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Abstract
Global warming caused by  CO2 emissions will directly harm the health and quality of life of people. Accurate prediction 
of  CO2 emissions is highly important for policy-makers to formulate scientific and reasonable low-carbon environmental 
protection policies. To accurately predict the  CO2 emissions of the world’s major economies, this paper proposes a new 
fractional grey Bernoulli model (FGBM(1,1,t�)). First, this paper introduces the modeling mechanism and characteristics of 
the FGBM(1,1,t� ) model. The new model can be transformed into other grey prediction models through parameter adjust-
ment, so the new model exhibits high adaptability. Second, this paper employs four carbon emission datasets to establish a 
grey prediction model, calculates model parameters with three optimization algorithms, adopts two evaluation criteria to 
evaluate the accuracy of the model results, and selects the optimization algorithm and model results that yield the highest 
model accuracy, which verifies that the FGBM(1,1,t� ) model is more feasible and effective than the other six grey models. 
Finally, this paper applies the FGBM(1,1,t� ) model to predict the  CO2 emissions of the USA, India, Asia Pacific, and the 
world over the next 5 years. The forecast results reveal that from 2020 to 2024, the  CO2 emissions of India, the Asia Pacific 
region, and the world will gradually rise, but that in USA will slowly decline over the next 5 years.

Keywords CO2 emissions · Grey Bernoulli model · Grey wolf optimizer · Particle swarm optimizer · Quantum genetic 
algorithm · Forecasting

Nomenclature
r-AGO  order accumulative generation operator
r-IAGOr  order inverse accumulative generation 

operator
NGM (1,1)  Nonhomogeneous grey model
SIGM  Self-adaptive intelligence grey model
GMP  Grey polynomial model
GM (1,1,t�)  Grey model with time power term
FGM (1,1)  Fractional grey model
NGBM (1,1,k,c)  Nonhomogeneous grey Bernoulli 

model with a grey action quantity of 
bt + c

GWO  Grey wolf optimization

PSO  Particle swarm optimization
QGA  Quantum genetic algorithm
MAPE  Mean absolute percentage error
MAE  Mean absolute error

Introduction

Global warming caused by the greenhouse effect is one 
of the factors that seriously threatens human survival and 
development, and the increase in  CO2 emissions is consid-
ered the main cause of the greenhouse effect. According 
to the Global Climate 2015–2019 report released by the 
World Meteorological Organization, the growth rate of 
 CO2 in the atmosphere from 2015 to 2019 was 18% higher 
than that during the previous 5 years, and the average tem-
perature was 0.2 °C higher than that during the previous 
5 years. Hence, this period encompasses the hottest 5 years 
on record. British Petroleum (BP) World Energy Statistics 
(2020) indicated that in 2019, the global  CO2 emissions 
reached 34,169 million tons. Among the various coun-
tries, the USA and India rank second and third worldwide, 
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respectively, in terms of their  CO2 emissions, and the total 
 CO2 emissions of these two countries account for 21.8% 
of the world emissions. The Asia Pacific region accounts 
for 50.5% of the global  CO2 emissions. Upon entering the 
twenty-first century, the growth of global  CO2 emissions is 
soaring. Thus, from 2009 to 2019, the  CO2 emissions in the 
USA basically remained at approximately 5000 MT, reveal-
ing a trend of continuous fluctuation. The  CO2 emissions in 
India grew the fastest, by 55.4%. The growth rate of the  CO2 
emissions in the Asia Pacific region reached 30.4%, which 
is also one of the fastest growing economies in the world. 
From the perspective of global  CO2 emissions, although the 
growth rate is not high, with an average annual growth rate 
of 1.1%,  CO2 emissions remain on the rise. To achieve the 
target of the Paris Agreement, more than 20 countries put 
forward carbon neutrality goals at the 2020 Climate Ambi-
tion Summit, and more than 40 countries established new 
commitments to independently improve national contribu-
tions. Therefore, accurate prediction of future  CO2 emission 
data of the USA, India, Asia Pacific region, and the world 
can help policy-makers formulate more scientific and rea-
sonable environmental policies to truly achieve the goal of 
carbon emission reduction.

The existing models for  CO2 emission forecast can be 
classified into three categories. The first category includes 
nonlinear intelligent models, such as the least squares sup-
port vector machine (Sun and Liu 2016), extreme learning 
machine (Sun and Sun 2017), generalized regression neu-
ral network (Heydari et al. 2019); and improved chicken 
swarm optimization (ICSO-SVM) model using the ICSO 
algorithm to optimize support vector machine parameters 
(Wen and Cao 2020). The second category involves the 
statistical analysis model, which studies the quantita-
tive relationship between  CO2 emissions and influencing 
factors and applies the relationship equation to predict 
 CO2 emissions. These approaches include trend analy-
sis (Köne and Büke 2010), logistic equations (Meng and 
Niu 2011), improved Gaussian process regression (Fang 
et al. 2018), panel quantile regression (Zhu et al. 2018), 
log-average decomposition index (Xu et al. 2019), and 
comprehensive methods combining multiple regression 
analysis, input–output techniques, and structural decom-
position analysis (Xia et al. 2019). The last category is 
the grey prediction model, which was first proposed by 
Deng (1982). The grey prediction model was established 
founded on a small amount of incomplete information to 
describe the development trend of objects more accurately. 
Compared to machine learning–based and statistical pre-
diction methods founded on large data samples, the grey 
prediction model can realize the simulation and prediction 
of small data samples. The classical grey model GM(1,1) 
and its extended grey prediction model are widely used in 

the fields of energy, environment, and social management 
(Tsai 2016; Liu et al. 2020; Liu et al. 2021a; Wang et al. 
2020b; Liu et al. 2021b).

There are two main kinds of grey single-variable fore-
casting models: the first-order grey differential model 
GM(1,1) and the grey Bernoulli model GBM(1,1). Deng 
first proposed the GBM(1,1) model in 1985; namely, a 
power exponent was introduced into the differential Ber-
noulli equation. When the exponent is equal to 2, the 
model is also referred to as the grey Verhulst model. Chen 
et al. (2008) proposed the nonlinear grey Bernoulli model 
NGBM(1,1) for the first time. Compared to the general 
GM(1,1) model, the NGBM(1,1) model can better reflect 
the nonlinear growth trend of data series. Chen et al. (2010) 
proposed a new grey prediction model NGBM(1,1), by 
optimizing the background value and power index simul-
taneously. Subsequently, many scholars improved the 
NGBM(1,1) model from different perspectives; e.g., Pao 
et al. (2012) proposed an iterative method to optimize the 
parameters of the NGBM(1,1) model. Wang (2017) opti-
mized the background coefficient and initial conditions 
and considered the weighted method in analysis. Guo et al. 
(2016) proposed a new model by combining the self-mem-
ory principle of a dynamic system with the NGBM(1,1) 
model. Ma et al. (2019) constructed the NGBM(1, n) model 
by combining the GMC(1, n) model and Bernoulli equation. 
Wu et al. (2019b) extended the first-order accumulation 
operation and established the FANGBM(1,1) model based 
on fractional accumulation. Liu and Xie (2019) proposed 
the establishment of the WBGM(1,1) model by combining 
the fitting performance of the NGBM(1,1) model with the 
Weibull cumulative distribution. Şahin (2020) proposed the 
OFANGBM(1,1) model based on the integral mean value 
theorem. Wu et al. (2020a) established the NGBM(1,1, k, 
c) model by combining the NGM(1,1, k, c) model with the 
NGBM(1,1) model. Jiang and Wu (2021) constructed a non-
linear grey Bernoulli model based on the fractional order 
reverse accumulation, namely, the FANGBM(1,1) model. 
At present, a simpler and more convenient conformable 
fractional cumulative grey model (CFGM) was proposed 
(Ma et al., 2020). On this basis, Xie et al. (2020) proposed 
the conformable fractional grey model in opposite direction 
(CFGOM). Zheng et al. (2021) proposed the conformable 
fractional nonhomogeneous Bernoulli model (CFNHGBM 
(1,1, K)).

The grey prediction model is widely implemented in 
 CO2 emission prediction. Lin et al. (2011) applied the 
grey model to predict  CO2 emissions in Taiwan. Pao 
et al. (2012) used the NGBM model to predict the  CO2 
emissions and real GDP growth of China. Lotfall et al. 
(2013) forecast  CO2 emissions based on a grey model and 
an autoregressive integrated moving average (ARIMA) 
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model. The prediction accuracy of these two methods 
was compared according to the root mean square error 
(RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE). Gao et al. (2015) established 
a new discrete fractional order cumulation model, i.e., 
FAGM(1,1, D), to predict  CO2 emissions. Hamzacebi and 
Karakurt (2015) used the grey prediction model to predict 
the energy-related  CO2 emissions in Turkey. Yuan et al. 
(2017) established a linear programming model reflect-
ing the relationship between the economic development 
and  CO2 emissions in China and employed the GM(1,1) 
model to predict the parameters of the planning model. 
Wang and Ye (2017) developed a nonlinear multivariable 
grey model to discuss the relationship between economic 
growth and  CO2 emissions. Xu et al. (2019) combined 
an adaptive grey model with the buffer rolling method to 
predict the greenhouse gas emissions in China from 2017 
to 2025. Wang and Li (2019) adopted the nonequidistant 
grey Verhulst model to analyze the relationship between 
 CO2 emissions and economic growth. Wu et al. (2020b) 
implemented a conformable fractional nonhomogene-
ous grey model to predict the  CO2 emissions of BRICS 
countries. Chiu et al. (2020) proposed a multivariate grey 
prediction model using neural networks based on feature 
selection and residual correction to predict China’s car-
bon emissions. Based on the grey Verhulst model, Duan 
and Luo (2020) introduced an extrapolation method to 
optimize the background value and predicted the  CO2 
emissions for three coal resources in China. Wang et al. 
(2020a) established the metabolic nonlinear grey model 
(MNGM)-ARIMA method, established a new MNGM-
BPNN combination model based on the MNGM model 
and back-propagation (BP) neural network and analyzed 
the  CO2 emissions in China, the USA, and India with these 
two methods. Zhou et al. (2021) proposed a method to pro-
cess original sequence data by means of an average weak-
ening buffer operator based on the grey rolling mechanism 
of the new information priority principle and predicted the 
trend of  CO2 emissions in China. Xie et al. (2021) estab-
lished a new continuous conformable fractional nonlinear 
grey Bernoulli model to forecast  CO2 emissions from fuel 
combustion in China.

Scholars have greatly promoted the optimization 
and application of grey models. However, although 
the existing studies have optimized the grey model 
considering the structure or parameters, each optimization 
method only improves the model performance to a certain 
extent, and the accuracy remains insufficient. In addition, 
most models only apply one optimization algorithm to 
determine the optimal parameters, and research on the 
application of multiple optimization algorithms is rare. 
Therefore, to better predict carbon emissions, based on 

the optimization of existing models, namely, NGBM(1,1) 
and FAGM(1,1,t� ) (Wu et al. 2019a), this paper proposes 
a new grey prediction model FGBM(1,1,t� ) and considers 
a variety of optimization algorithms to determine the 
optimal structural parameters of the model. The main 
contributions of this paper are as follows:

 (1). Based on the advantages of the grey Bernoulli predic-
tion model NGBM(1,1) and FAGM(1,1, t� ), a new 
model, i.e., FGBM(1,1,t� ), is proposed. The new 
model can be transformed into other grey prediction 
models by changing its parameters.

 (2). In the FAGM(1,1,t� ) model, application of the trap-
ezoidal integral method to obtain an approximate 
solution yields errors, but this paper provides an ana-
lytical solution of the time response function in the 
FGBM(1,1,t� ) model, and the result is more accurate.

 (3). Grey wolf optimization (GWO), particle swarm 
optimization (PSO), and quantum genetic algorithm 
(QGA) are applied to solve the parameters of the 
FGBM(1,1,t� ) model.

 (4). The FGBM(1,1,t� ) model is used to predict the  CO2 
emissions of four countries and regions over the next 
5 years.

This paper is organized as follows: the second section 
first introduces the basic theory of the NGBM(1,1) and 
FAGM(1,1,t� ) models. Second, a new grey prediction 
model FGBM(1,1,t� ) is constructed, which mainly 
includes the modeling mechanism, model characteristics, 
and solution method. Then, three common optimization 
algorithms (GWO, PSO, and QGA) are employed to solve 
the parameters of the FGBM(1,1,t� ) model, and two widely 
adopted error measures are introduced. The third section 
considers the  CO2 emission data of four economies to 
verify the feasibility and effectiveness of the FGBM(1,1,t� ) 
model. The fourth section applies the FGBM(1,1,t� ) model 
to predict the  CO2 emissions of the USA, India, Asia Pacific 
region and the world over the next five years. The fifth 
section contains the conclusion of this paper.

Prerequisite knowledge

Grey Bernoulli model NGBM(1,1) and FAGM(1,1,t˛)

This section mainly introduces the grey Bernoulli model 
NGBM(1,1) and the FAGM(1,1,t� ) model as follows:

Definition 1: Given a nonnegative sequence 
X(0) = {x(0)(1), x(0)(2),⋯ , x(0)(n)}  , 
X(1) = {x(1)(1), x(1)(2),… , x(1)(n)} is referred to as the first-
o rde r  genera t ing  sequence  o f  X(0)  ,  where 
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x(1)(k) =
k∑

i=1

x(0)(i), k = 1, 2,⋯ n . Based on Chen et al. (2008), 

it can be found that the expression of NGBM(1,1) is:

The above is a nonlinear equation, and the exponent expo-
nent � ≠ 1.

The parameters a, b of the NGBM(1,1) model are calcu-
lated as follows:

w h e r e  Z(1) =
(
z(1)(2), z(1)(3),… , z(1)(n)

)
 , 

z(1)(k) = 0.5x(1)(k − 1) + 0.5x(1)(k), k = 2, 3,… , n , and n is 
the sample number of the modeling sequence.

The time response function of the NGBM(1,1) model is 
as follows:

The predicted values of the model are as follows:

Definition 2: Given a nonnegative sequence 
X(0) = {x(0)(1), x(0)(2),⋯ , x(0)(n)}, r ∈ R+  , 
and i ts  r - th order accumulat ion sequence is 
X(r) = {x(r)(1), x(r)(2),… , x(r)(n)} (Wu et al, (2013). Denoted 
as matrix Ar , the r-AGO matrix that satisfies X(r) = ArX(0) is:

with 
⎡⎢⎢⎣
r

i

⎤⎥⎥⎦
=

r(r+1)⋯(r+i−1)

i!
=

⎛⎜⎜⎝
r + i − 1

i

⎞⎟⎟⎠
=

(r+i−1)!

i!(r−1)!
,

⎡⎢⎢⎣
0

i

⎤⎥⎥⎦
= 0,

⎡⎢⎢⎣
0

0

⎤⎥⎥⎦
=

⎛⎜⎜⎝
0

0

⎞⎟⎟⎠
= 1.

Denoted as matrix Dr , the r-IAGO matrix that satisfies 
X(0) = DrX(r) is:

(1)dx(1)(t)

dt
+ ax(1)(t) = b(x(1)(t))�

(2)(a, b)T =
(
BTB

)−1
BTY

B =

⎛
⎜⎜⎜⎝

−z(1)(2)
�
z(1)(2)

�
�

−z(1)(3)
�
z(1)(3)

�
�

⋮ ⋮

−z(1)(n)
�
z(1)(n)

�
�

⎞
⎟⎟⎟⎠
, Y =

⎛
⎜⎜⎜⎝

x(0)(2)

x(0)(3)

⋮

x(0)(n)

⎞
⎟⎟⎟⎠

(3)
x̂(1)(k) = {[(x(0)(1))1−𝛾 −

b

a
] ⋅ e−a(1−𝛾)(k−1) +

b

a
}

1

1−𝛾 , k = 2, 3,⋯ n

(4)x̂(0)(k) = x̂(1)(k) − x̂(1)(k − 1), k = 2, 3,⋯ n

(5)Ar =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
r

0

�
0 0 ⋯ 0

�
r

1

� �
r

0

�
0 ⋯ 0

�
r

2

� �
r

1

� �
r

0

�
⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮�
r

n − 1

� �
r

n − 2

� �
r

n − 3

�
⋯

�
r

0

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

with: 
⎡
⎢⎢⎣
−r

i

⎤⎥⎥⎦
=

−r(−r+1)⋯(−r+i−1)

i!
= (−1)i

r(r−1)⋯(r−i+1)

i!
,

⎡⎢⎢⎣
−r

i

⎤⎥⎥⎦
= 0, i > r.

Matrices Ar and Dr satisfy ArDr = In.
The whitening differential equation of the FAGM(1,1,t� ) 

model is:

Applying integration to Eq. (7) in the time interval of 
[k − 1, k], we obtain:

B a s e d  o n  t h e  t r a p e z o i d  e q u a t i o n  a n d 
z(r)(k) = 0.5x(r)(k − 1) + 0.5x(r)(k), k = 2, 3,… , n,

Equation (8) is written as:

Based on Eq.  (9), unknown parameters a, b, c of 
FAGM(1,1,t� ) satisfy:

The time response function of the FAGM(1,1,t� ) model 
is:

Moreover, the restored value of x̂(0)(k), k = 2, 3,… , n is 
given as: X̂(0) = DrX̂(r).

(6)Dr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
−r

0

�
0 0 ⋯ 0

�
−r

1

� �
−r

0

�
0 ⋯ 0

�
−r

2

� �
−r

1

� �
−r

0

�
⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮�
−r

n − 1

� �
−r

n − 2

� �
−r

n − 3

�
⋯

�
−r

0

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

(7)dx(r)(t)

dt
+ ax(r)(t) = bt𝛼 + c, r > 0, 𝛼 ≥ 0

(8)∫ k

k−1

dx(r)(t)

dt
dt + a ∫ k

k−1
x(r)(t)dt = b ∫ k

k−1
t�dt + c ∫ k

k−1
dt

(9)x(r)(k) − x(r)(k − 1) + az(r)(k) = b
k1+� − (k − 1)1+�

1 + �

+ c

(10)(â, b̂, ĉ)T =
(
BTB

)−1
BTY

(11)

B =

⎛⎜⎜⎜⎜⎝

−z(r)(2)
21+�−1

1+�
1

−z(r)(3)
31+�−21+�

1+�
1

⋮ ⋮ ⋮

−z(r)(n)
n1+�−(n−1)1+�

1+�
1

⎞⎟⎟⎟⎟⎠
, Y =

⎛
⎜⎜⎜⎝

x(r)(2) − x(r)(1)

x(r)(3) − x(r)(2)

⋮

x(r)(n) − x(r)(n − 1)

⎞⎟⎟⎟⎠

(12)

x̂
(r)(t) = e

−ât

�
x
(0)(1)eâ + b̂ ∫ t

1
s
𝛼
e
âs
ds +

ĉ

â

�
e
ât − e

â
��

=

�
x
(0)(1) −

ĉ

â

�
e
−â(t−1) + b̂e

−â(t−1) ∫ t

1
s
𝛼
e
â(s−1)

ds +
ĉ

â

=

�
x
(0)(1) −

ĉ

â

�
e
−â(t−1) +

b̂

2
e
−â(t−1)

t−1∑
i=1

�
i
𝛼
e
â(i−1) + (i + 1)𝛼eâi

�
+

ĉ

â
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Description of the FGBM(1,1,t˛)

The expression of the FGBM(1,1,t� ) model is as follows:

(13)dx(r)(t)

dt
+ ax(r)(t) = (bt� + c)(x(r)(t))�

where 0 ≤ r ≤ 1, 0 ≤ � ≤ 4, 0 ≤ � ≤ 3, � ≠ 1.
Theorem 1. The time response function of FGBM (1,1,t� ) 

is derived as:

The reduction value of x̂(r)(k) is x̂(0)(k),

Proof, Multiplying both sides of Eq. (13) by x(r)(t)−� . Let 
y(r) = [x(r)(t)]1−� , one can obtain:

L e t  t h e  l e f t  s i d e  o f  E q .   ( 1 3 )  b e  0 , 
a(1 − �) = a�, b(1 − �) = b�, c(1 − �) = c�,we can get:

(14)x(r)(k) =
{
(
[
x(0)(1)

] 1−�
−

c�

a�
)e−a

�(k−1) +
c�

a�
+ b�e−a

�(k−1) ∫
k

1

�
�ea

�(�−1) d�}
1

1−� , k = 1, 2, 3⋯ , n

(15)x̂(0)(k) = Drx̂(r)(k), k = 1, 2, 3,⋯ , n

(16)
dy(r)(t)

dt
+ a(1 − �)y(r)(t) = (bt� + c)(1 − �)

The general solution formula of the equation is as follows:

To perform the definite integral on interval [1, t] , we know 
that:

(17)
dy(r)(t)

dt
+ a(1 − �)y(r)(t) =

dy(r)(t)

dt
+ a�y(r)(t) = 0

(18)y(r)(t) = Ce−a
�t

(19)
dC(t)

dt
= ea

�t(b�t� + c�)

(20)C(t) = ∫ (b�t� + c)ea
�tdt = C(1) + ∫

t

1

(b��� + c)ea
�
�d� = C(1) + b� ∫

t

1

�
�ea

�
�d� +

c�

a�
(ea

�t − ea
�

)

A n d  b e c a u s e  y(r)(t) = [x(r)(t)]1−�

, y(r)(1) = y(0)(1) = [x(r)(1)]1−� = [x(0)(1)]1−�  ,  t he  t ime 
response function can be derived from Eq. (22) by

Although � is not an integer, ∫ k

1
�
�ea

�(�−1)d� can be inte-
gral by numerical integration method to obtain the real 
number.

The predicted values x̂(0)(k) can be obtained by:

(21)C(1) = y(r)(1)ea
�

= y(0)(1)ea
�

(22)

y(r)(t) = e−a
�t[y(0)(1)ea + b� ∫

t

1

�
�ea

�
�d� +

c�

a�
(ea

�t − ea
�

)]

= (y(0)(1) −
c�

a�
)e−a

�(t−1) +
c�

a�
+ b�e−a

�(t−1) ∫ t

1
�
�ea

�(�−1)d�

(23)x
(r)(k) = [(x(0)(1)1−� −

c
�

a�
)e−a

� (k−1) +
c
�

a�
+ b

�
e
−a� (k−1) ∫

k

1

�
�
e
a
� (�−1)

d�]
1

1−�

(24)x̂(0)(k) = Drx̂(r)(k), k = 1, 2, 3,⋯ , n

Parameters estimation of the FGBM(1,1,t˛)

By integrating on [k − 1, k] both side of Eq. (16) at the same 
time, the following conclusion can be obtained:

According to the integral median theorem, we can get:

where 0 ≤ � ≤ 1.
The results are as follows:

According to the commonly used method to solve the 
parameters of grey prediction model, the least square crite-
rion of FGBM (1,1,t� ) model can be described as the follow-
ing unconstrained optimization problems:

(25)

y(r)(k) − y(r)(k − 1) + a�

k

∫
k−1

y(r)(t)dt =
k�+1 − (k − 1)�+1

� + 1
b� + c�

(26)

k

∫
k−1

y(r)(t)dt =�y(r)(k) + (1 − �)y(r)(k − 1)

(27)y(r)(k) − y(r)(k − 1) + a�[�y(r)(k) + (1 − �)y(r)(k − 1)] =
k�+1 − (k − 1)�+1

� + 1
b� + c�
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The solution of this optimization problem is:

where

In order to facilitate readers to understand the solution 
process of the FGBM (1,1,t� ) model, Fig. 1 shows the algo-
rithm implementation process of FGBM (1,1,t� ) model.

(28)min
a
�
,b

�
,c
�

n∑
k=2

{
y(r)(k) − y(r)(k − 1) + a�[�y(r)(k) + (1 − �)y(r)(k − 1)] −

k�+1 − (k − 1)�+1

� + 1
b� − c�

}2

(29)[â� b̂� ĉ�]T =
(
BTB

)−1
BTY

(30)

B =

⎛⎜⎜⎜⎜⎜⎜⎝

−[�y(r)(2) + (1 − �)y(r)(1)]
2
�+1−1�+1

1+�
1

−[�y(r)(3) + (1 − �)y(r)(2)]
3
�+1−2�+1

1+�
1

⋮ ⋮ ⋮

−[�y(r)(n) + (1 − �)y(r)(n − 1)]
n
�+1−(n−1)�+1

1+�
1

⎞⎟⎟⎟⎟⎟⎟⎠

, Y =

⎡⎢⎢⎢⎢⎢⎢⎣

y
(r)(2) − y

(r)(1)

y
(r)(3) − y

(r)(2)

⋮

y
(r)(n) − y

(r)(n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

Properties of the FGBM(1,1,t˛ ) model

The expression of the FGBM(1,1,t� ) model indicates that the 
FGBM(1,1,t� ) model can be transformed into other grey pre-
diction models when different values are assigned to parame-
ters � and r, � , such as GM(1,1) (Deng 1982), FGM(1,1) (Wu 
et al. 2013), FAGM(1,1,t� ) (Wu et al. 2019a), NGM(1,1,k,c) 
(Cui et al. 2009), GM(1,1,t2 ) (Qian et al. 2012), GM(1,1,t� ) 
(Qian et  al. 2012), NGBM(1,1) (Chen et  al. 2008), 
FANGBM(1,1) (Wu et al. 2019a), and NGBM(1,1,k,c) (Wu 
et al. 2020a). The relationships between FGBM (1,1,t� ) with 
other grey models are shown in the Fig. 2.

To minimize the model error, we must determine the opti-
mal values of parameters r, �, �, � and adopt the MAPE as 
the main criterion. The optimization problems when solving 
the optimal parameters are as follows:

Fig. 1  Algorithm implementa-
tion process of FGBM (1,1,)
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The above optimization problems are essentially nonlin-
ear programming problems with equality constraints, which 
can be solved with intelligent optimization algorithms or 
heuristic algorithms. In this paper, GWO, PSO, and QGA 
are adopted to solve the parameters. The reason for choosing 
these three algorithms is: GWO algorithm has the character-
istics of simple structure, has few parameters to be adjusted, 
and is easy to implement. Among them, there are adaptive 
convergence factors and information feedback mechanism, 
which can achieve a balance between local optimization and 
global search. Therefore, GWO algorithm has good perfor-
mance in solving the problem accuracy and convergence 
speed. The advantage of PSO algorithm is that it has mem-
ory ability. In the implementation of intelligent search, it can 
combine the individual and global optimal location to realize 
location. It has a very fast speed of approaching the optimal 
solution and can effectively optimize the parameters of the 
system. The population coding method used by QGA greatly 

(31)min
r,𝜆,𝛼,𝜉

f (r, 𝜆, 𝛼, 𝜉) =
1

n − 1

n∑
t=2

|||||
x(0)(t) − x̂(0)(t)

x(0)(t)

|||||
× 100%

(32)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ r ≤ 1, 0 ≤ 𝜆 ≤ 1, 0 ≤ 𝛼 ≤ 4, 0 ≤ 𝜉 ≤ 3, 𝜉 ≠ 1

[â� b̂� ĉ�]T =
�
BTB

�−1
BTY

B =

⎛⎜⎜⎜⎜⎜⎜⎝

−[𝜆y(r)(2) + (1 − 𝜆)y(r)(1)]
2
𝛼+1−1𝛼+1

1+𝛼
1

−[𝜆y(r)(3) + (1 − 𝜆)y(r)(2)]
3
𝛼+1−2𝛼+1

1+𝛼
1

⋮ ⋮ ⋮

−[𝜆y(r)(n) + (1 − 𝜆)y(r)(n − 1)]
n𝛼+1−(n−1)𝛼+1

1+𝛼
1

⎞⎟⎟⎟⎟⎟⎟⎠

, Y =

⎡⎢⎢⎢⎢⎢⎢⎣

y(r)(2) − y(r)(1)

y(r)(3) − y(r)(2)

⋮

y(r)(n) − y(r)(n − 1)

⎤⎥⎥⎥⎥⎥⎥⎦
x̂(r)(t) = [(x(0)(1)1−𝜉 −

ĉ�

â�
)e−â

� (t−1) +
ĉ�

â�
+ b̂�e−â

� (t−1) � t

1
𝜏
𝛼eâ

� (𝜏−1)d𝜏]
1

1−𝜉

x̂(0)(t) =
�
x̂(r)(t)

�(−r)
, t = 1, 2, 3,⋯ , n

enriches the diversity of the population, at the same time, 
the quantum revolving gate is used to update the population 
and evolve based on the information of the current optimal 
individual. It has the characteristics of strong adaptability, 
fast convergence and suitable for global search. The param-
eters of the algorithm are shown in Table 1.

Error metric

This section considers two error metrics widely used for 
prediction models to test the effectiveness and applicability 
of the grey prediction model, as indicated in Table 2.

Validation of FGBM(1,1,t˛)

In this section, four cases are presented to check the accuracy 
of the FGBM(1,1,t� ), and the forecasting results are com-
pared to those obtained with other grey prediction models, 
such as NGM(1,1), SIGM, GMP, FGM, NGBM(1,1,k,c), and 
FAGM(1,1,t� ). In Sections 3.1 to 3.4, the raw data in Table 1 
and the above seven grey models are used to simulate and 

Fig. 2  Relationships between 
FGBM (1,1,) with other grey 
models

Table 1  The parameters setting for the three algorithms

Initial popula-
tion/particle 
number

Max iterations Other parameters

GWO 30 300 Default
PSO 30 300 Vmax = 0.6; wMax = 0.9; 

wMin = 0.2; c1 = 2; 
c2 = 2;

QGA 30 300 Default
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predict the  CO2 emissions of the USA, India, Asia Pacific 
region, and the world. The original time series data from 
2009 to 2016 are used to build FGBM(1,1,t� ), NGM(1,1), 
SIGM, GMP, FGM, NGBM(1,1,k,c), and FAGM(1,1,t� ), 
and the original time series data from 2017 to 2019 are used 
to check the accuracy of the above grey prediction models.

CO2 emissions of the USA

According to Statistics Review of World Energy 2020, the 
USA produces the highest  CO2 emissions worldwide. In 
2019, the  CO2 emissions of the USA reached 4964.69 million 
tons, accounting for 14.5% of the total global  CO2 emissions, 
ranking second in the world. The task of emission reduction 
in the USA is far from realization. In this regard, the USA 
has put forward the Zero Carbon Action Plan (ZCAP), which 
deeply considers stabilization of domestic employment, 
economic innovation, and coordinated development of the 
environment in the postepidemic era. Therefore, this section 
adopts the USA as an example to test the accuracy of the 
FGBM(1,1,t� ) model. The parameters and MAPE values 
of FGBM(1,1,t� ) calculated with the three optimization 
algorithms are listed in Table 3. Figure 3 shows the number 
of iterations of the three optimization algorithms and the 
relationship between MAPE and the parameters. The MAPE 
and test_MAPE values for QGA are 1.1320% and 1.5805%, 
respectively, which are the smallest among those for the three 
optimization algorithms, and the performance is the best. 
Therefore, the QGA results are selected here. The fitting and 
prediction results for each model are shown in Fig. 4 and 
Table 4, and the error measurement results for each model 
are shown in Fig. 5 and Table 5. The prediction value of the 
FGBM(1,1,t� ) model is the closest to the actual value. Based 
on the fitting values, the two error measurement indexes of 
the FGBM(1,1,t� ) model are the best. This also indicates that 
the FGBM(1,1,t� ) model is more accurate than the other grey 
models in predicting the  CO2 emissions in the USA.

CO2 emissions of India

According to Statistics Review of World Energy 2020, in 
2019, the  CO2 emissions in India reached 2480.35 million 
tons, accounting for 7.3% of the global  CO2 emissions, rank-
ing third in the world. From 2010 to 2019, the  CO2 emissions 
in India increased, at an annual growth rate of 5.48%. With 
the rapid growth of the Indian economy and population, its 
 CO2 emissions also increased notably, which is estimated 
to account for 11% of the global  CO2 emissions by 2030. In 
the face of the call of the international community to pro-
mote carbon emission reduction, the Indian government has 
promised to reduce greenhouse gas emissions by 33–35% 
from 2015 to 2030. Therefore, this section chooses India as 
an example to test the accuracy of the FGBM(1,1,t� ) model. 
The parameters and MAPE values of the FGBM(1,1,t� ) 
model calculated with the three optimization algorithms 
are listed in Table 6. The MAPE and test_MAPE values for 
GWO are 0.5090% and 0.7130%, respectively, which are the 
smallest among the three optimization algorithms, and the 
performance is the best. Therefore, GWO is selected here. 
Figure 6 shows the number of iterations and the relation-
ship between MAPE and the parameters. The fitting and 
prediction results for each model are shown in Fig. 7 and 
Table 7, and the error measurement results for each model 
are shown in Fig. 8 and Table 8. The prediction value of the 
FGBM(1,1,t� ) model is the closest to the actual value. Based 
on the prediction and fitting values, the two error measure-
ment indexes of the FGBM(1,1,t� ) model are the best. This 
further demonstrates that the FGBM(1,1,t� ) model is more 
accurate than the other grey models in predicting the  CO2 
emissions of India.

CO2 emissions of the Asia Pacific region

According to Statistics Review of World Energy 2020, in 
2019, the  CO2 emissions of the Asia Pacific region amounted 
to 17,269.46 million tons, accounting for 50.54% of the 
world’s  CO2 emissions. From 2010 to 2019, the  CO2 emis-
sions in the Asia Pacific region indicated a rising trend, at an 
average annual growth rate of 2.60%. This section selects the 
Asia Pacific region as an example to test the accuracy of the 
FGBM(1,1,t� ) model. The parameters and MAPE values of 
the FGBM(1,1,t� ) model calculated with the three optimiza-
tion algorithms are shown in Table 9. The MAPE and test-
MAPE values obtained with PSO are 0.1076% and 0.6854%, 

Table 2  Error metrics of prediction model

Name Abbreviation Formulation

Mean absolute 
percentage error

MAPE 1

n−1

n∑
k=2

� x(0)(k)−x̂(0)(k)
x(0)(k)

� × 100

Mean absolute 
error

MAE 1

n−1

n∑
k=2

�x̂(0)(k) − x
(0)(k)�

Table 3  Parameters and MAPEs 
of the FGBM (1,1,t� ) model 
based on different optimization 
algorithms(Case 1)

Algorithm r(Parameter 1) �(Parameter 2) �(Parameter 3) �(Parameter 4) MAPE(%) test_MAPE(%)

GWO 0.0016 0.1922 1.3618 0.0125 1.2046 1.9173
PSO 0.0000 0.1796 1.3533 1.3194 1.2100 1.8242
QGA 0.6068 0.5624 0.1232 0.8031 1.1320 1.5805
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respectively, which are the smallest and the best among the 
three optimization algorithms, so the PSO algorithm is 
selected here. Figure 9 shows the relationship between the 
number of iterations, MAPE, and parameters. The fitting and 
prediction results for each model are shown in Fig. 10 and 
Table 10, and the error measurement results for each model 
are shown in Fig. 11 and Table 11. The predicted value of 
the FGBM(1,1,t� ) model is the closest to the actual value. 
According to the prediction and fitting values, the two error 
metrics of the FGBM(1,1,t� ) model are the best. This also 

indicates that the FGBM(1,1,t� ) model is more accurate than 
the other grey prediction models in predicting the  CO2 emis-
sions in the Asia Pacific region.

Total CO2 emissions of the world

According to Statistics Review of World Energy 2020, in 
2019, the global  CO2 emissions reached 34,169.00 million 
tons, which has increased greatly over the past few decades. 
From 2010 to 2019, the global  CO2 emissions increased by 

Fig. 3  Iterations, MAPE, and 
parameters of the three optimi-
zation algorithms

Fig. 4  Results of  CO2 emissions 
of USA
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1.102% annually, exhibiting a slow rising trend. However, 
economic recovery after the COVID-19 pandemic will 
facilitate a global rebound in  CO2 emissions. Therefore, this 
section adopts the world as an example to test the accuracy 
of the FGBM(1,1,t� ) model. The parameters and MAPE val-
ues of the FGBM(1,1,t� ) model calculated with the three 

optimization algorithms are summarized in Table 12. The 
MAPE and test_MAPE values obtained with QGA are 
0.168% and 2.352%, respectively, which are the smallest and 
the best among the three optimization algorithms. There-
fore, QGA is selected here. Figure 12 shows the relationship 
between the number of iterations, MAPE, and parameters. 

Table 4  Fitting and prediction 
results of  CO2 emissions of 
USA

Year data NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM

2009 5289.14 5289.14 5289.14 5289.14 5289.14 5289.14 5289.14 5289.14
2010 5485.72 5453.79 5458.8 5453.91 5397.34 5453.79 5381.41 5485.72
2011 5336.44 5322.85 5324.18 5318.94 5340.07 5322.85 5347.20 5375.56
2012 5089.97 5239.79 5239.46 5239.19 5283.4 5239.79 5285.63 5284.68
2013 5249.6 5187.09 5186.15 5189.98 5227.34 5187.09 5227.87 5222.82
2014 5254.57 5153.67 5152.6 5157.66 5171.88 5153.67 5179.98 5177.19
2015 5141.41 5132.46 5131.49 5134.68 5117 5132.46 5141.41 5141.41
2016 5042.43 5119.01 5118.21 5116.87 5062.7 5119.01 5110.48 5112.17
Year data NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM
2017 4983.87 5110.47 5109.85 5101.92 5008.98 5110.47 5085.63 5087.57
2018 5116.79 5105.06 5104.59 5088.55 4955.83 5105.06 5065.69 5066.42
2019 4964.69 5101.62 5101.28 5076.05 4903.25 5101.62 5049.79 5047.92

Fig. 5  Error metrics of  CO2 
emissions of USA

Table 5  Error metrics of  CO2 
emissions of USA

Fitting NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM

MAPE(%) 1.2262 1.2146 1.2037 1.1934 1.2262 1.3043 1.1320
MAE 63.4644 62.8228 62.315 62.1516 63.4644 67.8710 58.2463
Prediction NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM
MAPE(%) 1.8425 1.8391 1.7212 1.629 1.8425 1.5848 1.5805
MAE 91.7527 91.5873 85.8817 82.5036 91.7527 79.3186 79.0989

Table 6  Parameters and MAPEs 
of the FGBM (1,1,t� ) model 
based on different optimization 
algorithms(Case 2)

Algorithm r(Parameter 1) �(Parameter 2) �(Parameter 3) �(Parameter 4) MAPE(%) test_MAPE(%)

GWO 0.0005 0.4788 0.4393 0.0067 0.5090 0.7130
PSO 1.0000 0.5173 3.3792 0.0000 0.5893 0.9856
QGA 0.0045 0.5024 2.2159 0.0001 0.5126 7.7080
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The fitting and prediction results for each model are shown 
in Fig. 13 and Table 13, and the error measurement results 
for each model are shown in Fig. 14 and Table 14. The pre-
dicted value of the FGBM(1,1,t� ) model is the closest to the 
actual value. Based on the prediction and fitting values, the 
two error metrics of the FGBM(1,1,t� ) model are the best. 
This further verifies that the FGBM(1,1,t� ) model is more 
accurate than the other grey prediction models in predicting 
the global  CO2 emissions.

The above results reveal that although FGBM(1,1,t� ) 
achieves the best effect in predicting the global  CO2 emis-
sions among the many models, due to the sudden increase in 
the original data of  CO2 emissions in 2016, the fitting effect 
of the model is good, but the prediction error is large. The 
predicted global  CO2 emissions over the next 5 years may 
be far from the real value. To resolve this problem, global 
carbon emission data can be divided into two parts, namely, 
Organisation for Economic Co-operation and Development 

Fig. 6  Iterations, MAPE, and 
parameters of the three optimi-
zation algorithms

Fig. 7  Results of  CO2 emissions 
of India
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Table 7  Fitting results and 
prediction results of  CO2 
emissions of India

Year data NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM

2009 1596.24 1596.24 1596.24 1596.24 1596.24 1596.24 1596.24 1596.24
2010 1660.65 1649.02 1649.03 1649.8 1660.65 1648.09 1654.19 1656.16
2011 1735.15 1749.11 1749.12 1749.45 1751.62 1737.49 1751.26 1745.24
2012 1848.13 1849.31 1849.32 1849.41 1848.95 1846.63 1847.28 1845.79
2013 1929.35 1949.63 1949.64 1949.65 1948.07 1956.97 1944.88 1949.24
2014 2083.54 2050.06 2050.07 2050.17 2047.3 2060.50 2045.31 2051.17
2015 2149.38 2150.62 2150.63 2150.95 2145.88 2155.62 2149.30 2149.38
2016 2242.89 2251.29 2251.3 2251.99 2243.4 2242.89 2257.37 2242.89
Year data NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM
2017 2352.08 2352.09 2353.26 2391.72 2323.4 2352.08 2369.91 2331.375
2018 2453 2453.01 2454.75 2498.25 2398.17 2453.00 2487.30 2414.902
2019 2554.03 2554.04 2556.47 2605.12 2468.07 2554.03 2609.87 2493.722

Fig. 8  Error metrics of  CO2 
emissions of India

Table 8  Error metrics of  CO2 
emissions of India

Fitting NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM

MAPE(%) 0.6654 0.6656 0.6685 0.5555 0.5429 0.6646 0.5090
MAE 12.8783 12.8825 12.9674 10.8937 10.4717 13.1051 9.8836
Prediction NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM
MAPE(%) 1.3154 1.3158 1.3889 1.0248 0.9953 2.7872 0.7130
MAE 32.1452 32.1552 33.9366 25.1379 24.3432 68.1367 17.5085

Table 9  Parameters and MAPEs 
of the FGBM (1,1,t� ) model 
based on different optimization 
algorithms(Case 3)

Algorithm r(Parameter 1) �(Parameter 2) �(Parameter 3) �(Parameter 4) MAPE(%) test_MAPE(%)

GWO 0.2262 0.5336 3.8539 0.1932 0.1095 0.8011
PSO 0.2731 0.5320 3.6715 0.0000 0.1076 0.6854
QGA 0.2187 0.5337 3.9843 0.2037 0.1100 1.2388
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Fig. 9  Iterations, MAPE, and 
parameters of the three optimi-
zation algorithms

Fig. 10  Results of  CO2 emis-
sions of Asia Pacific
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Table 10  Fitting results and prediction results of  CO2 emissions of Asia Pacific

Year data NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM

2009 13,244.47 13,244.47 13,244.47 13,244.47 13,244.47 13,244.47 13,244.47 13,244.47
2010 13,993.5 14,039.21 14,004.53 14,037.98 13,993.5 13,989.08 14,044.40 13,993.5
2011 14,876.64 14,850.3 14,843.42 14,866.61 14,828.75 14,862.94 14,769.40 14,869.13
2012 15,310.55 15,338.96 15,343.17 15,339.22 15,339.94 15,338.78 15,284.81 15,394.69
2013 15,666.93 15,633.38 15,640.89 15,619.27 15,655.5 15,623.05 15,626.99 15,666.93
2014 15,802.62 15,810.76 15,818.25 15,795.15 15,842.54 15,802.63 15,840.96 15,801.7
2015 15,894.14 15,917.63 15,923.9 15,914.68 15,939.34 15,921.87 15,963.44 15,898.41
2016 16,022.09 15,982.01 15,986.85 16,003.74 15,969.78 16,005.85 16,022.09 16,041.41
Year data NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM
2017 16,357.09 16,020.8 16,024.34 16,076.31 15,949.83 16,069.61 16,037.07 16,304.71
2018 16,863.32 16,044.18 16,046.68 16,139.97 15,890.71 16,122.45 16,022.88 16,755.99
2019 17,269.46 16,058.26 16,059.99 16,198.8 15,800.65 16,170.25 15,989.84 17,459.35

Fig. 11  Error metrics of  CO2 
emissions of Asia Pacific

Table 11  Error metrics of  CO2 
emissions of Asia Pacific

Fitting NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM

MAPE(%) 0.1933 0.1696 0.1668 0.2072 0.1234 0.3123 0.1076
MAE 29.3878 26.22 25.3164 32.305 19.1706 47.3506 16.594
Prediction NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM
MAPE(%) 4.6423 4.6268 4.0686 5.5876 4.172 4.7834 0.6854
MAE 788.8784 786.2858 691.5954 949.5596 709.1898 813.3621 116.5323

Table 12  Parameters and 
MAPEs of the FGBM (1,1,t� ) 
model based on different 
optimization algorithms(Case 4)

Algorithm r(Parameter 1) �(Parameter 2) �(Parameter 3) �(Parameter 4) MAPE(%) test_MAPE(%)

GWO 0.0000 0.5671 4.0000 3.0000 0.1891 2.4410
PSO 0.0000 0.5671 4.0000 3.0000 0.1891 2.4410
QGA 0.0624 0.5545 0.1410 0.9082 0.1680 2.3515
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(OECD) and non-OECD data. The trend of  CO2 emissions 
based on OECD and non-OECD data is more stable than 
that based on global data. Therefore, this paper applies the 
FGBM(1,1,t� ) model to fit and predict the  CO2 emissions 
based on OECD and non-OECD data, as listed in Tables 15, 

16, and 17. Tables 15 and 16 reveal that between the OECD 
and non-OECD data, the prediction error obtained with 
QGA is the smallest, so QGA is selected to calculate the 
model parameters. The global  CO2 emissions are determined 
by adding the OECD and non-OECD-based  CO2 emissions, 

Fig. 12  Iterations, MAPE, and 
parameters of the three optimi-
zation algorithms

Fig. 13  Results of  CO2 emis-
sions of total world
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Table 13  Fitting results and prediction results of  CO2 emissions of total world

Year data NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM

2009 29,745.21 29,745.21 29,745.21 29,745.21 29,745.21 29,745.21 29,745.21 29,745.21
2010 31,085.53 31,127.57 31,087.02 31,127.78 31,085.54 31,085.54 31,097.99 31,085.61
2011 31,973.37 31,942.26 31,938.15 31,929.02 31,927.62 31,939.21 31,927.01 31,973.1
2012 32,273.53 32,394.85 32,402.62 32,395.41 32,396.32 32,394.97 32,392.79 32,434.11
2013 32,795.55 32,646.28 32,656.09 32,658.89 32,666.91 32,656.47 32,667.86 32,670.83
2014 32,804.72 32,785.96 32,794.40 32,799.41 32,814.93 32,803.29 32,826.66 32,800.37
2015 32,787.20 32,863.56 32,869.89 32,865.42 32,879.79 32,875.37 32,908.30 32,880.00
2016 32,936.07 32,906.67 32,911.08 32,886.28 32,884.68 32,895.7 32,936.07 32,936.28
Year data NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM
2017 33,279.49 32,930.62 32,933.55 32,879.78 32,844.47 32,878.79 32,925.14 32,981.3
2018 34,007.89 32,943.93 32,945.82 32,856.7 32,769.27 32,834.34 32,886.06 33,020.58
2019 34,169.00 32,951.32 32,952.52 32,823.57 32,666.30 32,769.20 32,826.52 33,056.66

Fig. 14  Error metrics of  CO2 
emissions of total world

Table 14  Error metrics of  CO2 
emissions of total world

Fitting NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM

MAPE(%) 0.2061 0.1857 0.2107 0.1979 0.1861 0.1972 0.168
MAE 66.8934 60.4641 68.3522 64.4834 60.6642 64.1159 54.7167
Prediction NGM SIGM GMP FGM NGBM(1,1,k,c) FAGM(1,1,t�) FGBM
MAPE(%) 2.5802 2.5742 2.8412 3.1157 2.9172 2.7641 2.3515
MAE 876.8394 874.8306 965.4436 1058.7825 991.3511 939.5525 799.2845

Table 15  Parameters and 
MAPEs of the FGBM (1,1,t� ) 
model based on different 
optimization algorithms(OECD)

Algorithm r(Parameter 1) �(Parameter 2) �(Parameter 3) �(Parameter 4) MAPE(%) test_MAPE(%)

GWO 0.0337 0.7190 1.8236 2.9951 0.2853 1.0751
PSO 0.0327 0.7232 1.3789 3.0000 0.2848 1.0823
QGA 0.0336 0.7198 1.7555 3.0000 0.2851 1.0763

Table 16  Parameters and 
MAPEs of the FGBM (1,1,t� ) 
model based on different 
optimization algorithms (non-
OECD)

Algorithm r(Parameter 1) �(Parameter 2) �(Parameter 3) �(Parameter 4) MAPE(%) test_MAPE(%)

GWO 0.2690 0.5229 0.2772 0.1436 0.1489 3.1289
PSO 0.2147 0.5267 4.0000 0.0000 0.1557 1.1457
QGA 0.8747 0.5157 3.9997 0.0691 0.1392 1.0637
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as summarized in Table 17. The fitting and prediction errors 
of the global  CO2 emissions are listed in Table 18 and are 
lower than those listed in Table 13. Table 19 provides the 
OECD and non-OECD based  CO2 emissions over the next 
5 years. The global  CO2 emissions over the next 5 years can 
be obtained by adding the two types of emissions. The fit-
ting and prediction results are more accurate than the direct 
prediction results of the global  CO2 emissions.

Forecasting  CO2 emissions 
over the next 5 years

In this section, we employ the FGBM(1,1,t� ) model to 
predict the  CO2 emissions of the USA, India, Asia Pacific 
region, and the world over the next 5 years (2020–2024). The 
prediction results are summarized in Table 20 and Fig. 15. 
The  CO2 emissions in India, the Asia Pacific region, and the 
world will gradually increase over the 5 years. In addition, 
the  CO2 emissions in the USA will slowly decline.

Conclusions and policy implications

To better describe the future  CO2 emissions of the USA, 
India, Asia Pacific region, and the world, a new grey predic-
tion model, i.e., the FGBM(1,1,t� ) model, is proposed based 
on the NGBM(1,1) and FAGM(1,1,t� ) models, and a pre-
cise solution of the new model is obtained via the numerical 
integration method. Moreover, this paper applies three com-
mon optimization algorithms to calculate the model param-
eters. By changing the model parameters, the FGBM(1,1,t� ) 
model can be transformed into other models, so the model 
achieves a strong adaptability. The  CO2 emission fitting 
and forecasting results in the above four economies indi-
cate that the FGBM(1,1,t� ) model is more effective and 
accurate than the existing NGM(1,1), SIGM, GMP, FGM, 
NGBM(1,1,k,c), and FAGM(1,1,t� ). Moreover, we employ 
the FGBM(1,1,t� ) model to predict the  CO2 emissions of the 
USA, India, Asia Pacific region, and the world over the next 
5 years. The forecast results reveal that from 2020 to 2024, 
the  CO2 emissions of India, the Asia Pacific region, and the 
world will gradually rise. The  CO2 emissions of the USA 
will slowly decline over the next 5 years. Notably, the grey 
prediction FGBM(1,1,t� ) model can be applied not only in 

Table 17  Fitting and prediction 
results of  CO2 emissions in 
OECD, non-OECD and total 
world

Year OECD FGBM Non-OECD FGBM Total World Add_values

2009 12,507.58 12,507.58 17,237.63 17,237.63 29,745.21 29,745.21
2010 12,957.49 12,957.46 18,128.05 18,128.06 31,085.53 31,085.52
2011 12,783.1 12,822.77 19,190.27 19,179.78 31,973.37 32,002.55
2012 12,580.34 12,671.53 19,693.19 19,770.25 32,273.53 32,441.78
2013 12,661.94 12,547.74 20,133.61 20,112.97 32,795.55 32,660.71
2014 12,441.45 12,443.81 20,363.27 20,325.81 32,804.72 32,769.62
2015 12,347.76 12,352.68 20,439.44 20,488.73 32,787.20 32,841.41
2016 12,270.06 12,270.02 20,666.00 20,666.10 32,936.07 32,936.12
Year OECD FGBM Non-OECD FGBM Total World Add_values
2017 12,300.25 12,193.21 20,979.24 20,916.26 33,279.49 33,109.47
2018 12,372.33 12,120.54 21,635.56 21,296.18 34,007.89 33,416.72
2019 12,011.96 12,050.83 22,157.05 21,864.04 34,169.00 33,914.88

Table 18  Error metrics of  CO2 emissions in total world(Add_values)

Fitting MAPE MAE Prediction MAPE MAE

FGBM 0.1852 60.2361 FGBM 0.9976 338.4367

Table 19  Predictions for the  CO2 emissions over the next 5 years in 
OECD and Non-OECD

Year 2020 2021 2022 2023 2024

OECD 11,983.30 11,917.34 11,852.53 11,788.55 11,725.16
Non-

OECD
22,680.69 23,810.63 25,322.78 27,291.05 29,794.83

Table 20  Predictions for the  CO2 emissions over the next 5 years

Year US India Total Asia Pacific Total World

2020 5031.49 2568.18 18,477.36 34,663.99
2021 5016.79 2638.66 19,872.37 35,727.97
2022 5003.49 2705.52 21,707.38 37,175.31
2023 4991.37 2769.12 24,046.64 39,079.60
2024 4980.25 2829.79 26,956.05 41,519.99
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the prediction of  CO2 emissions but also in the prediction of 
other data, with a high adaptability.

In order to meet the requirements for carbon emission 
reduction in the sustainable development goals, several sug-
gestions are put forward based on the above findings. First, 
promoting the green and low-carbon transformation of the 
energy system is the key. We should focus on energy conser-
vation and improve the dual control system of total energy 
consumption and intensity. We should increase the utiliza-
tion ratio of renewable energy such as wind power and pho-
tovoltaic power generation, and develop hydropower, geo-
thermal energy, marine energy, hydrogen energy, biomass 
energy, and photothermal power generation according to 
local conditions. Second, the fiscal and tax support should be 
strengthened to encourage the research and development of 
green and low-carbon technologies. Financial funds should 
be used to support the development of green environmental 
protection industry and energy efficient utilization, and a 
number of scientific and technological projects should be 
arranged in the fields of energy conservation and environ-
mental protection, cleaner production, and clean energy. 
Third, the recycling of renewable resources should be 
strengthened to realize a green and low-carbon lifestyle. We 
should promote the classification, reduction, and resource 
utilization of domestic waste according to local conditions, 
accelerate the construction of waste material recovery 

system, and strengthen the recycling of waste paper, waste 
plastics, waste tires and other resources.

This study still has some limitations. First, the model has 
many hyper-parameters, which may lead to over-fitting prob-
lems. Second, the model is a univariate model, which may 
ignore some important influencing factors (e.g., economic 
development, industrial policy, etc.), so the multivariate 
grey model can also be applied to predict carbon emissions, 
which is the optimization direction in the future.
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