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Abstract
5-fluorouracil (5-FU) is a widely used chemotherapeutic drug, but its hepatotoxicity challenges its clinical use. Thus, search-
ing for a hepatoprotective agent is highly required to prevent the accompanied hepatic hazards. The current study aimed to 
investigate the potential benefit and mechanisms of action of rupatadine (RU), a Platelet-activating factor (PAF) antagonist, 
in the prevention of 5-FU-related hepatotoxicity in rats. Hepatotoxicity was developed in male albino rats by a single 5-FU 
(150 mg/kg) intra-peritoneal injection on the 7th day of the experiment. RU (3 mg/kg/day) was orally administrated to the 
rodents for 10 days. Hepatic toxicity was assessed by measuring both liver and body weights, serum alanine aminotransferase 
and aspartate aminotransferase (ALT and AST), hepatic oxidative stress parameters (malondialdehyde (MDA), nitric oxide 
levels (NOx), reduced glutathione (GSH), superoxide dismutase (SOD)), and heme oxygenase-1 (HO-1). Inflammatory mark-
ers expressions (inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNFα), interleukins; IL-1B, IL-6), the 
apoptotic marker (caspase-3), and PAF were measured in the hepatic tissue. 5-FU-induced hepatotoxicity was proved by the 
biochemical along with histopathological assessments. RU ameliorated 5-FU-induced liver damage as proved by the improved 
serum ALT, AST, and hepatic oxidative stress parameters, the attenuated expression of hepatic pro-inflammatory cytokines 
and PAF, and the up-regulation of HO-1. Therefore, it can be concluded that RU pretreatment exerted a hepatoprotective 
effect against 5-FU-induced liver damage through both its powerful anti-inflammatory, antioxidant, and anti-apoptotic effect.
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Introduction

Malignancy is the major cause of global death and no ade-
quate therapeutic approaches are available. Chemotherapy is 
one of the most widely used agents to manage distinct types 
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of cancer. Chemotherapeutic agents do not differentiate 
between normal and cancer cells leading to severe and unde-
sirable toxicities. 5-FU, a pyrimidine analog anti-metabolite, 
is a common chemotherapeutic agent used for the treatment 
of different malignancies Al-Asmari et al. (2016).

After the introduction 5-FU as a chemotherapeutic drug, 
it has maintained a considerable clinical relevance. Certain 
tumor types, including colorectal, breast, esophageal, and 
head and neck tumors, are managed with 5-FU-based pallia-
tive chemotherapy Liu et al. (2017). An essential restriction 
of 5-FU use is its toxicity on normal growing body cells of 
various organs and tissues Al-Asmari et al. (2016). 5-FU 
cytotoxic effect on malignant and normal proliferating cells 
is owing to its catabolic pathway and the production of three 
main reactive metabolites; 5-fluorouridine- 50-monophos-
phate, 5-fluoro-uridine-50-triphosphate, and 5-fluoro-20-de-
oxyuridine-50-triphosphate. These metabolites exert their 
cytotoxic action via the perturbation of thymidylate synthase 
and the synthesis of nucleic acids. 5-FU toxicity is mainly 
dose-dependent, and it varies among the patients causing 
occasional therapy discontinuation (Garg et al. 2012; Rashid 
et al. 2014).

Common insufferable and serious 5-FU side effects 
include diarrhea, mucositis, dermatitis, myelosuppression, 
cardiotoxicity, genital organ toxicity, and hepatorenal tox-
icity. The chief mechanisms of 5-FU-induced cytotoxicity 
include reactive oxygen species overproduction and inflam-
matory mediators release that have the central effect in the 
5-FU-induced toxicity Al-Asmari et al. (2016).

The impairment of hepatic function is a clinically impor-
tant complication that frequently occurs in the patients 
treated with chemotherapy and it may require withdrawal 
of the administered drugs increasing the risk of treatment 
failure. Hence, the attempt to ameliorate the hepatic toxicity 
of 5-FU is an important step to improve its chemotherapeutic 
outcomes. Previous studies suggested that 5-FU caused oxi-
dative stress in the liver and eventually resulted in structural 
and functional impairments of the hepatocytes (Ray et al. 
2007; El-Hoseany 2012; Fukuno et al. 2016). The use of 
anti-inflammatory and/or antioxidant agents has been sug-
gested to attenuate the chemotherapy-induced toxicity (Diba 
et al., 2021; Akindele et al. 2018). Several agents were used 
to ameliorate 5-FU-related toxicities on different organs 
without affecting its antineoplastic efficacy, but up till now, 
there is no consensus regarding the optimum drug therapy 
(Agbarya et al. 2014).

Platelet-activating factor (PAF) is a potent lipid media-
tor of different inflammatory processes that is synthesized 
by almost all cells. Its receptors are mainly present in the 
hepatocytes (Karantonis et al. 2010).

Rupatadine (RU) is a non-sedating H1-antihistaminic 
drug that was proved to have a PAF antagonistic activity. 
RU is commonly prescribed for allergic rhinitis, chronic 

urticaria, and diabetic nephropathy (Santamaria et al. 2018; 
Hafez et al. 2020). Picado (2006) reported that RU can sup-
press the degranulation of mast cells preventing the release 
of inflammatory mediators.

HO is expressed in three different isoforms: HO-1, 2, 
and 3. It is the rate-limiting enzyme in heme metabolism 
that catalyzes the degradation of pro-oxidant heme into 
carbon monoxide (CO), biliverdin, and ferrous ions and 
exhibits a wide range of cytoprotective anti-inflammatory, 
anti-apoptotic, and immunoregulatory effects in a variety 
of diseases (Pae et al. 2008; Hualin, 2012; Podkalicka et al. 
2018). Several drugs produced a hepatoprotective effect in 
rats depending on HO-1 to exert antioxidant and anti-inflam-
matory actions (Aladaileh et al. 2019; Mingyang et al., 2020; 
Liu et al. 2020).

Also, the preparation and application of nanoparticles for 
different medical and pharmaceutical applications including 
the amelioration of toxicities were discussed before. Nano-
particles also seem to have promising therapeutic antitoxic 
effects (Amiri et al. 2019; Khoobi et al. 2019; Monsef et al., 
2021).

Considering the deficient information about the patho-
physiological function of PAF in the chemotherapy-associ-
ated hepatic damage, we evaluated for the first time the role 
of PAF in the pathogenesis of 5-FU-induced hepatotoxicity 
using RU as a PAF receptor antagonist. Currently, no reports 
are available about the protective effects of RU against the 
hepatotoxicity induced by 5-FU. Consequently, in the pre-
sent study, we investigated RU as a potential hepatoprotec-
tive drug against 5-FU-induced hepatic damage in rats. We 
had a special focus on biochemical, histopathological, and 
immunological parameters. Also, we investigated the molec-
ular mechanisms underlying RU’s action.

Materials and Methods

Chemicals

Rupatadine and 5-FU were attained from Sigma-Aldrich 
Co. (St. Louis, MO, USA). Urethane was purchased from 
CDH Fine Chemicals Co. (Darya Ganj, New Delhi, India). 
TNFα, IL-1B, and IL-6 kits were purchased from Invitrogen 
Thermo Fisher Scientific Inc./Lab Vision Co. (Fremont, CA, 
USA) (Catalog No: E-EL-R0019, and LOT 192,587,043, 
respectively). ALT and AST were purchased from Lab 
Dimension Co. (Cairo, Egypt). PAF kits were obtained 
from universal Biologicals Co. (Cambridge, United King-
dom). HO-1 ELISA kits were purchased from Assay Genie 
Co. (Dublin, Ireland) (Catalog No: SKU: RTFI00859). The 
ready-to-use iNOS and cleaved caspase-3 polyclonal rab-
bit antibodies were obtained from Thermo Fisher Scientific 
Inc./Lab Vision Co. (Fremont, CA, USA).
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Animals

The current experiment was conducted on Wistar male 
albino rats, 9–11 weeks old, weighing 200–250 g. They were 
obtained from the National Research Centre, Giza, Egypt, 
and were settled in cages (3 rats/cage) with free access to 
tap water and commercial rat chow diet (El- Nasr Co., Cairo, 
Egypt) at 24 ± 2 °C with a 12-h dark/light. The rodents were 
kept for two weeks before starting the study for acclimatiza-
tion to the laboratory environment, and they were handled 
following ARRIVE ethical guidelines and the approval by 
the board of the Faculty of Medicine, Minia University, 
Egypt (239:7/2019).

Experimental design

Animals were randomly arranged into four groups (8 rats/ 
group), as follows:

Group 1: (the control group) received vehicle; 1 ml of 
1% carboxymethyl cellulose (CMC), orally once daily for 
10 days and single IP injection of 0.9% saline on the 7th 
day of the experiment.
Group 2: (the RU group) received RU in a dose of 3 mg/
kg/day orally once daily for 10 days, and single IP injec-
tion of 0.9% saline on the 7th day of the experiment, RU 
was suspended in 1% CMC (Hafez et al. 2020).
Group 3: (the 5-FU group) received 1 ml of CMC orally 
once daily for 10 days and single IP injection of 5-FU 
(150 mg/kg) on the 7th day of the experiment (Al-Asmari 
et al. 2016).
Group 4: (the 5-FU + RU group) received RU (3 mg/kg/
day orally once daily for 10 days) and a single IP injec-
tion of 5-FU (150 mg/kg) on the 7th day.

In the present experiment, the oral drugs were adminis-
tered once daily using an intragastric tube.

Sample collection and storage

Twenty-four hours after the last dose (after the 10 days 
of the experiment), the animals were weighed and anes-
thetized with urethane (125 mg /kg, IP). Blood samples 
were collected from the abdominal aorta then centrifuged 
for 10 min at 4000 rpm to obtain clear serum. Collected 
sera were kept at –80 °C for biochemical assessments. The 
liver was excised and washed with saline. For each rat, the 
whole excised liver was weighed and divided into three 
parts. One part was kept in 10% formalin and embedded 

in paraffin for histopathological and immunohistochemi-
cal measurements, and another part was stored at –80 °C 
for real-time polymerase chain reaction (RT-PCR) testing. 
The remaining part of the liver was homogenized in ice-
cold phosphate buffer (0.01 M, pH 7.4; 20% w/v) and cen-
trifuged for 15 min at 4000 rpm, and then, the supernatant 
was kept at –80 °C for the different biochemical analyses.

Biochemical measurements

Measurement of serum ALT and AST

Serum ALT and AST levels were quantified using enzy-
matic kinetic kits and following the manufacturer’s rec-
ommendations (catalog NO: EZ016LQ for ALT and 
EZ012LQ, for AST).

Measurement of hepatic oxidative stress 
parameters

Hepatic malondialdehyde (MDA) level was biochemi-
cally measured using the spectrophotometry method and 
depending on the reaction between MDA and the thiobar-
bituric acid as described by (Uchiyama and Mihara 1979). 
The colored complexes were estimated at 535 nm and then 
were calculated by using the standard curve of 1,1,3,3-
tetra methoxy propane (Buege and Aust 1978).

Superoxide dismutase (SOD) activity was chemically 
evaluated as described by Marklund and Marklund (1974) 
who stated that SOD can inhibit the autoxidation of pyro-
gallol. One unit of SOD is equal to the percent of enzyme 
which attenuates pyrogallol autoxidation by 50%. Hepatic 
tissue activity of SOD was spectrophotometrically esti-
mated at 420 nm.

Reduced glutathione (GSH) activity was biochemically 
evaluated in the hepatic tissue homogenates as described 
previously (Moron et  al. 1979). The GSH evaluation 
method depends on the reduction of Ellman's reagent by 
the thiol groups of GSH to a yellow colored 5-thio-2-ni-
trobenzoic acid that is detected at 412 nm using the Beck-
man DU-64 UV/VIS spectrophotometer.

The total nitrite/nitrate (NOx), the stable oxidation 
end product of nitric oxide, was quantified in the tissue 
homogenates using the Griess reaction that depends on the 
interaction of nitrite with the blend of naphthyl ethylene 
diamine and sulfanilamide. NOx level was estimated at 
540 nm using the Beckman DU-64 UV/VIS spectropho-
tometer (Sastry et al. 2002).
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Evaluation of the hepatic level 
of inflammatory parameters

The hepatic tissue levels of TNF-ɑ, IL-1β, and IL-6 were 
measured using their ELISA kits; Invitrogen Thermo 
Fisher Scientific Inc./Lab Vision Co. (Fremont, CA, USA) 
(Catalog No: E-EL-R0019, and LOT 192,587,043, respec-
tively) and following the manufacturer's instructions.

Evaluation of the hepatic HO‑1 level

The hepatic HO-1 level was detected using the ELISA kits 
(Assay Genie Co., Dublin, Ireland) (Catalog No: SKU: 
RTFI00859) and following the manufacturer's instructions.

Evaluation of the hepatic PAF level

The hepatic PAF level was estimated by using the ELISA 
kits (Universal Biologicals Co., Cambridge, United King-
dom) (Catalog No: ER1226) and following the manufac-
turer's instructions.

Real‑time reverse transcription‑polymerase 
chain reaction (RT‑PCR)

The total RNA was extracted from the hepatic tissues 
using the RiboZol reagent (Amresco, Solon, USA). 5 µg 
of the total RNA was used for RT-PCR following the 
manufacturer's instructions (Thermo Scientific Verso sybr 
green one-step qRT-PCR kits plus ROX Vial, code no AB-
4104/A) in the thermal cycler (Applied Biosyst 7500 fast, 
Techne (Cambridge) LTD., UK). RT-PCR cycling param-
eters were kept at 50 °C for 15 min., 95 °C for 15 min and 
40 cycles of denaturation at 95 °C for 15 s, annealing at 
60 °C for 30 s, and then extension at 72° C for 30 s. The 
total RNA purity was determined through the absorption 
ratio 260/280 nm. It was about 1.8–2 for all the prepara-
tions. The relative gene expression of HO-1 was calculated 
using the comparative threshold cycle method (Ct). All the 
values were normalized to the β-actin gene. The used sets 
of primers were:

HO-1 primer sequence (5′-3′).
Forward primer: 5′- TTA AGC TGG TGA TGG CCT CC 

-3′
Reverse primer: 5′- GTG GGG CAT AGA CTG GGT TC-3′
β-actin primer sequence (5′-3′).

Forward: 5'-GTC GTA CCA CTG GCA TTG TG-3'.
Reverse: 5'-CAG CAT GGT GAC CGT AAC A-3'.

Histopathological 
and immunohistochemical study

At the end of the experiment, fresh small pieces of the left 
hepatic lobe were excised from each animal, rapidly fixed 
in 10% neutral-buffered formalin, dehydrated in a graded 
alcohol series, washed with xylene, and embedded in par-
affin wax. The Sects. (5 μm thickness) were stained with 
the hematoxylin and eosin stain (H&E) for studying the 
general histological architecture (Morris et al. 2019). Other 
slides were stained with Masson’s trichrome for the colla-
gen fiber detection (Suvarna et al. 2018). Additional slides 
were preceded for the immunohistochemical study using 
rabbit monoclonal antibodies. The first one was the anti-
inducible nitric oxide synthase (iNOS) antibodies [(diluted 
at 1: 500); catalog number is ab178945] that are produced 
recombinantly (animal-free) for high batch-to-batch consist-
ency and long-term security of supply, suitable for ELISA, 
WB, ICC/IF, and IP, reacts with mice, rats, and humans, 
expressed in the liver, retina, bone cells, and airway epi-
thelial cells of the lung, and not expressed in the platelets. 
The second one was the anti-cleaved caspase-3 antibodies 
[ (diluted at 1: 1000), catalog NO: ab184787] that are pro-
duced recombinantly (animal-free) for high batch-to-batch 
consistency and long-term security of supply, suitable for 
WB, IHC-P, and IP, knockout validated, reacts with mouse, 
rat, and human, highly expressed in the lung, spleen, heart, 
liver, kidney, and the cells of the immune system, with mod-
erate levels in the brain and skeletal muscle, and with low 
levels in the testis. The steps were done according to the 
manufacturer’s recommendations (Côté 1993).

Photography

In this study, the camera (Olympus C-35DA-2, Japan) was 
attached to the microscope (Olympus CX23LEDRFS1, 
Olympus, Tokyo, Japan) and used at the Histology Depart-
ment, Faculty of Medicine, Minia University.

Morphometric study

Morphometric estimation using the Leica QWin 500 image 
analysis software (Leica Microsystems, Wetzlar, Germany) 
was performed to assess the cleaved caspase-3, and the 
iNOS immune-marked cells were counted in 10 adjacent 
non-overlapping fields of three liver sections of each rat.
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Statistical analysis

The statistics were displayed as means ± standard error of 
the mean (SEM). The results were analyzed using the one-
way analysis of variance (ANOVA) test and the Tukey multi-
ple comparison test. Statistical calculations were performed 
using GraphPad Prism-5 for Windows (Version 5.01, San 
Diego, California, USA). The significant difference was set 
at p-value < 0.05.

Results

Influence of RU on the body weight and liver index 
in 5‑FU‑induced hepatotoxicity

There was a significant decrease in the body weight and 
liver index (liver weight/body weight) in the 5-FU group as 
compared to the control group. Rodents pretreated with RU 
(the RU + 5-FU group) displayed a significant increase in 
their body weight and liver index as compared to the 5-FU 
group (Table 1). There was no significant difference in the 
serum activities of ALT and AST between the RU group and 
the control group.

Influence of RU on liver enzymes 
in 5‑FU‑induced hepatotoxicity

The 5-FU group had a significant elevation in the levels of 
AST and ALT relative to the control group. RU pretreatment 
in the RU + 5-FU group significantly reduced the AST and 
ALT levels as compared to the 5-FU group (Table 1).

Influence of RU on hepatic oxidative stress 
parameters in 5‑FU‑induced hepatotoxicity

As shown in Table 2, a significant reduction in the hepatic 
levels of SOD and GSH and significant elevations of MDA 
and NOx levels were observed in the rats treated with 5-FU 
alone as compared to the control group. There was a sig-
nificant improvement in the oxidative stress parameters with 
RU pretreatment (RU + 5-FU group) in comparison with the 
5-FU group as indicated by the significant increase in SOD 
and GSH along with the reduction of MDA and NOx levels 
(Table 2). There was no significant difference between the 
RU group and the control group.

Effect of RU on hepatic inflammatory 
parameters in 5‑FU‑induced hepatotoxicity

5‐FU significantly elevated the hepatic TNF-α, IL-1 β, and 
IL-6 levels in comparison with the control group. Mean-
while, RU pretreatment in the RU + 5-FU group significantly 
decreased the hepatic inflammatory parameters as compared 
to the 5-FU group. There was no significant difference 
between the RU group and the control group (Table 3).

Influence of RU on hepatic PAF level 
in 5‑FU‑induced hepatotoxicity

There was a significant increase in the hepatic level of 
PAF in the 5-FU group in comparison to the control group. 
Besides, RU pretreatment in the RU + 5-FU group signifi-
cantly reduced the hepatic level of PAF in comparison with 

Table 1  Effect of RU on the liver index and liver function enzymes 
(AST and ALT)

Values are displayed as the mean ± SEM (n = 8). aSignificant differ-
ence from the control, bSignificant difference from the 5-FU group. 
RU: rupatadine; 5-FU: 5-fluorouracil, AST: aspartate aminotrans-
ferase, ALT: alanine aminotransferase, and df: degree of freedom.

Group ALT(U/L) AST(U/L) Liver index

Control 23.13 ± 1.61 20.40 ± 1.12 3.28 ± 0.19
RU 23.25 ± 2.18b 22.60 ± 2.04b 3.34 ± 0.15b

5-FU 61.88 ± 2.44a 60.60 ± 3.21a 1.52 ± 0.24a

5-FU + RU 41.38 ± 2.17b 41.40 ± 3.20b 3.17 ± 0.28b

F (df) 76.29 (3) 54.12 (3) 15.22 (3)
 P value < 0.0001 0.0010 0.0069

Table 2  Influence of RU on hepatic oxidative stress parameters 
(GSH, SOD, MDA, and NOx)

Values are shown as the mean ± SEM (n = 8). aSignificant variance 
from the control group, bsignificant variance from the 5-FU group. 
RU: rupatadine, 5-FU:5-fluorouracil, MDA: malondialdehyde, SOD: 
superoxide dismutase, GSH: reduced glutathione, NOx: total nitrite/
nitrate, and df: degree of freedom.

Group GSH
(mg/g tis-
sue)

SOD
(U/g tissue)

MDA
(nmol/g tis-
sue)

NOx
(nmol/g 
tissue)

Control 1.12 ± 0.15 1.49 ± 0.04 14.84 ± 0.73 0.12 ± 0.01
RU 1.20 ± 0.10b 1.43 ± 0.05b 14.61 ± 0.80b 0.11 ± 0.01b

5-FU 0.42 ± 0.02a 0.50 ± 0.03a 24.96 ± 1.60a 0.51 ± 0.02 a

5-FU + RU 1.21 ± 0.11b 1.65 ± 0.05b 14.64 ± 1.25b 0.29 ± 0.02b

F (df) 10.84 (3) 116.2 (3) 19.67 (3) 97.64 (3)
P value 0.0004 0.0008 0.0005  < 0.0001
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the 5-FU group. There was no significant difference between 
the RU group and the control group (Table 3).

Influence of RU on the mRNA expression 
of HO‑1 in 5‑FU‑induced hepatotoxicity

Figure 1A presents a significant reduction in the hepatic 
HO-1 level of the 5-FU group as compared to the control 
group. In addition, rats that received RU pretreatment pre-
sented a significant elevation in the hepatic HO-1 level when 
compared with the 5‐FU group (Fig. 1B).

Histopathological examination of the liver 
tissue in 5‑FU‑induced hepatotoxicity

The control and RU groups displayed a normal lobular 
architecture. Numerous plates of hepatocytes radiating from 
the central veins and separated by blood sinusoids were 
observed. The hepatocytes seemed polyhedral with acido-
philic cytoplasm, large central vesicular nuclei, and promi-
nent nucleoli. Some hepatocytes were seen bi-nucleated. 
Kupffer cells were shown hanging in the blood sinusoids. 
The portal tracts exhibited branches of the portal veins, 
hepatic arteries, and bile ducts (Fig. 2A).

The 5-FU group showed a loss of the normal lobular 
architecture. Dilated congested central veins and blood 
sinusoids were frequently seen. Degenerated liver cells 
with ghosts of nuclei and focal area of lytic necrosis were 
noticed. Single-cell necrosis of the hepatocytes was also pre-
sent. Regarding the portal areas, an apparent dilatation of the 
bile ducts and portal veins was noticed (Fig. 2B).

In contrast, the 5-FU + RU group showed an obvious mor-
phological restoration of the normal lobular architecture but 
with few scattered areas of degenerations and less frequent 
central veins congestion when compared to the previous 
group. Almost all the hepatocytes had a normal appearance. 
Meanwhile, few dilated blood sinusoids and cells with dense 
nuclei and deeply acidophilic cytoplasm were still seen. The 
portal areas appeared with less dilated hepatic arteries and 
bile ducts compared to the 5-FU group (Fig. 2C).

Effect of RU on the hepatic sections 
stained with the Masson's trichrome stain 
in 5‑FU‑induced hepatotoxicity

As shown in Fig. 3, the control and RU groups showed scant 
collagen fibers surrounding the central veins and portal 
areas, while the 5-FU group exhibited more collagen fibers 
surrounding the previously mentioned areas. The 5-FU + RU 

Table 3  Effect of RU on 
hepatic PAF and inflammatory 
parameters (IL-1 β, IL-6, and 
TNF- ɑ)

Values are displayed as the mean ± SEM (n = 8). aSignificant difference from the control, bsignificant dif-
ference from the 5-FU group. RU: rupatadine, 5-FU: 5-fluorouracil, PAF: platelet-activating factor, TNF-α: 
tumor necrosis factor-alpha, IL: interleukin, and df: degree of freedom.

Group TNF- ɑ(pg/g tissue) IL-6(pg/g tissue) IL-1β(pg/g tissue) PAF(mg/g 
tissue)

Control 2117 ± 80.9 167.1 ± 13.16 13.61 ± 0.74 0.78 ± 0.06
RU 2164 ±  108b 202.2 ± 11.65b 12.68 ± 0.85b 0.74 ± 0.08b

5-FU 3702 ±  185a 525.5 ± 26.46a 64.99 ± 4.24a 1.90 ± 0.07a

5-FU + RU 2326 ±  150b 193.7 ± 8.12b 15.65 ± 0.50b 0.90 ± 0.08b

F (df) 30.28 (3) 107.0 (3) 133.2 (3) 52.09 (3)
P value 0.0046 0.0003 0.0001 0.0003

Fig. 1  Effect of RU on the 
mRNA expression of HO-1 
in 5-FU-induced hepato-
toxicity. Data are displayed 
as the mean ± SEM (n = 8). 
aSignificant difference from the 
control, bsignificant difference 
from the 5-FU group. RU: 
rupatadine, 5-FU: 5-fluoro-
uracil, HO-1: heme oxyge-
nase-1. p value = 0.0110, F 
(df):19.36 for the figure A and 
p value: < 0.0001, F (df): 24.38 
for the figure B, respectively
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group showed little collagen fibers surrounding the central 
veins and portal areas as compared to the 5-FU group.

Immunohistochemical results of iNOS 
immunoexpression

The assessment of wide fields of the control and RU 
groups exhibited no iNOS immunolabeled cells, while 
the 5-FU group showed an intense immunolabeling of 
hepatocytes and von Kupffer cells (cytoplasmic expres-
sion). In contrast, the 5-FU + RU group showed a faint 

Fig. 2  Histopathological examination of the liver tissue in 5-FU-
induced hepatotoxicity by H&E Showing: A):(a,b) the control and 
(c,d) the RU group, respectively. (a,c) Normal lobular architecture 
with numerous plates (lines) of polygonal acidophilic hepatocytes 
with rounded vesicular nuclei (arrows) is seen. Notice the hepatocytes 
radiating from the central veins (CV) and separated by blood sinu-
soids (S). Some hepatocytes showing binucleated nucleoli (circles). 
Kupffer cells (arrowheads) showing hanging in the blood sinusoids. 
(b,d) Portal tracts (rectangles) showing branches of the portal vein 
(PV), hepatic artery (HA), and bile duct (BD). B): The 5-FU group 
showing: (a) dilated congested central vein (CV). Most hepatic cells 
showing dark nucleoli. (b) Loss of normal lobular architecture (star). 

Note the degenerated hepatocytes with ghosts of nuclei (white arrow) 
and focal area of lytic necrosis (white star). (c) Single cell necrosis 
of hepatocytes (arrows) and dilated blood sinusoids (s). (d) Rectangle 
showing distorted portal area containing apparent dilatation of bile 
duct (Bd) and portal vein (PV). C) The 5-FU + RU group showing: 
(a) Restored lobular architecture with mild central vein (CV) conges-
tion and scattered areas of degenerations (star). Most liver cells show 
normal appearance and are arranged in cords (arrows). Less dilated 
blood sinusoids (s) and few cells with dense nuclei and deeply acido-
philic cytoplasm (circle). (b) Portal area (rectangle) with less dilated 
hepatic artery (HA) and bile duct (BD). H&E, × 400; scale bar = 50 � 
m
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Fig. 3  Effect of RU on the 
hepatic sections stained with 
the Masson's trichrome stain 
in 5-FU-induced hepatotoxic-
ity Showing; (a,b) the control 
and RU groups, respectively, 
displaying scant collagen fibers 
(arrow) around the central vein 
(CV) and portal area (rectan-
gle). (c) The 5-FU group show-
ing more collagen fibers (arrow) 
surrounding the central vein 
(CV) and portal area (rectan-
gle). (d) The 5-FU + RU group 
displaying little collagen fibers 
(arrow) around the previously 
mentioned areas. Masson’s 
trichrome × 400; scale bar = 50 
� m

Fig. 4  Effect of RU on the 
immunohistochemical results 
of iNOS immunoexpression 
in 5-FU-induced hepatotoxic-
ity (a,b) The control and RU 
groups, respectively, showing 
a negative iNOS expression. 
(c) The 5-FU group showing 
a marked immunolabeling of 
the hepatocytes (white arrows) 
and von Kupffer cells (black 
arrows); (cytoplasmic expres-
sion). (d) The 5-FU + RU group 
displaying a faint immunolabe-
ling of the previously mentioned 
areas. Immunohistochemistry, 
counterstained with H X400; 
scale bar = 50 � m
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immunolabeling of the previously mentioned cells com-
pared to the 5-FU group (Fig. 4).

Immunohistochemical results of activated 
caspase‑3 immunoexpression

The control and RU groups exhibited a negative caspase-3 
expression. Meanwhile, the 5-FU group showed an intense 
cytoplasmic immunolabeling of the hepatocytes and von 
Kupffer cells. In contrast, the 5-FU + RU group displayed 
a scattered faint immunolabeling of the previously men-
tioned cells (Fig. 5).

Morphometric results

A significant elevation of iNOS and caspase-3-immune-
labeled hepatocytes and von Kupffer cells was observed in 
the 5-FU group compared to the control group. Meanwhile, 
a significant reduction was detected in the 5-FU + RU group 
compared to the 5-FU group (Table 4).

Discussion

5-FU-induced toxicity was proven in animal mod-
els, and the pathogenetic mechanisms of this toxicity 
have been examined in different organs such as the kid-
neys and intestine (Rashid et al. 2014; Zhao et al. 2014;  

Fig. 5  Effect of RU on the 
immunohistochemical results 
of caspase-3 immunoexpres-
sion in 5-FU-induced hepa-
totoxicity (a&b) The control 
and RU groups, respectively, 
showing a negative caspase-3 
expression. (c) The 5-FU group 
displaying a marked immunola-
beling of the hepatocytes (white 
arrows) and von Kupffer cells 
(black arrows); (cytoplasmic 
expression). (d) The 5-FU + RU 
group showing a faint immu-
nolabeling of the hepatocytes 
(white arrows) but still few von 
Kupffer cells (black arrows) 
showing a strong expression. 
Immunohistochemistry, coun-
terstained with H X400; scale 
bar = 50 � m

Table 4  Effect of RU on the 
mean number of cleaved 
caspase-3 and iNOS immune-
labeled cells

Values are displayed as the mean ± SEM (n = 8). aSignificant variance from the control, bsignificant vari-
ance from the 5-FU group. RU: rupatadine, 5-FU: 5-fluorouracil, and df: degree of freedom.

Groups Caspase-3-im-
mune-labeled
hepatocytes

Caspase-3-immune-
labeled Kupffer cells

iNOS-immune-
labeled hepatocytes

iNOS-immune-labeled
Kupffer cells

Control 0.66 ± 0.21 0.33 ± 0.21 0.66 ± 0.21 0.33 ± 0.21
RU 0.83 ± 0.16 b 0.83 ± 0.16b 0.8333 ± 0.16b 0.50 ± 0.22b

5-FU 47.50 ± 0.99a 11.16 ± 0.83a 27.83 ± 0.60a 14.83 ± 0.94a

5-FU + RU 19.00 ± 1.06 b 3.33 ± 0.42b 7.66 ± 0.71b 5.50 ± 0.61b

F (df) 208.9 (3) 106.2 (3) 695.1 (3) 134.7 (3)
P value 0.0001 0.0001 0.0001 0.0002
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Mahmoud et al. 2020). In the current research, the liver dam-
age was induced by 5-FU in male Wistar rats and RU was 
found to be a hepatoprotective agent against this toxicity. 
The RU hepatoprotective effect was indicated by biochemi-
cal, immunohistochemical, and histological assessments.

Liver injury could change the membrane's permeabil-
ity leading to the increased release of some liver-specific 
enzymes, mainly AST and ALT (Rahim et al. 2014). Liver 
function tests are important for the assessment of hepatotox-
icity; thus, an increase in the serum levels of AST and ALT 
indicates their leakage from the injured necrotic hepatocytes 
into the systemic circulation (Ozer et al. 2008). ALT and 
AST are essential biological markers for the cellular damage 
and toxicity, and they are used as an indicator of acute liver 
toxicity (Zeashan et al. 2009).

Marked oxidative production with the accumulation of 
oxidative radicles in the liver damaged the cellular mem-
branes and the hepatic endothelial lining in the present study. 
Different forms of hepatic insufficiency in the 5-FU group 
were manifested by the significant elevations of AST and 
ALT, alterations of body weight and liver index, hepatic 
inflammation, oxidative damage, and hepatic cell apopto-
sis. These results were discordant with previous literature 
(Al-Asmari et al. 2016; Gelen et al. 2018).

The current histological findings went in line with the 
biochemical results. Various morphological changes were 
demonstrated in the 5-FU group in the form of distorted 
lobar architecture, degenerated hepatocytes, dilated cen-
tral veins, and distorted portal areas. These results were in 
agreement with Alessandrino et al. 2019 who reported the 
5‐FU-induced hepatotoxicity in the patients with colorectal 
cancer. Additionally, El-Sayyad et al. 2009 and Assayaghi  
et al. 2019 stated that 5-FU markedly affected the histologi-
cal structure of the liver.

In an attempt to explain the effect of 5-FU on accelerat-
ing the collagen fiber deposition, the Masson's trichrome 
stain was used to detect the collagen formation (Elbassuoni 
and SM, 2019; Hafez 2019). The 5-FU group showed more 
extensive collagen fibers surrounding the central veins and 
portal areas as compared to the normal rats. This finding was 
also reported by Bano and Najam 2019 who suggested that 
5-FU induced direct hepatic toxicity, inflammation, necrosis, 
and collagenous fibril formation.

Shreds of evidence have demonstrated that oxidative 
stress mediates the 5-FU-induced organ toxicities (Rashid 
et al. 2014; Guo et al. 2015). Reactive oxygen species (ROS) 
generation causes the peroxidation of membrane lipids and 
oxidative cellular injury. Cellular antioxidant enzymatic 
and non-enzymatic defenses diminish the resultant tissue 
destruction (Polat Köse et al. 2015). ROS lead to cellular 
injury and necrosis in various tissues including the liver, kid-
ney, and intestines. ROS damage also raises the portal and 
systemic levels of endotoxins and their hepatic translocation 

leading to neutrophil ingestion and higher levels of ROS 
release (Godos et al. 2017). The termination of ROS damage 
in healthy cells is complemented by the radical scavenging 
system including superoxide dismutase (SOD) and reduced 
GSH (Gulcin 2006).

Our results revealed that there was a significant reduction 
in the activity of the antioxidant enzymes in liver including 
SOD and GSH following the administration of 5-FU along 
with the increase in the hepatic MDA and NOx levels. These 
findings coincide with other previous reports (Arab et al. 
2018; Gelen et al. 2018).

Several researchers have suggested that ROS are involved 
in the stimulation of extracellular signal-regulated kinase 
(ERK). The activation of the ERK pathway promotes tran-
scription factors as the nuclear factor kappa B (NF-κB) 
which regulates the expression of various pro-inflammatory 
mediators (Arab et al. 2018). The role of the pro-inflamma-
tory cytokines in the pathogenesis of hepatic toxicity and the 
cellular signaling pathways is still being researched (Laverty 
et al. 2010). It has been stated that these pro-inflammatory 
cytokines are related to a significant rise in serum IL-1ß, 
IL-6, and TNF-α levels following the 5-FU administration 
in rats (Chang et al. 2017).

Matching other earlier researches of Chang et al. 2017 
and Arab et al. 2018, 5-FU administration in the present 
study resulted in a significant increase in the hepatic levels 
of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. 
Besides, the ROS produced by iNOS led to tissue injury. 
The 5-FU-associated increase in iNOS activity indicated the 
important role of ROS in the pathogenesis of 5-FU-induced 
tissue damage.

Our study revealed that cytoplasmic iNOS expression was 
prevalent in the hepatic and von Kupffer cells of the 5-FU 
group. Matching these findings, Leitão et al. 2007 reported 
that the increased iNOS activity leads to mucosal injury. 
El-Sayyad et al. 2009 also found that 5-FU initiates inflam-
matory cells infiltrations with a subsequent increase in iNOS 
expression.

In this current work, the cytoplasmic cleaved caspase-3 
expression was enhanced in the hepatic and von Kupffer 
cells of the 5-FU group. Caspase-3 is an important regula-
tor of apoptosis that becomes activated in the intrinsic and 
extrinsic apoptotic pathways in response to cytochrome C 
leakage from the mitochondria (Abdel-Aziz and Hafez 2019; 
Ahmed et al. 2019; Ponce-Cusi and Calaf 2016). The over-
expression of caspase-3 in this experiment confirmed the 
damage of liver parenchyma and hepatic dysfunction in the 
5-FU group.

In the present study, 5-FU administration significantly 
decreased the hepatic level of the cytoprotective HO-1 pro-
tein. However, it is worthy to note that the RU administration 
induced its expression in the hepatic tissue. These results 
suggest that RU ameliorates the oxidative stress-associated 
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liver toxicity through the potentiation of cellular antioxidant 
defenses by stimulating HO-1 expression. These findings 
are in agreement with previous studies that reported the 
increased HO-1expression to reduce the neutrophils infil-
tration from bone marrow and function. Thus, it played an 
important anti-inflammatory and anti-apoptotic role in the 
liver damage models (Hyvelin 2010; Zhang et al. 2017).

PAF is a pro-inflammatory phospholipid mediator that is 
created by almost all cells and it is an efficient mediator in 
numerous inflammatory responses, induction of apoptosis, 
and NF-kB activation (Ahmed et al. 2021; Lu et al. 2008). 
PAF is synthesized by the activated polymorphonuclear and 
endothelial cells, and it is implicated in other pathological 
and physiological processes such as wound healing and 
angiogenesis (Stafforini et al. 2003). Additionally, it was 
documented that PAF is implicated in the pathogenesis of 
liver injury (Grypioti et al. 2005). Interestingly, the role of 
PAF in 5-FU-associated intestinal mucositis was studied in 
rats using a PAF receptor blocker and the production of PAF 
was involved in the pathogenesis of mucositis (Soares et al. 
2011).

RU, which competitively blocks both histamine and PAF 
receptors, is well tolerated with a good safety profile in 
many clinical trials (Katiyar and Prakash 2009; Nettis et al. 
2013). RU was reported to protect against pulmonary fibro-
sis by inhibiting the PAF-mediated pathway as it decreased 
the lung-infiltrating inflammatory cells, expression of the 
inflammatory cytokines, and mast cell degranulation in the 
injured lungs (Lv et al. 2013, Vasiadi et al. 2010).

In the current research, RU reversed the 5‐FU-associated 
hepatic toxicity owing to its blocking effect on the PAF 
receptors. The RU-pretreated rats showed a significant 
enhancement in their body weight, liver index, and liver 
function in comparison with the 5-FU group along with the 
improved anti-oxidative capacity indicated via the elevated 
hepatic levels of GSH, HO-1, and SOD activities and the 
decreased MDA and NO levels. Inhibited membrane lipid 
peroxidation and nitric oxide synthesis attenuated the level 
of the pro-inflammatory cytokine (TNF-ɑ, IL-1ß, and IL-6) 
in the hepatic tissue with the down-regulation of HO-1-me-
diated hepatic inflammation and apoptosis. These findings 
were accompanied by the restoration of normal histologi-
cal patterns of the hepatic tissue as compared to the 5‐FU 
group. In accordance with these results, previous studies 
reported the protective effect of RU on different animal mod-
els (Hafez et al. 2020; Mohamed et al. 2021).

RU also attenuated iNOS and activated caspase-3 
immunoexpression in the hepatic tissue and produced anti-
inflammatory and anti-apoptotic actions as proven by the 
significant decrease in IL-6,1ß and TNF-α cytokine levels. 
In accordance with these results, a previous study by Hafez 
et al. 2020 reported these anti-inflammatory, antioxidant, 
and anti-apoptotic actions of RU in an animal model of 

diabetic nephropathy. The present study offers evidence 
that PAF is involved in the pathogenesis of 5-FU-associated 
hepatotoxicity in rats with a potential ameliorative action 
of RU.

Conclusion

In conclusion, the administration of 5-FU exhibited a 
severe liver damage that was confirmed biochemically and 
histopathologically. PAF is involved in the pathogenesis of 
5-FU-associated hepatotoxicity. Furthermore, the pretreat-
ment with RU attenuated 5-FU-induced hepatotoxicity. The 
hepatoprotective potential of RU can be attributed to its 
anti-inflammatory, anti-apoptotic, and antioxidant proper-
ties mediated by antagonizing PAF receptors, attenuating the 
PAF-mediated response, and up-regulating HO-1 produc-
tion. Thus, the use of RU might prove beneficial for the well-
being of the cancer patients. Future studies should unravel 
other mechanisms of action of RU, study the dose-dependent 
effect, optimize the correct dose for human use, and compare 
the drug's efficacy and safety with other suggested therapies.
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