,451 894,366 907,470 920,765
Household (number) 302,722 307,254 311,853 316,522 321,260 326,069 330,950
Income ($) 41,208 42,852 44,561 46,339 48,187 50,109 52,108
GDP (millions $, 2012) 44,209 45,276 46,370 47,489 48,635 49,810 51,012
Wind speed (km/h) 29.89 29.94 29.98 30.02 30.07 30.11 30.15
Temperature (°C) -0.94 -0.93 -0.91 -0.89 -0.87 -0.86 -0.84
Humidity (%) 88.51 88.54 88.58 88.61 88.64 88.68 88.71
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generation, the final prediction of YWG is measured from 
the predicted amount of the MSW for the city.

MSW prediction

Since the main MSW-prediction model in this study is a 
multivariable prediction problem with limited historical 
data over a 12-year period, the multifactor MSW-forecast-
ing model is solved using the GM (1, N) model, which is 
effective for working with limited data. The forecasted result 
is illustrated in Fig. 4, which shows a downward trend in 
annual MSW generation in the CoW. The decline is due to 
the decline in the historical data and the negative correlation 
between the independent factors and the target variable. Fur-
thermore, CoW authorities have already undertaken efforts 
to enhance their waste management procedures. As a result 
of these efforts, including residential food waste collection 
pilot project, automated recycling collection, composting, 
landfill monitoring, the decline in MSW generation—though 
small in the first quarter—is significant. After the first quar-
ter, gardening works and a variety of outdoor activities arise. 
In the summer, more food waste is generated, which explains 
why the waste generation varies with the first quarter with 
the remaining three quarters.

The accuracy of the simulation is displayed in ESM S4 
(Table S4.1). The table represents three types of errors of 
the GM (1, N) model for each quarter: in a sample (10 data 
points), out of a sample (2 data points), and overall (12 data 
points). The NRMSE metric is applied to compare the quar-
terly predicted results when the R2 value is lower and in the 
case where R2 is always constant—one for two samples.

According to Table  S4.1, MAPE and R2 indicate an 
acceptable result for the multivariable prediction of MSW 
generation using the GM (1, N) model. According to the 
Lewis scale of prediction accuracy mentioned in Section 2.5, 
the in-sample and overall MAPE values for each quarter are 
below 10% which indicates a highly accurate forecast. At 

the same time, out-of-sample MAPE values for Q1 and Q3 
are relatively greater the Q2 and Q4. The value of R2 in the 
first quarter shows comparably small values than the other 
three quarters in MSW prediction. However, the NRMSE 
value of Q1 in three error categories indicates a significant 
prediction accuracy compared to the other three quarters. 
On the other hand, the MAE, MSE, and RMSE expressed 
relatively greater values for different ranges and higher vari-
ations in the historical data of the selected independent fac-
tors. Though the-out-of-sample error results are relatively 
higher than the in-sample and overall error results, analysing 
the overall error results displayed in the above table, for only 
twelve-point historical data sets, the GM (1, N) model can be 
used to predict the amount of MSW generation for the city 
precisely to each quarter. This accurately predicted result of 
the MSW generation is required for the precise estimation 
of the YWG for the city up to the target period.

Yard waste prediction

Figure 5(a) illustrates the pattern of YWG with the total 
MSW using the collected data. Though the trend is not lin-
ear, yard waste is increasing over time, while total MSW is 
declining. This decline can be attributed to the start of the 
CoW’s master plan in 2012. The figure also represents that 
the rate of YWG is increasing over time.

The YWG predictions for each quarter are depicted in 
Fig. 5(b). The figure also represents the estimated percent of 
the YWG to the amount MSW up to the target period. While 
the figure shows an upward trend for the future percentage 
of the YWG, quarterly YWG indicates a decline throughout 
each year. This can be explained from Fig. 5 which indicates 
that the MSW generation is decreasing while the YWG is 
increasing over time.

According to Fig. 5(b), the first quarter (Q1) demonstrates 
a nearly constant YWG trend, as almost no yard activities 
are expected during the winter, which largely falls within 
this quarter. Besides, it was found that the predicted result 

Fig. 4  Prediction of the MSW 
up to the year 2025
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of the first quarter’s MSW generation is relatively constant 
throughout the target period. For the other three quarters, the 
predicted result of the MSW generation is falling sharply up 
to the target period which is why the YWG is also shown 
a declining trend. This predicted result of YWG obtained 
from the forecasted MSW generation indicates that if the 
city maintains its current speed of efforts to the waste man-
agement in constant up to the target period then the city will 
reach this predicted stage of waste generation.

Finally, this study is aligned with the research of waste 
prediction-related studies where socio-economic factors are 
considered as the key influential variables for MSW genera-
tion (Al-Salem et al. 2018; Ferronato et al. 2020; Kannan-
gara et al. 2018). Additionally, since the primary objective of 
this study is to predict the YWG from the forecasted MSW 
and the climatic factors are largely related to YWG, this 
research also considers climatic factors as influential factors 
(Vu et al. 2019). A few studies appear in the literature where 
both socio-economic and climatic factors are considered 
simultaneously. One of the significant aspects of this study 
is the application of seven independent factors concurrently 
to measure the MSW generation and YWG for the CoW. 
Furthermore, recent literature on the COVID-19 pandemic 

suggested that Canadian waste generation characteristics 
have been impacted (Richter et al. 2021a, b; Vu et al. 2021). 
Thus, a study focusing on the effects of COVID on CoW 
waste management is recommended.

Conclusions

In SWM systems, accurate prediction of the MSW gen-
eration plays an important role in the development of 
effective steps towards sustainable economic develop-
ment through a ZWS. This study presents a grey theory-
based YWG-prediction method that utilizes the predicted 
quarterly MSW for the CoW. This study aimed to sup-
port the CoW’s master plan to achieve a ZWS by 2045. 
Accurate YWG predictions can simplify efforts to esti-
mate energy recovery through composting. Unlike previ-
ous waste-prediction research, this study considered the 
potential influence of both socio-economic and climatic 
factors. This study also conducted correlation analysis 
to identify the key influences among the considered fac-
tors. Additionally, it estimated the individual factors 
throughout the target period using the GM (1, 1) model, 

Fig. 5  Rate of YWG to the total 
amount of MSW and quarterly 
predicted YWG for the CoW. 
(a) Rate of YWG to the total 
amount of MSW, (b) Illustration 
of the quarterly predicted YWG 
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which proved to be superior to the SRA model. It pro-
duced individual-factor predictions with MAPE values 
of 0.26%−8.32% for the in-sample data. The GM (1, N) 
model was also used to model the multivariable MSW 
prediction using the socio-economic and climatic factors. 
This generated overall MAPE values of 5.64%−7.54% 
with suitable results for other error metrics. The results 
of this study demonstrate that the grey models can reli-
ably predict both MSW and YWG. The most significant 
advantage of the grey method is that—even with a very 
limited number of samples—it provides precise predic-
tions. Therefore, the GM (1, N) model has effectively 
simulated waste prediction with a lower computational 
cost in cases of poor information.

The findings of this study must be seen in light 
of its limitations. One of the potential limitations to 
the generalization of these results is the decline in 
MSW in contrast to the values of the independent fac-
tors, several of which showed negative correlations 
with MSW. This could have led to a biased prediction 
showing undesirable outcomes to the target variables. 
In addition, this study directly implemented the basic 
grey models in waste prediction without consider-
ing the optimal design of its background parameters. 
A robust design of the grey models’ background 
parameters can generate a more precise prediction. 
Finally, the current system of waste projection can be 
extended across Canada because the socio-economic 
parameter values can be established consistently uti-
lizing census data available to all municipalities in 
Canada.
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