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Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is regarded as a threat because it spreads quickly across 
the world without requiring a passport or establishing an identity. This tiny virus has wreaked havoc on people’s lives, 
killed people, and created psychological problems all over the world. The viral spike protein (S) significantly contributes 
to host cell entry, and mutations associated with it, particularly in the receptor-binding protein (RBD), either facilitate the 
escape of virus from neutralizing antibodies or enhance its transmission by increasing the affinity for cell entry receptor, 
angiotensin-converting enzyme 2 (ACE2). The initial variants identified in Brazil, South Africa, and the UK have spread to 
various countries. On the other hand, new variants are being detected in India and the USA. The viral genome and proteome 
were applied for molecular detection techniques, and nanotechnology particles and materials were utilized in protection and 
prevention strategies. Consequently, the SARS-CoV-2 pandemic has resulted in extraordinary scientific community efforts 
to develop detection methods, diagnosis tools, and effective antiviral drugs and vaccines, where prevailing academic, gov-
ernmental, and industrial institutions and organizations continue to engage themselves in large-scale screening of existing 
drugs, both in vitro and in vivo. In addition, COVID-19 pointed on the possible solutions for the environmental pollution 
globe problem. Therefore, this review aims to address SARS-CoV-2, its transmission, where it can be found, why it is severe 
in some people, how it can be stopped, its diagnosis and detection techniques, and its relationship with the environment.

Keywords  COVID-19 · SARS-CoV-2 variants · SARS-CoV-2 genome and protein · SARS-CoV-2 vaccines · SARS-CoV-2 
diagnosis · SARS-CoV-2 and the environment

Introduction

Coronaviruses (CoVs) belong to the family Coronaviridae 
and are grouped into four genera, including alpha, beta, 
gamma, and delta (van Regenmortel et al. 2000; Adams et al. 
2016). Viruses belonging to the alpha and beta genera infect 
mammals, including humans, while birds are infected by 
those belonging to gamma and delta genera (Yin and Wun-
derink 2018; Tang et al. 2015). Coronaviruses are approx-
imated to have a 60–100-nm, diameter, and their genetic 
material is enveloped in a protein coat known as the capsid, 
just like other viruses. In the last two decades, reports indi-
cate three novel coronavirus transmissions to humans, lead-
ing to severe acute respiratory syndrome (SARS) disease. 
SARS-CoV was the first outbreak reported in Guangdong, 
China, in November 2002 (Zhong et al. 2003). The second 
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outbreak was due to the Middle East respiratory syndrome 
coronavirus (MERS-CoV) and occurred in Saudi Arabia in 
2012 (Zaki et al. 2012). The world is currently experienc-
ing the novel coronavirus (2019-nCoV), which was initially 
reported in China at the end of 2019 (Wang et al. 2020a, b, 
c). These three coronaviruses are beta-coronaviruses, but 
SARS-CoV and 2019-nCoV belong to the Sarbecovirus sub-
genus while MERS-CoV belongs to the Merbecovirus (Wu 
et al. 2020a). This review takes the five-question approach 
(when, where, what, why, and how) for the pertinent 
information about the novel 2019-nCoV that has recently 
emerged, as well as potential treatment and diagnosis strate-
gies. In addition, the impact of the environmental pollution 
on the viral transmission and the viral negative and/or posi-
tive effects on the environmental conditions were discussed.

When did the 2019‑nCoV appear?

The health authorities in China became aware, in Decem-
ber 2019, that there was a substantial cluster of pneumonia 
cases in the city of Wuhan in Hubei province; the source 
of the cases was not clear, and the infection was swiftly 
spreading (Eurosurveillance editorial team 2020). Patient 
samples were collected, and analysis was carried out to 
discover the reason for the infections. China was the first 
country to identify the disease, named severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) by the 
International Committee on Taxonomy of Viruses (ICTV) 
(Gorbalenya et  al. 2020). Individuals who contracted 
SARS-CoV-2 suffered a respiratory disease that WHO 
named coronavirus disease 2019 (COVID-19) (Sohrabi 
et al. 2020; Paraskevis et al. 2020; Wu et al. 2020a, b, c). 
The disease may display symptoms ranging from those 
found in normal cases of flu to breathing difficulties and 
pneumonia that, in the most serious cases, can be fatal. 
Standard symptoms for COVID-19 are a dry cough, sore 
throat, tight chest, fever, headaches, and dyspnea (Guo 
et al. 2020). Sufferers may lose the ability to taste and 
smell, and some have suffered gastrointestinal infections 
(Guan et al. 2020). Recent research in France and Italy has 
shown that SARS-CoV-2 reached Europe at an early stage. 
The samples taken between November 2019 and January 
2020 (France) and September 2019 and March 2020 (Italy) 
have been found to carry anti-SARS-CoV-2 antibodies, 
IgG and/or IgM (Apolone et al. 2020; Carrat et al. 2021). 
Sallard et al. (2021) have investigated potential sources of 
SARS-CoV-2, raising important questions as to the origins 
of the virus being either naturally occurring or man-made. 
At the start of 2021, WHO sent a cohort of international 
scientists to undertake investigations into the origins of the 
virus. They commenced working in Wuhan, reportedly the 
breeding ground for the global pandemic. The WHO team 

reported that the virus was most likely of animal origin, 
which was then passed on to humans, disagreeing with 
suggestions that it had escaped from a virology labora-
tory in Wuhan (WHO 2020a, b). Nevertheless, there is 
still considerable dispute as to the source of the virus; it 
could have been a Wuhan laboratory accident or animal 
exposure, but it seems unlikely that an intentional release 
occurred.

Where does SARS‑CoV‑2 spread?

When a new pathogenic appears, discovering the source 
is important. Where possible, the source must be iden-
tified and isolated to prevent additional variants of the 
pathogen from crossing into humans. Finding the source 
is also helpful in understanding the dynamics of the virus, 
which can help shape public health responses and can also 
be of assistance when developing therapies and vaccines. 
There is considerable similarity between all published 
genetic sequences for the SARS-CoV-2 virus in humans, 
which suggests that the outbreak began with the virus 
moving into the human population at one point, in time 
that first reports appeared. However, researchers do not 
currently know the zoonotic source of the virus. As pre-
viously mentioned, SARS-CoV-2 was initially identified 
in Wuhan, China, at the end of 2019, and swiftly spread 
to other nations through international travel networks. 
Published genetic sequences appear to show that the virus 
jumped from animals to humans in the last few months of 
2019 (Islam et al. 2020). At the time of writing (August 
8, 2021), most, if not all, countries have experienced the 
virus, with above 200 million cases confirmed with an 
approximate 2% mortality (https://​covid​19.​who.​int/). The 
highest number of confirmed cases has been in the USA 
(more than 36 million with 1.8% mortality). In terms of 
case numbers with considering the fast increasing in these 
numbers daily, India is second, Brazil third, and Russia 
fourth, as shown in Table 1.

Table 1   Summarizes information about the most infected countries 
with SARS-CoV-2. (https://​sehhty.​com, accessed August 8, 2021)

Country No. of cases No. of survivals No. of deaths Death %

USA 36,518,948 29,851,803 632,987 1.7
India 31,934,455 31,099,771 427,892 1.3
Brazil 20,151,779 18,894,631 563,082 2.8
Russia 6,447,750 5,755,507 164,881 2.6

https://covid19.who.int/
https://sehhty.com
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What is SARS‑Cov‑2?

The new coronavirus was confirmed as a human coronavirus 
by sequencing and analyzing its genome (Fig. 1). The new 
virus shares similarity with a bat RaTG13 virus (96%), as 
well as with SARS-CoV (79%) (Zhou et al. 2020).

The viral genome

Observations have revealed that SARS-CoV-2 has a pos-
itive-sense single-stranded RNA molecule approximated 

to be around 30 Kb. This RNA encodes a wide range of 
viral proteins and consists of the 5′-leader-UTR, 3′-UTR 
poly-A tail, structural proteins replicase, and genes encoding 
accessory proteins located in the 3′ end. Also, these obser-
vations highlighted the genome of coronaviruses to be the 
largest known RNA genome (Hilgenfeld and Peiris 2013). 
Intriguingly, a study by Nelson et al. (2020) noted a group 
of overlapping genes (OLGs) and informed the presence of a 
novel-overlapping gene in the SARS-CoV-2 genome known 
as ORF3d that has not been recognized or reported before 
(Fig. 2a). The OLGs are familiar in the viruses’ genome and 
are associated with pandemics, but have not gained much 

Fig. 1   Diagram showing the 
general structure of SARS-
CoV-2 with the viral genome 
(RNA) and the primary struc-
tural proteins, S, M, E, and N

Fig. 2   Schematic illustrating (a) severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) genome sequence, (b) spike (S) glyco-
protein structure. SP: signal peptide; NTD: N-terminal domain; RBD: 

receptor binding domain; FP: fusion protein; HR1 and HR2: heptad 
repeat regions 1 and 2; TM: transmembrane; CP: cytoplasmic tail
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attention from researchers. This ORF3d was suggested to 
have 57 amino acids organized in α-helices joined by loops. 
In addition, Nelson et  al. (2020) noted the presence of 
some conserved OLGs in coronaviruses, including ORF3c, 
ORF3b, ORF9b, and ORF9c (Fig. 2a). Another study by 
Manfredonia et al. (2020) utilized SHAPE and DMA muta-
tional profiling (Map) to explore the RNA structure of the 
new SARS-CoV-2 and observed a group of RNA structural 
elements. This study also generated the 3D models for the 
RNA structure segments, which offer a platform for design-
ing and developing small molecule drugs targeting the viral 
genome (Manfredonia et al. 2020).

Deletions in the SARS‑CoV‑2 genome

Previous studies noted that the deletion of 29 nucleotides 
(~ 9 amino acids) in human SARS-CoV at the open reading 
frame 8 (ORF8) reduced the replication potential of the virus 
by up to 23-fold (Lau et al. 2005; Consortium 2004; Muth 
et al. 2018). This region is believed to encode an accessory 
protein essential to replicating the virus and the person-to-
person transmission mechanisms (Oostra et al. 2007; Lau 
et al. 2015). An extensive truncated sequence with 382 
nucleotides was observed in the SARS-CoV-2 genome in the 
ORF8 region which occupied the transcription-regulation 
area. According to the analysis of samples gathered from 
eight hospitals in Singapore (between January and February 
2020), this extensive truncated sequence deletion resulted in 
an attenuated SARS-CoV-2 infection phenotype (Su and Wu 
2020). This led researchers to hypothesis that this type of 
deletion occurred after the virus surfaced to support its sur-
vival in humans (Tang et al. 2015). Another deletion noted 
early in the SARS-CoV-2 genome was reported in Tempe, 
Arizona (USA). The deleted region is composed of about 
81 nucleotides (27 amino acids), and its deletion affected 
the ORF7a deemed to encode an accessory protein (Holland 
et al. 2020). Nonetheless, the impact of this deletion on the 
gene function remains unclear.

The viral proteins

It has been noted that the SARS-CoV-2 genome contains 14 
ORFs that encode about 27 different proteins, as indicated by 
Fig. 2a. Viral-associated proteins can be grouped into three 
categories: structural, nonstructural, and accessory proteins 
(Wu et al. 2020a, b, c; Cui et al. 2019).

Structural proteins

The coronavirus structural proteins include the spike (S) 
glycoprotein, the small envelope (E), the matrix (M), and 
the nucleocapsid (N) encapsulating the viral genome and 

all of which are essential in viral replication (Fig.  2a) 
(Huang et al. 2004). S-Glycoprotein is considered the larg-
est viral protein consisting of more than 1200 amino acids 
(150 kDa), and each monomer is believed to have numerous 
N-glycosylation sites. This protein is found on the surface 
of the virus and is a class 1 viral fusion protein. In addition, 
S-glycoprotein is categorized into two functional domains, 
S1 and S2, as indicated by Fig. 2b; these two categories are 
further grouped into two subdomains, where the S1 domain 
is believed to have a C-domain holding the RBD and N-ter-
minal domain (NTD). In contrast, the S2 domain contains 
two heptad repeats (HR) associated with membrane fusion 
function (Fig. 2b). The S-glycoprotein acts as the media-
tor of the interactions between the viral and the host cells 
from one side and between infected and uninfected cells 
in the same host on the other side. Cell-to-cell infection 
is achieved through cell–cell fusion, facilitating the direct 
spread between the cells evading the immune system (Du 
et al. 2009). The central target receptor on surfaces of human 
cells is the angiotensin-converting enzyme 2 (ACE2). This 
homotrimeric S-glycoprotein is used by coronaviruses to 
bind, making the RBD essential in interactions between the 
viruses and host cells (Li et al. 2003; Wan et al. 2020).

RBD structure in SARS‑CoV‑2, SARS‑CoV, 
and MERS‑CoV

The S-glycoprotein and RBD in coronaviruses have attracted 
the attention of researchers due to their role in vaccine 
design and drug development. All the three crystal struc-
tures of the RBD associated with SARS-CoV-2, SARS-CoV, 
and MERS-CoV have been determined and preserved in the 
protein data bank (PDB) (Lan et al. 2020; Li et al. 2005; 
Chen et al. 2013). Studies indicate that the three coronavi-
ruses RBD protein is organized in the same form involving 
a core structure consisting of five antiparallel β-sheets, some 
short α-helices, and an accessory subdomain [Fig. 3a, b, c 
(3D structures); d, e, f; (2D)] showing the accessory subdo-
main consists of loops with short two antiparallel β-strands 
in SARS-CoV and six in SARS-CoV-2. In addition, studies 
highlighted that all three RBD structures differ in the acces-
sory subdomain. However, SARS-CoV-2 and SARS-CoV 
share more similarities in this accessory subdomain com-
pared to MERS-CoV.

High similarity, indicated by an RMSD of 0.53 Å Cα 
atoms (superposition), was noted between RBDs of SARS-
CoV and SARS-CoV-2 (Fig. 4a) while the superimposed 
RBDs of MERS-CoV and SARS-CoV-2 showed more vari-
ations by an RMSD of 3.27 Å for backbone atoms (Fig. 4b).

Similar results can be obtained with the superimposi-
tion of the three RBDs together, as indicated in Fig. 4c. 
The RBDs from the three coronaviruses (SARS-CoV-2, 
SARS-CoV, and MERS-CoV) contain eight cysteine 
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residues, where seven of them are shared between the three 
RBDs (Fig. 5). Preceding studies highlighted a relationship 
between some residues (Y442, L472, N479, and T487), the 
transmission process, and the binding of hACE2 to SARS-
CoV RBD. The residue positions are occupied with L455, 
F486, Q493, and N501 amino acids, respectively, in the 
RBD of SARS-CoV-2 (Fig. 5). Previous studies also noted 
that N479 and T487 residues lead to cross-species infection 
in the SARS-CoV-RBD (Lan et al. 2020; Li et al. 2005). 
The similarity in the mechanism of interactions by differ-
ent RBDs toward the ACE2 receptor is demonstrated by the 
crystal structure of RBDs of SARS-CoV-2 and SARS-CoV 
complexing with the hACE2 (Lan et al. 2020; Li et al. 2005). 

These two RBDs are considered to share 14 amino acids in 
this interaction, where eight of them are similar, including 
Y449/Y436, Y453/Y440, N487/N473, Y489/Y475, G496/
G482, T500/T486, G502/G488, and Y505/Y491 of SARS-
CoV-2/SARS-CoV, respectively.

Structural protein interactions

The S-protein N-terminal signal sequence helps this pro-
tein by guiding it to the endoplasmic reticulum. Interac-
tions between the spike and M proteins are not signifi-
cant to the viral particles assembly and release. However, 
the release process is completed by interactions between 

Fig. 3   Illustrations of the struc-
ture of RBD in some coronavi-
ruses. Details of three-dimen-
sional crystal structures of (a) 
MERS-CoV (α-helices colored 
violet, β-sheets wheat and the 
loops in green Pdb ID 4L3N), 
(b) SARS-CoV (α-helices 
colored gray 60, β-sheets green 
lemon, and the loops in ruby 
Pdb ID 2AJF) and (c) SARS-
CoV-2 (α-helices colored 
yellow, β-sheets blue, and the 
loops in cyan Pdb ID 6M0J). 
Topology diagrams for the RBD 
of (d) MERS-CoV comprising 
seven β-sheets and six α-helices, 
(e) SARS-CoV comprising five 
β-sheets and six α-helices, and 
(f) SARS-CoV-2 comprising 11 
β-sheets (four being shorts) and 
eight α-helices. These diagrams 
were made using PROCHECK 
(www.​ebi.​ac.​uk/​pdbsum)

http://www.ebi.ac.uk/pdbsum
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M, N, and E proteins. The retention of the S protein in 
the ER-Golgi intermediate compartment (ERGIC)/Golgi 
complex, as well as its integration into new virions, is 
achieved through interactions between S and M. On the 

other hand, interactions between M and N proteins are 
considered to stabilize the N-protein–RNA complex 
(Malik 2020).

Fig. 4   Superposition of MERS-
CoV and SARS-CoV RBDs 
on SARS-CoV-2 RBD. (a) 
Illustrates the superposition 
of SARS-CoV RBD (gray 60 
α-helices, wheat β-sheets, and 
green loops) on SARS-CoV-2 
RBD (yellow α-helices, green 
lemon β-sheets, and ruby loops) 
reflecting their high degree of 
similarity. (b) Illustrates the 
superposition of MERS-CoV 
RBD (violet α-helices, wheat 
β-sheets, and green loops) on 
SARS-CoV-2 RBD (yellow 
α-helices, blue β-sheets, and 
cyan loops). These structures 
have less similarity and there 
is some place movement. (c) 
Illustrates the overall fold 
of MERS-CoV RBD (violet 
α-helices, wheat β-sheets, and 
green loops) and SARS-CoV 
RBD (gray 60 α-helices, wheat 
β-sheets, and green loops) on 
SARS-CoV-2 RBD (yellow 
α-helices, blue β-sheets, and 
cyan loops)
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Nonstructural proteins

Half of the SARS-CoV-2 genome is occupied by the ORF1 
(Fig.  2a) encoding two polypeptides: pp1a (486  kDa) 
and pp1ab (790 kDa), which are cleaved by two viral 
cysteine proteases, the main protease (Mpro or 3CL) 
and papain-like protease (PLpro), into 15 nonstructural 
proteins (NsPs), starting from 1 to 10 NsPs and 12–16 
NsPs (involved in the replication and transcription of viral 
genome) (Hilgenfeld and Peiris 2013; Wu et al. 2020a, b, 
c). According to some investigators, the Mpro enzyme is 
a promising therapeutic target that can be used in SARS-
CoV-2 infection treatment (Zhang et al. 2020a, b). On the 
other hand, some researchers have noted that some NsPs 
can be excellent targets for drug design, including NsP-
12 (an RNA-dependent RNA-polymerase (RdRp)) and the 
NsP-13 (a helicase) (Canard et al. 2008). Furthermore, 
NsP-14 operates as an exonuclease, while NsP-15 is an 
endoribonuclease noted to modulate the host immune 
response (Yuen et al. 2020). Fascinatingly, the main pro-
tease (Mpro or 3CL) was observed to initiate apoptosis of 

human cells by activating caspase-3 and 9, in addition to 
inducing ROS and activating the NF-kB signaling (Lin 
et al. 2006).

Accessory proteins

In SARS-CoV-2, there are around eight accessory pro-
teins, including ORF3a, 3b, p6, 7a, 7b, 8b, 9b, and 10. 
The 8a protein can be found in the SARS-CoV structure 
but is absent in SARS-CoV-2 (Wu et al. 2020a, b, c). Nel-
son and colleagues found ORF8a and b in SARS-CoV-2 
as an untruncated protein (Nelson et al. 2020). On the 
other hand, ORF6 acts as an inhibitor of primary inter-
feron synthesis and signaling, which mediates the human 
immune response against infectious agents (Yuen et al. 
2020). Accessory proteins may vary between coronavi-
ruses, elucidating the difference in their pathogenicity (Li 
et al. 2020a, b). Moreover, reports have highlighted that 
accessory proteins associated with CoVs are accountable 
for evasion of the host immune system (Asrani et al. 2020).

Fig. 5   Protein sequence alignment. Here, we see the similarities of 
RBD between SARS-CoV-2, SARS-CoV, and MERS-CoV. Con-
served cysteine residues can be seen (colored cyan) and the amino 
acids needed for virus transmission and infection in SARS-CoV, 

Y442, L472, N479, and T487 (green), which equal to L455, F486, 
Q493, and N501 (magenta) in SARS-CoV-2. This sequence align-
ment was drawn by Clustal Omega service
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Life cycle of SARS‑CoV‑2

The first step of the virus infection is its penetration into 
the host cell by binding S protein with the ACE2 receptor 
on the human cell membrane. Subsequently, the S protein 
gets modified to enable viral fusion through the endoso-
mal membrane. RNA is generated and translated into two 
types of proteins, polyproteins pp1a and pp1ab, which 
produces a variety of subunits of the viral replicase/tran-
scriptase and accessory after proteolytic cleavage proteins. 
The viral polymerases lead to a complex of sub-genomic 
mRNAs by discontinuous transcription, which is finally 
translated into significant proteins. Eventually, genome 
RNAs and assembled virus particles are transported and 
released outside the cell through the endoplasmic reticu-
lum and Golgi network (Fig. 6) (Shereen et al. 2020). The 
strategy employed by the SARS-CoV-2 to enter the cell 
encompasses the virus’s spike glycoprotein binding to the 
host cell receptors using ACE2 and the cellular protease 
transmembrane protease serine 2 (TMPRSS2) (Djomkam 
et al. 2020). Based on Hoffmann and colleagues’ work 
(Hoffmann et al. 2020), the advertised TMPRSS2 inhibitor 
camostat mesylate was observed to block the entry of the 
SARS-CoV-2 virus into the host cell.

Variants of SARS‑CoV‑2

Previous studies highlighted that pathogenic viruses undergo 
mutations to adapt to their host by evading the immune sys-
tem and increasing their infectivity. During the initial phases 
of the pandemic, one study (Korber et al. 2020) informed 
the presence of 14 mutations associated with the S protein. 
Out of these 14 mutations, only one mutation (the D614G) 
proved to be essential in increasing the virus incidence and 
global spread (Korber et al. 2020). Another mutation identi-
fied as V367F was considered to increase the virus’s interac-
tions with the hACE2 receptor, thereby increasing the viral 
infectivity and entry (Ou et al. 2021). By the end of 2020, 
more than 4000 versions of SARS-CoV-2 have been identi-
fied across the globe. However, the most prominent variants 
carry mutations associated with the S protein, particularly 
the RBD, responsible for the main interactions between 
the virus and the human cells through the ACE2 recep-
tor. Table 2 summarizes the SARS-CoV-2 variants based 
on recent reports. The variants of SARS-CoV-2 have been 
isolated, identified, investigated, and studied. The analysis 
of these investigations shows that mutations related to the S 
protein enable the virus to resist the antibodies and enhance 
person-to-person transmission by approximately 40% to 70% 

Fig. 6   Illustrates the SARS-CoV-2 life cycle and the way the virus enters human cells and replicates itself. ACE2, angiotensin-converting 
enzyme 2; ER, endoplasmic reticulum; ERGIC, ER-Golgi intermediate compartment
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(Fontanet et al. 2021; Deng et al. 2021; Wise 2020; Tegally 
et al. 2020; Faria et al. 2021; West et al. 2021; Hodcroft et al. 
2021; Kirola 2021). For instance, according to the structural 
studies, the Q677 amino acid that mutated to histidine or 
proline in New Mexico and Louisiana variants lies within a 
flexible part of the S1/S2 cleavage site. The mutated residues 
stimulate cleavage located in the S1/S2 site, which is con-
sidered to provide the dynamic conformational changes that 
increase the interactions between the S protein and hACE2 
receptor (Tegally et al. 2020). The WHO group preferred 
using letters of the Greek alphabet for identifying the vari-
ants in a simple way (Table 2).

The power of coronaviruses

Coronaviruses are powerful infectious agents as they can 
jump between species and infect different cells (Tang et al. 
2015). The virus entry into the host cells is mediated by 
the S glycoprotein, which is believed to have both receptor 
binding and membrane fusion capabilities (Masters 2019). 
Furthermore, the virus utilizes various steps to infect human 
targeted cells, including proteolytic activation of the S pro-
tein with the help of host cell proteases, such as endoso-
mal cathepsins, cell surface transmembrane protease/serine 
(TMPRSS) proteases, furin, and trypsin (Millet and Whit-
taker 2014). Inhibition of these host-cell proteases has been 
reported to prevent the virus from entering the cells (Adedeji 
et al. 2013). Two cleavage sites are found within the S2 
domain of the spike protein (Fig. 7).

The first cleavage site occurs to separate the RBD and 
fusion domain (Bosch et al. 2003), while the second one 
occurs to expose the fusion peptide at S2, which attaches 
to the host cell membrane (Wrapp et al. 2020). The SARS-
CoV-2 is believed to utilize the human furin enzyme in 
entering host cells through a cleavage site in the junction 
of the S1/S2 domains. Furin is a member of the proprotein 
convertases (PC) family that can cleave single or paired 
basic amino acids within the motif R/K-(X)0,2,4,6-R/K 
(where X refers to any residue) (Seidah and Prat 2012). 
The favorable recognition site for the furin enzyme is the 

RXR/KR motif, which requires the furin binding pocket’s 
occupation with arginine residue at the P1 and P4 posi-
tions and lysine amino acid at P2 (Henrich et al. 2003). 
Moreover, studies have found that increasing the arginine 
content in penetration peptides enhances cellular uptake 
(Wender et al. 2000; Esbjörner et al. 2007). The pres-
ence of the furin-like site (RRAR) in the SARS-CoV-2 
S protein (Fig. 7) provides the virus with a 100–1000 
increased chance to penetrate through the host cell com-
pared to SARS-CoV, which lacks RRAR site (Cyranoski 
2020). Furthermore, SARS-CoV-2 possesses a 10–20 
times greater ability to bind the ACE2 receptor compared 
to SARS-CoV (Cantuti-Castelvetri et al. 2020), encour-
aging some researchers to explore the presence of a sec-
ond receptor utilized by SARS-CoV-2 to interact with the 
human cells (Cantuti-Castelvetri et al. 2020). Two recent 
published studies highlighted another host cell receptor 
known as neuropilin-1 (NRP1) that is typically expressed 
in a wide range of human tissues, including neurons, 
blood vessels, and respiratory epithelium cells. This new 
receptor necessitates a furin-cleaved substrate with a con-
served carboxyterminal sequence (RRAR) for its action. 
This peptide motif follows the C-end rule (CendR) when 
binding to NRP1 and NRP2 receptors, thereby increasing 
the SARS-CoV-2 entry and infectivity (Song et al. 2019; 
Cheng et al. 2019). Likewise, investigators have demon-
strated the presence of other human cell receptors that 
could be utilized by SARS-CoV to infect and enter into the 
host cells, including the dendritic cell-specific intercellular 
adhesion molecular-3-grabbing non-integrin (DC-SIGN) 
and/or liver/lymph node-SIGN (L-SIGN). However, their 
interactions with human cells differ from those of the 
ACE2 receptor (Vavougios 2020) and mutations around 
the S protein cleavage sites may impact cellular tropism 
and pathogenesis (Li et al. 2020a, b). The alignment of the 
SARS-CoV-2 S protein sequence with sequences obtained 
from SARS-CoV and SARS-like viruses revealed the pres-
ence of four amino acids upstream of the single arginine 
cleavage site 1 in SARS-CoV-2 that corresponds with a 
canonical furin-like cleavage site (Izaguirre 2019). This 
site could be inserted into the SARS-CoV-2 S protein 

Table 2   The SARS-CoV-2 
variants that spread globally, 
the detection place, and the 
emerging date (https://​www.​
who.​int/​en/​activ​ities/​track​
ing-​SARS-​CoV-2-​varia​nts/, 
accessed August 8, 2021)

SARS-CoV-2 variants and lineages Detection place Emerging date

Variant with double mutations (L452R and E484Q) 
B.1.617.1 (ϰ, delta) and B.1.617.2 (δ, kappa)

Maharashtra, India Mar 2021

(20C/S:452R) B.1.427/B.1.429 (ε, epsilon) California, USA Feb 2021
(20I/501Y.V1) B.1.17 (α, alpha) UK Mid-Dec 2020
(20H/501Y.V2) B.1.351 (β, beta) South Africa Dec 2020
(20 J/501Y.V3) P.1 (γ, gamma) Brazil Dec 2020
(E484K/S477N) B.1.526 (ι, Iota) New York, USA Late-Nov 2020
(20G/677H/P) B.1.2 New Mexico and Louisiana Aug and Oct 2020

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
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sequence through natural recombination and cleaved by 
furin enzyme during virus entry into the host cell (Izagu-
irre 2019). This study has analyzed the presence of a furin-
like cleavage site in the S protein of recently emerged cor-
onaviruses, SARS-CoV-2, SARS-CoV, and MERS-CoV, 
using the Clustal omega tool. The results confirmed its 
absence in SARS-CoV and its presence in the other two 
coronaviruses (Fig. 7). According to WHO, the SARS-
CoV epidemic infected approximately 8098 persons in 29 
countries and caused 916 (11.3%) deaths (Chan-Yeung and 
Xu 2003), while MERS-CoV spread in 27 countries and 
infected 2468 individuals from 2012/2013 to May 2019 
with 851 (35%) deaths (WHO 2019). These data show that 
MERS-CoV is more pathogenic than SARS-CoV, which 
can be explained by the presence of a furin-like cleav-
age site. Moreover, viral membrane components play a 
vital role in infection, viral entry, and the formation of 
multinucleated cells referred to as syncytia (Sanders et al. 
2021). Cholesterol is one of the significant crucial viral 
membrane contents found essential in the fusion process 
through a raft-independent mechanism where it creates 
synapse-like clusters with the human ACE2 receptor. 
Sanders and colleagues also noted the presence of unu-
sual membrane-proximal regions (aromatic, cysteine, 
hydrophobic, non-charged hydrophilic, and proline amino 

acids) of spike needed for fusion mechanism (Sanders 
et al. 2021).

Why do some patients have COVID‑19 
symptoms while others do not?

Some individuals who contract the SARS-CoV-2 and have a 
positive diagnosis are asymptomatic, i.e., they do not exhibit 
any symptoms and their health is not affected in any way. 
However, other patients exhibit a wide range of serious 
symptoms and may even die. It must be asked why the reac-
tion to the virus varies so much between individuals. Pollàn 
et al. (2020) found that between 21.9 and 35.8% of patients 
were asymptomatic, with this cohort representing between 
367,000 and 1,042,000 cases in Italy. It is interesting to 
note that five independent reports from different nations, 
the USA (Grifoni et al. 2020), Netherlands (Weiskopf et al. 
2020), Germany (Braun et al. 2020), Singapore (Le Bert 
et al. 2020), and the UK (Meckiff et al. 2020), found that 
individuals not suffering the infection still had SARS-CoV-
2-S specific T cells, which could be derived from memory 
T cells created by historic infections with the global coro-
navirus that causes the common cold. In different groups of 
people suffering SARS-CoV-2, 80% have no or only mild 

Fig. 7   Protein sequence alignment. This illustrates the cleavage sites 
that exist within S2 domain of spike protein in the three SARS-
CoVs. The initial cleavage separates the RBD and fusion domain and 

the next exposes the fusion protein. The furin-like site (colored red) 
appears in SARS-CoV-2 and MERS-CoV, but not in SARS-CoV. The 
figure was created using Clustal Omega
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symptoms, 15% have severe symptoms and require supple-
mentary oxygen, and 5% have critical symptoms requiring 
ventilation and other forms of invasive treatment (Rokni et al 
2020). Dong et al. (2020) reviewed 11 patients infected with 
COVID-19 who had responded in various ways to the virus 
and displayed a range of symptoms. Some of the patients 
had a mild case of the virus, with no pneumonia; others 
were suffering COVID-19 pneumonia but did not have any 
virus showing in their samples. Certain patients experienced 
standard cold symptoms for a short time, testing negative for 
SARS-CoV-2, but subsequently (within the next 14 days) 
returned positive tests; these patients are regarded as long-
term virus carriers and went on to experience moderate 
cases of COVID-19 pneumonia (Bai et al. 2020).

How can COVID‑19 be treated?

SARS‑CoV‑2 detection and COVID‑19 diagnosis

Because the spread of most of the COVID-19 population 
occurs without symptoms, identifying infected persons is 
difficult (Anderson et al 2020). The rapid spread of SARS-
CoV-2 necessitates the development of more rapid, simple, 
and sensitive detection methods. The RNA-dependent RNA 
polymerase (RdRP), N, E, and S proteins of the virus are 
encoded by genes that may be detected using reverse-tran-
scription PCR (RT-PCR) (Chan et al 2020).

Molecular diagnosis of COVID‑19

In molecular diagnosis, there are three primary aspects to 
consider: (1) reducing the number of false negatives by 
detecting small amounts of viral RNA; (2) avoiding the num-
ber of false positives by correctly identifying positive signals 
from different infections; (3) a high capacity for testing a 
large number of samples quickly and effectively (Caruana 
et al 2020). The quality and relevant abundance of RNA in 
collected samples are crucial for the sensitivity of molecular 
COVID-19 tests (Loeffelholz and Tang 2020). Moreover, 
the identification of SARS-CoV-2 genetic material (RNA) 
is used to diagnose COVID-19 at the molecular level (Carter 
et al 2020) and the detection of viral proteins is also impor-
tant in the diagnosis of COVID-19; however, it has not yet 
been used (Feng et al 2020).

SARS‑CoV‑2 genome‑based diagnostics

Now that the SARS-CoV-2 complete genome sequence has 
been given to public databases, researchers may find it eas-
ier to create primers and probes for COVID-19 diagnostic 
procedures. RT-PCR was the first approach for diagnosing 
COVID-19 (Corman et al 2020). Alternative exponential 

amplification procedures do not require thermal cycling and 
can be conducted at a single temperature. These approaches 
include isothermal nucleic acid amplification (IA), rolling 
circle amplification (RCA), recombinase polymerase ampli-
fication (RPA), exponential strand displacement amplifica-
tion (ESDA), and exponential amplification reaction (EAR) 
(Feng et al 2020). For detecting small amounts of nucleic 
acids, LAMP and RPA give equivalent sensitivity to PCR 
more than other techniques (Zhao et al 2015). To evade 
cross-reaction with other human coronaviruses and potential 
SARS-CoV-2, WHO advised detecting two distinct genes of 
the COVID-19 virus genome: one specific for SARS-CoV-2 
and the other nonspecific for detecting other CoVs (WHO 
2020a, b). RdRp is the most sensitive and effective target 
for detecting SARS-CoV-2, and its tests have been validated 
in numerous laboratories (Caruana et al 2020). Ishige et al. 
(2020) used three genes in the (rRT-PCR) assay for SARS-
CoV-2 RNA detection: the SARS-CoV-2 specific N gene, 
the Sarbecovirus specific E gene, and the human ABL1 gene 
as a control. Furthermore, Chan et al. (2020) suggested a 
new RT-PCR test based on the RdRp/Hel for identifying 
small amounts of SARS-CoV-2 in plasma and saliva swabs 
without interfering with the other viruses.

Detection of SARS‑CoV‑2 based on clustered regularly 
interspaced short palindromic repeats (CRISPR)

CRISPR-based approaches are now in use or have the poten-
tial to be used as a POC testing option for pathogens such as 
SARS-CoV-2. Researchers were enticed to design and con-
struct diagnosis and therapy programs that focus on effective 
CRISPR technology because of its speed, precision, specific-
ity, strength, efficiency, and diversity (Rahimi et al 2021). 
CRISPR COVID’s finding has been demonstrated to have 
similar specificity and sensitivity to RT-PCR and nucleic 
acid sequence analysis (Hou et al 2020). According to the 
Cas protein type and the nucleic acid (DNA or RNA) that 
works on it, the CRISPR system is categorized into two pri-
mary groups and six different types (Rahimi et al 2021). All-
In-One Dual CRISPR-Cas12a (AIOD-CRISPR) is a poten-
tial pathogen identification tool. When the Cas12a crRNA 
complex binds to the specific sequence, active Cas12a 
cleaves surrounding ssDNA, resulting in a fluorescence sig-
nal. Within 40 min, this test could identify low concentra-
tion (1.3 copies) of the N gene using real-time detection or 
visual method (Ding et al 2020). Another sensitive pathogen 
detection technique based on CRISPR and approved by the 
FDA as the first technique for SARS-CoV-2 and COVID-
19 identification is the Specific High Sensitivity Enzymatic 
Reporter UnLOCKing (SHERLOCK) (Gootenberg et al. 
2017). This type of tool was presented by Zhang et  al. 
(2020a, b) and takes less than an hour to complete. The DNA 
endonuclease targeted CRISPR trans reporter (DETECTR) 
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test is another detection method. It was created to perform 
the simultaneous reverse transcription and isothermal ampli-
fication of RNA taken from nasopharyngeal swabs using RT-
LAMP, followed by virus detection using Cas12 (Broughton 
et al 2020). Wang et al. (2020a, b, c) also created a CRISPR/
Cas12a-based technology (CRISPR/Cas12a-NER) that can 
be read with the naked eye, does not require a specialist 
device, completed in a short time (40 min), and can iden-
tify at least ten copies of a viral. In addition, Huang et al. 
(2020a, b) represented the CRISPR-FDS test using the same 
system (CRISPR/ Cas12a) and the reading was carried out 
using fluorescent plate readers. CREST is the term given to 
a CRISPR Cas13-based diagnostic technique (Cas13-based, 
rugged, equitable, scalable testing). It relies on readily avail-
able protein and fluorescent probes, making it a competitive 
and accessible detection method (Rauch et al. 2021). Cas13a 
direct detection assay is another technique based on Cas13a, 
amplification-free and using a smartphone for identifying 
SARS-CoV-2 in less than half an hour (Fozouni et al 2020). 
Furthermore, the Cellphone-Based Amplification-Free Sys-
tem with CRISPR/CAS-Dependent Enzymatic (CASCADE) 
test is based on the Cas12-mediated transcleavage of a cata-
lase: single-stranded DNA probe in response to the recogni-
tion of a specific nucleic acid target, such as SARS-CoV-2 
genomic RNA. This generates a gas signal, which is subse-
quently identified using a smartphone-specific application 
and camera (Silva et al 2021).

The use of CRISPR systems in molecular diagnostics and 
detection has developed, and Rahimi et al. (2021) and Gupta 
et al. (2021) have extensively described several CRISPR-
based diagnostic methods for identifying COVID-19.

Next‑generation sequencing (NGS) and SARS‑CoV‑2 
detection

Next-generation sequencing (NGS) is a technique used to 
analyze and sequence nucleic acids (DNA/RNA) and has 
made a big advancement in molecular biology. It is a fast, 
cheap, and scalable technique that allowed for investigating 
a wide range of biological research and studies that were 
previously impossible. In addition, the NGS can detect and 
recognize the identified viruses and/or undiscovered novel 
ones (Chiu 2013). This technique was used by Zhou and co-
workers to acquire viruses from seven patients with severe 
pneumonia, and full-length sequencing was performed 
on an RNA sample (Zhou et al 2020). Aynaud et al. also 
report “Systematic Parallel Analysis of RNA connected to 
Sequencing for COVID-19 screening” (C19-SPAR-Seq) that 
can analyze a huge number of infected individual samples 
in one run with a sensitivity of 91 to > 95% and a specificity 
of 100% (Aynaud et al 2021). In general, this technology 
is insufficient when quick analysis and results are needed 
compared to RT-PCR (Thorburn et al 2015).

COVID‑19 diagnosis using viral proteins

COVID-19 can be diagnosed using SARS-CoV-2 proteins 
like antigens or by looking for antibodies in the patient’s 
blood during a specific time frame that is produced in 
response to viral infection (To et al 2020). Cross-reactivity 
with various antibodies developed against SARS-CoV-2 
and other coronaviruses, on the other hand, is a problem. 
Antigen-detecting diagnostic tests have been developed as 
both laboratory-based tests and rapid diagnostic tests (RDTs) 
for POC (FIND 2020).

To describe the immunoglobulin (IgG) and (IgM) reac-
tions in patients, Jiang and colleagues created a SARS-
CoV-2 proteome microarray. IgM and IgG antibodies that 
detect and bind SARS-CoV-2 proteins were found in the 
samples (Jiang et al 2020). Also, Ju et al. (2020) described 
the identification of 206 RBD-specific monoclonal antibod-
ies (mAbs) found in eight SARS-CoV-2 patient samples. 
These mAbs neutralize SARS-CoV-2 and prevent the inter-
action of hACE2 with RBD, without cross-reactivity with 
SARS-CoV and/or MERS RBDs. In addition, Zhao et al. 
(2020a, b) employed ELISA works on a double antigen sand-
wich test for investigating the presence of IgM and IgG with 
99% sensitivity. Furthermore, FDA authorized lots of kits 
based on different approaches for emergency use that can be 
found in the market, as mentioned in Islam and Iqbal (2020). 
In addition, Murugan et al. (2020) developed a plasmonic 
fiber-optic absorbance biosensor (P-FAB) system lined with 
gold nanoparticles. It uses saliva samples for COVID-19 
diagnosis by determining the virus or its N protein directly 
in one step, low SARS-CoV-2 concentration, and limited 
sample preparation steps. In addition, antibody attachment 
on polyaniline or gold nanoparticle-coated fiber optics for 
specific detection of viral proteins in the samples would 
change the refractive index in the surrounding environment, 
resulting in a change in intensity of light or absorbance. To 
identify IgG/IgM in collected samples, viral capsid protein 
is also adsorbed on the optical fiber surface. The detection 
limit in such a situation, according to the researchers, was 
100 U/ml in 60 min (Nag et al 2020). Moreover, SARS-
CoV-2 RapidPlex is a revolutionary multiplexed, portable, 
electrochemical graphene-based platform for ultra-fast diag-
nosis of COVID-19. It detects N protein antigen, S1-IgG/
IgM, and C-reactive protein (CRP) within physiologically 
relevant ranges in both blood and saliva (Torrente-Rodríguez 
et al 2020).

Lateral flow assay (LFA)

LFA technology is important in POC testing since it is fast 
and inexpensive with a simple procedure that can be used 
by untrained individuals. It is divided into three types. The 
first type is lateral flow immunoassay (LFIA) for detecting 
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antibodies/antigens used by Xiang et al. (2020) for SARS-
CoV-2 detection. The second type which is nucleic acid lat-
eral flow assay (NLFA) detects nucleic acid using a DNA or 
RNA probe like SHERLOCK and AIOD-CRISPR protocols. 
The final one which is nucleic acid lateral flow immunoassay 
(NALFIA) uses both antibodies/antigens and nucleic acid as 
biomarkers (Antiochia 2021).

Nanotechnology and COVID‑19

Nanotechnology opens a slew of possibilities for develop-
ing or creating highly effective and beneficial disinfection 
systems. Unhygienic surfaces especially in public places 
such as schools, public transportation, and parks are famil-
iar sites for the outbreak of common infectious disease 
(Campos et al 2020; Dancer 2014). Surface coating made 
from nanomaterials has been proven to have the capability 
of avoiding various infections in numerous studies (Basak 
and Packirisamy 2020). Investigations that primarily dwell 
on nanotechnology for the creation of materials have opened 
new-fangled perceptions of having surfaces with inbuilt self-
cleaning properties (Querido et al 2019). The systems have 
antimicrobial activity fittings, which slowly emit chemical 
disinfectants while enhancing their active period. Further-
more, they may be engineered in certain ways to enhance 
their responsive features that help distribute active materials 
in response to various stimuli, for example, photocatalytic, 
electrothermal, photothermal, and other responses (Geyer 
et al 2020). Vaze et al. (2019) innovated nano-disinfect-
ants basing their craft on engineered water nanostructures 
(EWNS). The generation of these nano-based structures was 
through electro-spraying followed by an aqueous suspen-
sion ionization process of the various active ingredients. 
The created nanomaterials were examined on the H1N1 
influenza virus and they gave better outcomes in decreasing 
pathogen concentration. Some metallic nanoparticles espe-
cially silver nanoparticles have demonstrated enhanced or 
comprehensive action mechanisms against viruses as well 
as other microorganisms (Dyshlyuk et al 2020). Numerous 
companies are now using nanotechnology in their production 
processes; one of them, for example, used disinfectant for-
mulation based on silver and titanium dioxide nanoparticles. 
As stated by the company, their formulations permit self-
sterilization of surfaces and were recently applied at some 
point for cleaning various buildings in Milan during the 
COVID-19 pandemic (StatNano 2020a). Likewise, another 
company devised a new self-cleaning system that relies on 
crystal nanoparticles that are non-toxic system and produce 
no residues (StatNano 2020b).

When it comes to a viral outbreak, the frontline work-
ers, such as health workers, need proper protection. This 
is an area that requires vicious integration of antimicrobial 

technology with personal protective clothing to enhance 
healthcare workers’ safety and security (Coté et al 2020). 
Nanotechnologies offer novel materials that are resistant, 
comfortable as well as safe in terms of offering guard against 
chemical and biological risks (Yetisen et al 2016; Spagnol 
et al 2018). Medical or laboratory aprons, facemasks, and 
other medical wear are nanoengineered to offer new func-
tions, for example, antimicrobial activity and hydrophobicity 
without interfering with the fabric’s breathability and tex-
ture. Including hydrophobicity to a piece of a fabric involves 
using millions of miniature fibers called nanowhiskers, made 
from hydrocarbons that are three times smaller than typi-
cal cotton fiber. This enhances the fabric’s surface tension, 
inhibiting the absorption of liquid droplets. Some method-
ologies encompass nanoscale 3D structures on material sur-
faces coating them with hydrophobic nanoparticles (Yetisen 
et al 2016; Mansi et al 2019).

SARS‑CoV‑2 detection, diagnosis, and drug 
delivery systems–based nanotechnology

Nanotechnology can be used to develop sensors that can 
quickly detect SARS-CoV-2, greatly reducing the need 
for time-consuming conventional diagnostic testing. Gold 
nanoparticles, iron oxide nanoparticles, graphene, quantum 
dots, carbon quantum dots, and carbon nanotubes have all 
been investigated as potential sensors for the detection of 
SARS-CoV-2 (Xiang et al. 2020; Srivastava et al. 2021). 
Research is also ongoing into the potential of fabricating 
nanofiber masks as active filters for controlling airborne 
viruses (Tebyetekerwa et al. 2020). There is a potential for 
providing active protection against the virus by synthesiz-
ing nanoscale coating materials to be used on a range of 
personal protective equipment for medical personnel (Karim 
et al. 2020).

The techniques used in extracting viral RNA are like-
wise the focus of the application of nanotechnology in viral 
detection. Research has proven that magnetic nanoparticles 
lined with silica may be used to speedily extract RNA mol-
ecules from the virus in affected individuals for detection 
using the RT-PCR method (Zhao et al 2020a, b; Brazilchuck 
2020). This cuts the prolonged processes involved in RNA 
extraction and it also makes the technique very sensitive 
(Brazilchuck 2020). Different types of nanomaterials, such 
as quantum dots, carbon nanotubes, silica nanoparticles, 
polymeric nanoparticles, and metallic nanoparticles, are 
widely used for viral detection. During the development 
of these systems, nanoparticle surfaces are primarily cus-
tomized using biomolecules that are derived from the virus 
like peptide, antigen, antibody, RNA, or DNA (Draz and 
Shafiee 2018; Halfpenny and Wright 2010). Because nan-
oparticles have a high surface area to volume ratio, there 
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are more interactions between the sample and the sensors, 
which increase the limit of detection while decreasing the 
duration (Talebian et al 2020). In addition, utilizing hybrid 
systems which enable a combination of various biomol-
ecules stemming from viruses with nanoparticles allows 
for the development of sensitive sensors (Draz and Shafiee 
2018). Moitra et al. (2020) designed a selective technique 
that enhanced SARS-CoV-2 identification with bare eyes. 
The assays rely on thiol-improved antisense oligonucleotides 
(ASOs) coated on gold nanoparticles and are sensitive in 
detecting the N gene of SARS-CoV-2, detecting a positive 
case within 10 min. Moreover, Seo et al. (2020) fashioned a 
SARS-CoV-2 sensor that detected the virus without initial 
pre-treatment of samples by using graphene nanosheets fix-
ated with specific antibodies that act against the S protein. 
Samples from nasopharyngeal swabs having COVID-19 
and those from cultured virus and antigenic protein were 
used for device authentication. The device detected the S 
protein, known to be found in SARS-CoV-2 in miniature 
concentrations of about 1 fg/mL in saline buffered media. In 
addition, a detection limit of 2.42 × 102 copies/mL was real-
ized from the clinical samples. Currently, there are at least 
90 antiviral drugs approved for use against viral infections. 
However, water solubility and adverse effects are a problem 
for drug administration, preventing the effective use of the 
drugs (De Clercq and Li 2016). The many side effects due 
to the use of antiviral medications are due to their accumula-
tion, especially in the off-target tissues (Lembo et al 2018). 
Often drugs having nano-based carrier systems are very effi-
cient antiviral formulations that help lessen toxicity and side 
effects of the standard treatment of viral diseases. Also, it 
is likely to diminish the rate of resistance development by 
encapsulation of these nano-drugs (Lembo et al 2018; Singh 
et al 2017).

Nanomaterials are subject to alteration or modification 
to have or bear different functional groups on their sur-
faces which help them bond with specific receptors. These 
approaches are handy when blocking the target cell–virus 
contact. Nanoparticles are multifunctional and can operate 
as an antigen carrier as well as perform the role of an adju-
vant in various instances, hence becoming sufficient tools 
in releasing important compounds in targeted sites (Vijayan 
et al 2019). These structures may be developed to cross the 
cell membranes and, in the process, target exclusive sub-
cellular sites enhancing the possible development of nano-
based vaccines. Therefore, several materials have the profi-
ciency for developing nanocarriers, such as polysaccharides 
and polymers (Shin et al 2020). The lipidic nanoparticles 
used in the encapsulation of genes improve vaccine immu-
nological compliance by preserving the RNA or DNA from 
enzymatic action, which leads to degradation and increasing 
cell absorption, allowing the genetic substance to be dis-
charged into the target cell (Moon et al 2012).

Treatment of COVID‑19

Globally, scientists have been in a race against time to dis-
cover cures and vaccines for COVID-19 stemming from 
SARS-CoV-2, and these initiatives are ongoing. Govern-
ments have employed a variety of strategies to combat the 
disease and deal with patients. Several treatment proto-
cols have been created, which include the use of anti-viral 
medication such as lopinavir (Yao et al. 2020a, b), ribavirin 
(Falzarano et al. 2013), and remdesivir (Holshueet al. 2020). 
Lopinavir and ribavirin both suppress the viral proteins 
needed for the virus to replicate, while remdesivir targets 
the genome of the virus. In addition, chloroquine (Gao et al. 
2020), hydroxychloroquine (Yao et al. 2020a, b), and cor-
ticosteroids (Huang et al. 2020a, b) have been employed. 
Chinese physicians created novel protocols employing anti-
bodies (Tian et al. 2020) and convalescent plasma transfu-
sion (Ye et al. 2020).

Esparza et  al. (2020) researched nanobodies (NIH-
CoVnb-112) having a molecular weight of 12–15 kDa and 
a single-domain antibody fragment taken from llamas that 
had been immunized with S1 of spike protein. Such nano-
bodies have the capacity to bind with SARS-CoV-2 RBD, 
abolishing viral interactions with hACE2. In addition, they 
demonstrated a capacity for binding with several versions of 
S protein which prevents cell entry by virus’s variants. The 
researchers stated that producing these nanobodies was eco-
nomical in comparison to alternative vaccines or antibodies 
against SARS-CoV-2 (Esparza et al 2020).

Types of vaccines

Over recent years, technological and biotechnological 
developments have permitted the creation of vaccines and 
drugs using molecular biology. Such vaccines generally 
fall into three categories, as seen in Table 3 (WHO guid-
ance document 2021). Globally, several pharmaceutical 
companies and laboratories have been working to find safe 
workable vaccines against SARS-CoV-2. China was the 
first country to license a vaccine, as a result of being the 
frontline country in the pandemic; this vaccine was only 
used on Chinese military personnel. Moderna therapeu-
tics was one of the first major pharmaceutical companies 
to begin evaluations of the possibility of using their vac-
cine, mRNA-1273, with humans (Jackson et al. 2020). The 
vaccine is a non-replicating RNA vaccine resulting from 
collaboration with the NIH Vaccine Research Centre. It 
induces SARS-CoV-2 S protein in human bodies, stimu-
lating the immune system to produce anti-viral protein 
antibodies. As of February 2021, over 200 COVID-19 vac-
cines were being developed globally, with approximately 
110 being in clinical development. At present, there are 
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seven vaccines against COVID-19 being used around the 
world of different sorts, with others expected to be added. 
Table 4 shows the COVID-19 vaccines currently being 
used clinically (as of August 2021) (WHO guidance docu-
ment 2021).

COVID‑19 and the environment

Pollution, which is caused by human activities and modern 
lifestyles, has had an impact on environmental systems with 
common examples being water, air, soil, and food, reducing 
the human life expectancy and causing a variety of illnesses. 

Table 3   Different types of vaccines with descriptions and examples of each one (WHO newsroom 2021)

Vaccine type 1. Live virus and inactivated vaccine

Description Live virus vaccine depends on using a weakened live virus that caused the disease and manufacturing it in scale. 
In contrast, inactivated virus vaccine involves dead virus. These types of vaccines face safety issues

Examples Chickenpox, shingles, and measles are examples for vaccines containing live viruses while flu and polio are 
examples of inactivated virus vaccines

COVID-19 vaccines example: Inactivated virus vaccines for COVID-19 are InCoV, developed by Sinopharm/BIBP and another manufactured 
by Sinovac, both of them still in development. Vero Cell is developed by IMBCAMS, China and still under 
initial development

Vaccine type 2. Viral vector vaccines
Description This type depends on the engineering of a human safe and harmless virus that will serve as a vector to carry one 

or more of the pathogen-specific proteins. This virus is then injected into the body, which will trigger the host 
immune system to produce antibodies against the microbe. This type of vaccine is safer than the first one but 
has a problem with large-scale production

Examples Ebola vaccine
COVID-19 vaccines example Most SARS-CoV-2 vaccines are classified under this type. AZD1222, CoviShield, Ad26.COV2.S, Ad5-nCoV, 

and Sputnik V are examples of this vaccine section
Vaccine type 3. Nucleic acid vaccines
Description This is a new technique used in the production of vaccines and it was available before COVID-19 pandemic. The 

vaccine is designed according to one or more specific viral genes, which will then be injected into the human 
body to produce a specific protein(s) that will stimulate the immune system to synthesize new antibodies. This 
type has some limitations such as the complex delivery system, requiring high doses, and difficult procedure 
for preparing and producing

Examples Have not been used in human before 2020
COVID-19 vaccines example BNT162b2 developed by Pfizer Inc and BioNTech SE companies. Also, Moderna developed mRNA-1273 (Jack-

son et al. 2020)

Table 4   Some of the COVID-19 vaccines used currently in the globe (WHO Guidance document 2021)

Vaccine name Developer company Number of doses Efficiency Authorization and using date

Cansino Cansino Biologics and Beijing Institute of Biotech-
nology

1 dose 65.7% June 2020 in China

Covaxin Bharat Biotech, the Indian Council of Medical 
Research, and the National Institute of Virology

2 doses/4 weeks apart 81% June 2020 in India

Sinovac (Corona-Vac) Sinovac Biotech Chinese Company 2 doses/2 weeks apart 50.4–91% July 2020 in China
Sputnik V The Russia Ministry of Health’s Gamaleya 

Research Institute
2 doses/3 weeks apart 91.4% August 2020 in Russia

Sinopharm China National Pharmaceutical Group and the 
Beijing Institute of Biological Products

2 doses/3 weeks apart 79% Summer of 2020 in China

Pfizer-BioNTech American company Pfizer and German biotechnol-
ogy company BioNTech

2 doses/3 weeks apart 95% December 11, 2020 in the USA

Moderna Moderna Company and the National Institute of 
Allergy & Infectious diseases (NIAID)

2 doses/4 weeks apart 95% December 18, 2020 in the USA

Oxford-AstraZeneca Oxford University and pharmaceutical company 
AstraZeneca

2 doses/4 weeks apart 70% January 29, 2021 in the UK

Janssen Johnson & Johnson Company 1 dose 67–72% February 25, 2021 in Bahrain
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The COVID-19 pandemic has drawn the attention of inves-
tigators, scientists, and doctors to the links and interaction 
between infectious and non-communicable diseases. Conse-
quently, it is crucial to investigate the relationship between 
viral infections and environmental factors (Domínguez-
Amarillo et al 2020).

Air and COVID‑19

Before COVID-19, the world suffered from high levels of 
urban air pollution, primarily in the form of sulfur diox-
ide (SO2), carbon dioxide (CO2), nitrogen dioxide (NO2), 
and particle matter (PM). The biggest causes of pollution 
are transportation, industry, and power plants, which are all 
responsible for the rising output of toxic pollutants (Arora 
et al 2020). Furthermore, over the previous decade, CO2 
emissions increased by around 1% every year (Jackson et al 
2019). According to WHO research, air pollution is respon-
sible for over 8% of all deaths worldwide, and many respira-
tory disorders are already caused by it (WHO 2016). Various 
authorities worldwide have declared clean air programs to 
lower pollution levels for a long time (Arora et al 2020).

COVID-19 investigations in numerous countries, includ-
ing the USA (Zambrano-Monserrate et al 2020), northern 
Italy (Liang et al 2020), and Europe (Conticini et al 2020), 
have found connections linking mortality and air pollution. 
Cole and colleagues discovered a link between air pollutant 
concentrations, with a special focus on NO2, and COVID-19 
infectivity and mortality. A slight increase in air pollution is 
observed to result in a substantial rise in mortality rate and 
COVID-19 infectivity. For example, an increase of 1 g/m3 in 
the long-term average of PM25 was linked to a 12 and 15% 
rise in COVID-19 cases in England (Cole et al 2020) and in 
the USA, respectively. In addition, nitrogen dioxide stands 
out as a very reactive pollutant generated mostly through 
the combustion of fossil fuels, with traffic pollution being 
the primary source (He et al 2020a, 2020b). It is linked to a 
6.94% rise in daily COVID-19 confirmed case numbers in 
120 Chinese cities (Copat et al 2020). A recent study found 
a relationship between high pollution levels in Italy with a 
special focus on Veneto, Lombardy, and Emilia-Romagna 
and COVID-19 mortality (Conticini et al 2020).

Water and SARS‑CoV‑2

The persistence and survival of human CoVs or surrogates 
in the laboratory were studied and demonstrated to be sev-
eral days at 4 °C in the laboratory which is lower than non-
enveloped viruses. In addition, this type of virus is heavily 
impacted by temperature, organic or microbial contamina-
tion, and other factors. They have only been discovered in 
a few field experiments, which could be attributable to the 

analytical methodologies’ limited recovery effectiveness. 
Because there is so little information on human CoV in the 
environment, more studies are needed to understand how 
they behave in the water cycle (Carducci et al 2020). Some 
investigations demonstrated that the presence and survival 
of SARS-CoV-2 in wastewater is dependent on the param-
eters of this water (Carducci et al 2020). Surrogate corona-
viruses are mentioned as being contagious in sewage and 
water for a few days to weeks (Casanova et al 2009). Barcelo 
2020) reported that the half-life of SARS-CoV-2 in waste-
water is between 4.8 and 7.2 h. Several field experiments in 
different countries concentrated on a SARS-CoV-2 search 
in water samples in the early months of 2020, owing to an 
increased focus on the new coronavirus’s environmental 
circulation. In these investigations, samples were collected 
for various types of water: hospital wastewater at different 
phases of the sodium hypochlorite disinfection process in 
China (Wang et al 2020a, b, c); raw and processed waste-
water in France (Wurtzer et al 2020), in Italy (Rimoldi et al 
2020), and in the USA, Massachusetts (Wu et al 2020a, b, 
c) and Montana (Nemudryi et al 2020); sewage samples 
in the Netherlands (Medema et al 2020) and in Australia 
(Ahmed et al 2020). The viral RNA in the collected sam-
ples was isolated, analyzed using RT-qPCR, and sequenced. 
The findings, on one hand, showed positive results for the 
presence of SARS-CoV-2 in waste, sewage, and untreated 
water with a very low concentration of viral genome. On 
the other hand, there was insignificant detection of SARS-
CoV-2 RNA in treated or processed water samples. In addi-
tion, VERO E6 cells were employed to test SARS-CoV-2 
infectivity in water samples collected in Italy, which were 
measured daily using a reverse-phase light microscope to 
look for cytopathic effects (CPE). The findings showed that 
the virus is not able to infect these cells. More recently, from 
August 2020 to February 2021, Israel (Bar-Or et al 2021) 
collected nine wastewater samples from various locations, 
regions, and catchment populations once a month. SARS-
CoV-2 RNA was detected in the samples, which were ana-
lyzed and sequenced. Positive detection and penetration of 
the B.1.1.7 (UK) strain into Israel is expected in December 
2020, according to the findings.

COVID‑19 improved the environment 
conditions

COVID-19 had a positive effect on the environment that 
allows us to say it is the biggest beneficiary from the pan-
demic. When SARS-CoV-2 spread rapidly in China, the 
authorities put the entire country on lockdown to control 
the transmission of the virus and relieve the strain on health-
care services (Wilder-Smith and Freedman 2020). They 
shut down public transportation, educational institutions, 
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businesses, manufacturing plants, parks, and other social 
gathering places. By the end of March 2020, most coun-
tries were under some type of lockdown (Tosepu et al 2020). 
Government’s regulations have both beneficial and negative 
indirect environmental consequences as discussed in the fol-
lowing sections.

Pollution of the air

The impact of the partial shutdown on global air pollu-
tion levels has been investigated. Several studies found a 
significant reduction in air pollution. In the last 30 days 
(March–April 2020), steps to restrict SARS-CoV-2 reduced 
the NO2 and PM levels by 40 and 10%, respectively, and 
saved 11,000 deaths by air pollution, as reported by the Cen-
tre for Research on Energy and Clean Air (CREA) (Myl-
lyvirta and Thieriot 2020). The city of Rio de Janeiro’s air 
quality revealed considerable reductions in carbon monoxide 
(CO) levels (30.3–48.5%) and NO2. PM10 (particulate matter 
with a diameter of 10 µm) levels were lowered in just the 
first week of the shutdown (Dantas et al 2020), compared 
to what was seen in China (Liu et al 2020), Italy (Conticini 
et al 2020), Spain (Tob´ias et al. 2020), and other parts of 
the world. Furthermore, the National Aeronautics and Space 
Administration (NASA) and the European Space Agency 
(ESA) acquired data using the AURA and Sentinel-5P satel-
lites, respectively. Satellite photographs of some countries 
and cities around the world before and after the lockdown 
show that environmental quality has improved and that NO2 
emissions have decreased by up to 30% because of COVID-
19 (Muhammad et al 2020). Daily worldwide CO2 emissions 
were 17% lower in April 2020 than in April 2019, but levels 
rebounded once limits were lifted (Le Quéré et al 2020). 
According to a recent projection from the Worldwide Carbon 
Project, global CO2 emissions from fossil fuels and industry 
will decrease by 7% during 2020 (Global Carbon Project 
2020). Moreover, in Fortaleza, O3 levels in the air were 
reduced by 50% (Report 21 2020). Four air quality testing 
stations in the city of São Paulo revealed significant reduc-
tions in NO, NO2, and CO concentrations by 77.3%, 54.3%, 
and 64.8%, respectively, in respect to the 5-year monthly 
average (Nakada and Urban 2020).

Beaches and rivers

Seaside landforms or beaches are considered as one of 
the beautiful natural resource areas (Zambrano-Monser-
rate et al 2020). However, people’s irresponsible behav-
ior has resulted in pollution issues at numerous beaches 
across the world (Partelow et al 2015). The lack of peo-
ple owing to the current coronavirus outbreak has altered 
the appearance of several beaches globally. These places 
appear cleaner and have clear crystal blue waters during 

the lockdown period. In addition, the surface water qual-
ity of some rivers like the Ganga river has significantly 
improved in recent months. After the lockdown, the indus-
tries were halted, and much of the industrial effluent that 
was dumped into these rivers was also stopped (Muduli 
et al 2021). In addition, because there was less untreated 
or partially treated wastewater injected, the aquatic bodies 
were less polluted (Ormaza-González et al 2021). It can 
be said that the world’s oceans, rivers, and streams are 
once again becoming clear and alive during the shutdown 
period.

Wildlife and the degree of noise

Vehicles, trains and metro stations, commercial shipping, 
traffic noise, and industrials are all causes of noise pol-
lution. COVID-19 also influenced noise pollution, which 
was found to be decreased by up to 40% during the lock-
down period, and pollution generated by human activity 
was also dramatically reduced (Arora et al 2020). Moreo-
ver, animals were also provided locations that were nor-
mally occupied by humans and their activities, so many 
animals were seen around and in the spotlight during the 
coronavirus outbreak (Arora et al 2020).

COVID‑19’s harmful effects 
on the environment

The lockdown, on the other hand, has detrimental indirect 
effects on the environment. During the global lockdown, 
organic, inorganic, and medical wastes all increased. 
There has been a surge in garbage from personal protec-
tion equipment (PPE) such as masks and gloves, which are 
commonly required, particularly in large countries such 
as China and the USA (Adyel 2020). In addition, recy-
cling, which is a popular and successful method of reduc-
ing pollution, conserving energy, and conserving natural 
resources (Ma et al 2019), has been restricted in some 
countries and cities globally. As a result of the epidemic, 
certain countries, such as the USA, restricted recycling 
activities in some of their cities, citing concerns about 
COVID-19 spreading through recycling facilities. Further-
more, waste management has been restricted in some of 
the worst-affected European countries (Staub 2020).

While there is evidence that environmental factors such 
as pollution and climate change may aid viral spread, fur-
ther studies are needed to improve the detection and pre-
vention methodology, systems, and tools for public health 
risk management (Travaglio et al. 2021).
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Conclusion

For the last 2 years (2019–2021), the global population has 
been suffering from COVID-19 created by the novel SARS-
CoV-2. In this review, we summarized the relevant infor-
mation about the new human coronavirus (SARS-CoN-2) 
which include the virus identity, where it spread for the first 
time, and how it can infect people. In addition, the diagnos-
tic strategies that have been used or developed to detect the 
virus and its disease (COVID-19) are discussed. Scientists 
have developed new methods and techniques for detecting 
SARS-CoV-2 in its early stage of infection and to stop its 
transmission. The molecular diagnosis based on the viral 
genome and proteome is a more rapid, simple, and sensitive 
detection method. Moreover, nanotechnology technique was 
applied for creating highly effective and beneficial disin-
fection systems, developing sensors that can quickly detect 
SARS-CoV-2 and generating materials or particles to cross 
the cell membranes and target exclusive subcellular sites. 
There are several evidence from various countries around 
the world that confirmed, on one hand, the negative effect 
of environmental pollution on the spread and mortality of 
COVID-19, and, on the other hand, the positive impact of 
the lockdown due to the COVID-19 pandemic on environ-
mental sources including air, water, and soil. A significant 
reduction in gaseous pollutants such as CO, CO2, NO, NO2, 
SO2, PM10, and PM2.5 produced through industrial produc-
tion and traffic was reported in China, the USA, France, 
Italy, Spain, Brazil, and other countries in the globe, and 
an improvement in the water quality was also noticed. Fur-
thermore, animals were also provided locations that were 
normally occupied by humans and their activities, so many 
animals were seen around and in the spotlight during the 
coronavirus outbreak. It has been found that COVID-19 also 
influenced noise pollution, which was dramatically reduced 
by up to 40% during the curfew. Finally, we can say that 
lockdown period was a great chance for the environment to 
reduce pollution and for the earth to start breathing again.

Although an enormous amount of research has been 
carried out into the pandemic, there are still requirements 
for more research and data analysis. Scientists have been 
working globally to develop new biotechnology method-
ologies to help find new diagnostic techniques, therapies, 
and vaccines against COVID-19. To reduce the possibility 
that the virus will mutate and cause more waves of infec-
tion, it is essential that clinicians can rapidly and accu-
rately diagnose the presence of the virus, that vaccines 
should be fairly shared around the world, and that public 
health measures such as hand washing, social distancing, 
and wearing face masks should be maintained.

It is worth noting that COVID-19 data are constantly 
being updated as more research is published. Additional 

studies may change some of the specifics contained in this 
review. Furthermore, some manuscripts mentioned in ref-
erences are preprints and have not yet been peer reviewed.
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