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Abstract
In this work, freshwater microplastic samples collected from four different stations along the Italian Po river were charac-
terized in terms of abundance, distribution, category, morphological and morphometrical features, and polymer type. The 
correlation between microplastic category and polymer type was also evaluated. Polymer identification was carried out 
developing and implementing a new and effective hierarchical classification logic applied to hyperspectral images acquired 
in the short-wave infrared range (SWIR: 1000–2500 nm). Results showed that concentration of microplastics ranged from 
1.89 to 8.22 particles/m3, the most abundant category was fragment, followed by foam, granule, pellet, and filament and the 
most diffused polymers were expanded polystyrene followed by polyethylene, polypropylene, polystyrene, polyamide, poly-
ethylene terephthalate and polyvinyl chloride, with some differences in polymer distribution among stations. The application 
of hyperspectral imaging (HSI) as a rapid and non-destructive method to classify freshwater microplastics for environmental 
monitoring represents a completely innovative approach in this field.

Keywords Freshwater microplastics · Po river · Environmental pollution · Plastic litter · Hyperspectral imaging · 
Hierarchical classification

Introduction

Microplastic particles were first found on the sea surface 
as early as the 1970s (Carpenter and Smith 1972) and the 
accumulation of plastic waste in both aquatic and terrestrial 
ecosystems has become nowadays one of the main environ-
mental emergencies, considering that every year around 8 
million tons of plastic end up in the ocean (Jambeck et al. 
2015).

To face this problem, it is first necessary to identify and 
quantify abundances, sources and pathways of microplas-
tics (Werner et al. 2017). For this reason, in recent years, 

microplastic waste was collected and analyzed in different 
environments: aquatic (Erni-Cassola et al. 2019; Schwarz 
et al. 2019), marine water column and sediments (Naji et al. 
2017; Dai et al. 2018), marine surface waters (Cózar et al. 
2014; Serranti et al. 2018), sandy beaches (Bosker et al. 
2018; Tiwari et al. 2019), salt marsh habitat (Weinstein et al. 
2016), lakes (Jian et al. 2020; Xu et al. 2021; Yang et al. 
2022) and rivers (Ding et al. 2019; Pan et al. 2020, Zhou 
et al. 2021).

In particular, rivers are a major pathway of microplas-
tics to the marine environment (Faris and Hart 1994; All-
sopp et al. 2006; Guerranti et al. 2017; Lebreton et al. 2017; 
Schmidt et al. 2017; Li et al. 2020) due to human activities, 
such as industry (Karlsson et al. 2015), agriculture (Cor-
radini et al. 2019; GESAMP 2013; Huang et al. 2021) or 
wastewater treatment plants (Kay et al. 2018; Conley et al. 
2019; Dalu et al. 2021). It has been estimated that between 
1.15 and 2.41 million tons of plastic waste enter the ocean 
each year from rivers (Lebreton et al. 2017), with 20 riv-
ers (15 from Asia, 3 from Africa and 2 from South Amer-
ica) responsible of about 67% of the total world pollution. 
Despite the central role of rivers in marine microplastic pol-
lution, less studies are dedicated to freshwater microplastics 
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than to marine microplastics, even if they are growing in 
recent years (Lambert and Wagner 2018; Campanale et al. 
2020).

Microplastics are defined as particles having a diame-
ter < 5 mm (Barnes et al. 2009; Thompson et al. 2009) and 
they can be of primary or secondary origin. Primary micro-
plastics are specifically produced to be of microscopic size 
(Cole et al. 2011), such as personal care and cosmetic prod-
ucts (Fendall and Sewell 2009; Praveena et al. 2018). Sec-
ondary microplastics are produced by degradation of large 
objects through atmospheric agents (i.e. UV solar radiation, 
wave action and temperature change) and other physical, 
chemical or biological effects (Ivar do Sul and Costa  2014). 
Generally, microplastics can be classified into different cat-
egories according to their shape and surface texture, cor-
related to their potential origin (Wu et al. 2018). Even if 
there is not a standard classification, the most common cat-
egories are (Löder and Gerdts 2015): pellets, hard, rounded 
particles of primary origin; fragments, hard, jagged-edged 
particles deriving from larger objects; filaments or fibers, 
fibrous or thin uniform plastic strands, usually coming from 
fishing lines or textiles; films, thin, soft 2-dimensional plas-
tics, coming from bags or wrapping materials; foam, i.e., 
soft styrofoam-type material of secondary origin; granules, 
regular rounded particles usually smaller in size than pel-
lets (about 1 mm in diameter), considered of secondary ori-
gin. The relative abundance of microplastic categories in 
global freshwaters cannot be easily defined due to the lack 
of a standardized protocol for their classification: different 
studies mention different size ranges, types and numbers 
of categories making difficult a quantitative comparison. 
According to Koelmans et al. (2019) the most frequent cat-
egories of microplastics detected in freshwaters from many 
sites around the world are, in descending order, fragment, 
fiber, film, foam and pellet.

Once microplastics are sampled and categorized based 
on their shape, efficient methods are needed for polymer 
identification. Fourier transform infrared spectroscopy (FT-
IR) and Raman spectroscopy are the most common methods 
used to identify and characterize microplastics (Klein et al. 
2018; Tirkey and Upadhyay 2021). Both techniques are non-
destructive and are based on the detection of different energy 
absorption of the polymer functional groups. Furthermore, 
they can perform both single-point measurement and image 
mapping, applied to individual particles and, thus, require a 
long analytical time (Käppler et al. 2016).

Another technique applied to microplastic identification 
is pyrolysis–gas chromatography coupled with mass spec-
trometry (Py-GC–MS), a destructive method that allows the 
identification of polymer type by combustion and analysis 
of the products of thermal degradation (Klein et al. 2018); 
the great advantage is the sensitivity that allows to detect 
nanoplastics but one limitation is the thermal degradation 

of samples (Faltynkova et al. 2021). Finally, a recent study 
proposes for the first time the use of Laser Induced Break-
down Spectroscopy (LIBS) to classify microplastic particles 
even if the surface is contaminated or oxidated (Sommer 
et al. 2021). This method, based on laser ablation of sam-
ple surface, allows to extract information about the sample 
chemical composition and the molecular structure. This is 
a promising technique, nearly non-destructive due to abla-
tion but having the problem of the matrix effect which can 
reduce the accuracy of quantitative measurements and in 
which spectra are acquired with the single shot (Junjuri and 
Gundawar 2020).

In recent years, hyperspectral imaging (HSI) has begun 
to be applied in the field of automated recognition of micro-
plastics from marine environment (Serranti et al. 2018, 
2019; Shan et al. 2018; Zhu et al. 2020). HSI is an accurate 
and non-destructive analytical technique that combines the 
advantages of spectroscopy with those of digital imaging, 
allowing the fast acquisition of spectra of all pixels of the 
image with fine wavelength resolution in different spectral 
ranges, depending on the application. The result of a HSI 
acquisition is a three-dimensional dataset, the so-called 
hypercube, characterized by two spatial dimensions (the 
investigated image area) and one spectral dimension (the 
spectral signature of each pixel of the image). Identification 
of polymers is particularly effective in the near infrared and 
short-wave infrared (NIR-SWIR) wavelength ranges, based 
on their different characteristic absorption features (combi-
nation and overtone bands).

The main advantage of HSI is that, thanks to the use 
of dispersive elements and sensor arrays, it is possible to 
investigate larger areas in less time in comparison with the 
currently most adopted technologies for microplastic clas-
sification, FT-IR and Raman spectroscopy. HSI is generally 
coupled with chemometric and multivariate statistical analy-
sis for polymer identification through the construction and 
application of classification models. Model construction is 
the most time-consuming phase, however, the further appli-
cation to the acquired images, containing many microplastic 
particles, is very fast, taking just a few seconds, even with a 
standard PC. Furthermore, image acquisitions by HSI does 
not require any special sample preparation. The cost of the 
device is lower (up to 70 k USD for a HSI benchtop sys-
tem) compared to that of FT-IR and Raman imaging systems 
(over 200 k and 100 k USD, respectively) (Faltynkova et al. 
2021). One limitation of HSI is the minimum size of detect-
able microplastic particles, that is usually about 60 μm, 
whereas FT-IR and Raman spectroscopy can detect even 
smaller microplastics, starting from 10–20 μm and 1–2 μm, 
respectively (Vidal and Pasquini 2021).

In this work, HSI was applied to the characterization of 
microplastics collected along the Po river (northern Italy), 
the main Italian river both for length (652 km) and discharge 
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(1490  m3 average outflow per year 1917–2020) (Regione 
Emilia-Romagna 2000–2018), whose basin is an interna-
tional watershed: its surface extends for 74,000  km2 of which 
about 71,000  km2 across Italy, which means a quarter of the 
entire national territory. Po river basin is home to roughly 15 
million inhabitants and includes many large cities and areas 
of intensive industrial and agricultural activities.

To the best of our knowledge, HSI in the SWIR range 
(1000–2500 nm) was applied for the first time in this work to 
classify microplastics collected in freshwater, demonstrating 
its effectiveness through the implementation of a hierarchi-
cal partial least squares-discriminant analysis (PLS-DA) 
classification approach, allowing to simultaneously identify 
many different polymers.

The objectives of the study can be summarized as fol-
lows: i) to monitor microplastic pollution of the longest 
Italian river that crosses a relevant area, ii) to identify pol-
ymer types using HSI, a new, rapid, and non-destructive 
technology in this field, coupled with the implementation 
of a hierarchical classification approach, iii) to carry out an 
automatic morphological and morphometrical characteriza-
tion of the identified microplastic particles (i.e. measurement 
of the main shape and size parameters), and iv) to compare 
the obtained results, in terms of abundance and composition, 
with those of other studies on microplastics collected along 
foreign and Italian rivers.

Materials and methods

Materials

Microplastics were sampled by ARPAE (Regional Agency 
for Environmental Prevention and Energy of Emilia-
Romagna) in February 2020, in the framework of the “Manta 
River Project” financed by “District Basin authorities of Po 
river,” along the Po river (northern Italy), at four different 
sites: Isola Serafini, Boretto, Pontelagoscuro and Po di Goro, 
as shown in Fig. 1.

Methods

Sampling

Stated that rivers represent a source of particular interest for 
litter loads in marine ecosystems (Guerranti et al. 2017), the 
same range mesh size (> 0.3 mm < 5 mm), as the one used 
for the monitoring activities in the Marine Strategy Frame-
work Directive—2008/56/EC, was adopted in this work, in 
order to provide comparable data among different studies 
related to the Adriatic Sea and the Po river.

A 333 µm manta trawl with a rectangular opening of 
30 cm high by 60 cm wide was utilized. The net was towed 

Fig. 1  Location of the four sampling sites (Isola Serafini, Boretto, Pontelagoscuro and Po di Goro) along the Po river (Italy) indicated by red 
location markers. Yellow location markers indicate the Italian provinces crossed by the Po river
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for 20 min along the surface using small vessel keeping half 
of the manta net opening carefully submersed during the 
sampling. In this way at each sampling sites one water sam-
ple was collected.

Start–end position points were recorded from the ship’s 
GPS. After completion of each tow the net was washed thor-
oughly with freshwater from the outside of the net in order 
to concentrate all particles adhered to the net into the cod 
end. The sample collected in the cod end was transferred in 
glass bottle in 70% ethanol solution in order to preserve the 
sample which is rich in organic matter. The samples were 
stored into the fridge at 4 °C until subsequent analyses.

The number of microplastic particles per sample has been 
normalized per  km3. The formula used for normalization 
is microplastic particles per sample/sampling area, where 
sampling area is calculated by multiplying sampling distance 
by the width and the height of the submerged part of the net. 
Sampled water volumes varied from 500 to 709.5  m3 (mean: 
676.38 ± 119  m3).

The number of microplastic particles per sample has been 
normalized per  km3. The formula used for normalization 
is microplastic particles per sample/sampling area, where 
sampling area is calculated by multiplying sampling distance 
by the width and the height of the submerged part of the net. 
Sampled water volumes varied from 500 to 709.5  m3 (mean: 
676.38 ± 119  m3).

Laboratory analysis of microplastics

During the pre-treatment step, the samples were wet-sieved 
with distilled water using a 300 µm and 5 mm stainless 
steel sieve in order to obtain a water volume reduction. The 
microplastics particles were visually observed and separated 
from preserved natural material using tweezers under a ster-
eomicroscope Nikon SMZ800 10 × 80x objective Plan Apo 
1X w.d. 70 mm, circular polarizing (with cold light source 
Photonic PL 2000 Lumen), photographed (with attached 
Nikon camera DS-L2). All material longer than 5 mm was 
discarded. Finally, the plastic items were stored in small 
glass vials (Viršek et al. 2016).

Microplastics were categorized according to color (white, 
black, red, green, yellow, blue, other color) defining its trans-
parency or opacity and shape. Five different shape categories 
were recorded: fragment, filament, pellet, foam and granule 
according to the Master List of Categories of Litter Items 
(Löder and Gerdts 2015).

In order to prevent contamination during sample process-
ing some precautions have been respected (Hidalgo-Ruz 
et al. 2012; Cowger et al. 2020): during the microplastics 
separation, the samples when not in use was properly cover 
with glass in order to prevent contamination, no plastic 
materials or devices were used but only glass and metal-
lic thoroughly washed three time with Milli-Qwater, 100% 

cotton clothes were worn and only the technician involve in 
the analysis was present in the laboratory.

In order to check for airborne fiber contamination, a con-
trol Petri dish was left open on the working table during all 
stages of the analyses and cross examined. On the blanks, 
only white fibers were found with an average of 2 per blank 
and the filament abundances were blank corrected. Finally, 
microplastics were measured and weighed. In the 4 sampling 
sites a total of 299 microplastic particles were collected and 
analyzed. Some examples of microplastics collected during 
the study are shown in Fig. 2.

Hyperspectral imaging analysis for microplastic 
characterization

Microplastic particles were investigated at the RawMaLab 
(Raw Materials Laboratory) of the Department of Chemical 
Engineering, Materials & Environment (DICMA), Sapienza 
University of Rome. Hyperspectral images of the samples 
were acquired by SISUChema XL™ Chemical Imaging 
Workstation, equipped with the spectrograph ImSpector 
™ N25E (Specim, Finland) operating in the SWIR range 
(1000–2500 nm). The "macro" lens was used, allowing to 
capture a 10 mm field of view with a spatial resolution of 
30 µm/pixel and an acquisition speed of 2.55 mm/s. The 
spectral resolution is 6.3 nm. The utilized hyperspectral sys-
tem works in pushbroom mode: the HSI camera is mounted 
on a conveyor belt in which microplastic particles are placed 
and images are acquired line by line, simultaneously acquir-
ing a full spectrum for each pixel of the line.

The corresponding digital images of the samples were 
acquired using a Nikon D5200 camera. In total 42 hyper-
spectral images and 42 corresponding digital images were 
acquired, divided by microplastic category for each sampling 
station.

For the construction of the classification model, the 
hyperspectral images were imported into MATLAB® envi-
ronment (Version 9.3.0, The Mathworks, Inc.) and subse-
quently analyzed using the PLS_toolbox (version 8.6; Eigen-
vector Research, Inc.).

Hyperspectral images were preprocessed in order to 
highlight the spectral differences between different types 
of polymers: expanded polystyrene (EPS), polyamide 
(PA), polyethylene (PE), polyethylene terephthalate (PET), 
polypropylene (PP), polystyrene (PS), and polyvinyl chlo-
ride (PVC). Principal component analysis (PCA) was then 
applied for exploratory purposes, to verify the effective pos-
sibility of discriminating polymers. Finally, a hierarchical 
PLS-DA (HI-PLS-DA) classification model was built for the 
recognition of the different polymers.

Spectra preprocessing and principal component analysis A 
fundamental step to eliminate undesirable phenomena, 

48591Environmental Science and Pollution Research  (2022) 29:48588–48606

1 3



such as light scattering and noise, is represented by spec-
tral preprocessing. In this study, different combinations of 
algorithms were used such as: Derivative, Standard Normal 
Variate (SNV), Normalize, Detrend and Mean Center (MC). 
In more detail, the Savitzky-Golay derivative (S-G) was pre-
liminarily used to improve the signal differences. SNV algo-
rithm was used to reduce the light scattering due to changes 
in environmental conditions, Normalize was used to scale 

and normalize the data, Detrend was applied to remove the 
average offset from each sample, and, finally, MC was used 
to center the data calculating the mean of each column and 
subtracting this from the column to have zero mean (Rinnan 
et al. 2009).

After preprocessing, PCA was applied. PCA is an unsu-
pervised method used for reducing data size by projecting 
samples into a smaller subspace in which axes (principal 

Fig. 2  Examples of the collected microplastics: fragment (a), filament (b), pellet (c), foam (d), and granule (e)

48592 Environmental Science and Pollution Research  (2022) 29:48588–48606

1 3



components) are linear combinations of the original vari-
ables and are calculated to express the maximum variance. 
Through this method it is possible to detect spectral similari-
ties and differences between samples observing the different 
grouping of pixels in the score plot based on similar spectral 
signatures (De Juan et al. 2009; Jolliffe 2002).

Hierarchical PLS‑DA classification model Microplastic classi-
fication was carried out building a HI-PLS-DA model. PLS-
DA is a linear classification method for detecting sources 
of data variability by combining properties of partial least 
squares regression with classification techniques. The classi-
fication method is performed by selecting samples belonging 
to known classes (training sets) on which a classification rule 
is based. The obtained model is validated using an unknown 
data set (validation set) (Barker and Rayens 2003). Cross 
validation was performed using the Venetian Blinds method 
for evaluating the complexity of the predictive model and to 
select the number of Latent Variables (LVs) (Ballabio and 
Consonni 2013).

In the HI-PLS-DA hierarchical model, classification is 
obtained by dividing the samples into subgroups and build-
ing individual PLS-DA models for each of them. The clas-
sification of all polymers is achieved through subsequent 
steps, consisting of the model nodes. In each node one or 
more polymers are identified with respect to the others by 
applying a classification rule based on the choice of the most 
effective spectral preprocessing methods (Bonifazi et al. 
2018, 2020).

Figure 3 shows the developed HI-PLS-DA model, which 
is based on five classification rules. For each rule, appro-
priate algorithms were chosen to highlight the different 
spectral signature and manage the classification problem in 
detail. The developed model allows to identify eight different 
classes, consisting of seven polymers (EPS, PA, PE, PET, 
PP, PS and PVC) and a “NC” class (Not Classified).

The performance of the HI-PLS-DA classification models 
was evaluated using two statistical parameters for both cali-
bration (Cal) and cross-validation (CV). Sensitivity evaluates 
the model ability to avoid false negatives whereas Specificity 
to avoid false positives (Amigo et al. 2015). The values of 

Fig. 3  Structure of the HI-PLS-DA model built for the classification of microplastics, and spectral preprocessing algorithms applied for each 
node
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such parameters range between 0 and 1, where 1 is the value 
of a perfect prediction model. More in details, Sensitivity and 
Specificity are expressed as (Eqs. 1 and 2):

where the true positive (TP) and the true negative (TN) 
indicate the pixels that were appropriately assigned as 
belonging (TP), or not belonging (TN), to a precise class. FP 
and FN represent false positives and false negatives, respec-
tively, indicating the pixels that were erroneously assigned 
as belonging (FP), or not belonging (FN), to a precise class.

Morphological and morphometrical characterization

Digital images of microplastic samples were acquired using 
a Leica M205 C stereomicroscope with Leica 5000 series 
LED lighting system and equipped with an Optikam B2 
camera. The magnification selected for image acquisition 
was 10x.

The morphological and morphometrical characterization 
was carried out using the Image Pro Plus software (Version 
6.0.0.260, Media Cybernetics ®). For each microplastic par-
ticle, the following parameters were measured:

• Area  (mm2): area of the object;
• Aspect: ratio between major axis and minor axis of ellipse 

equivalent to object. This parameter provides an indica-
tion of how much the particles are elongated;

• Perimeter: length of the boundary of the object;
• Roundness: provides an indication of the circularity of 

the object (for a circle the parameter takes the value 1) 
and is calculated with the following equation (Eq. 3):

• Minimum Feret Diameter (mm): smallest caliper (Feret) 
length;

• Maximum Feret Diameter (mm): longest caliper (Feret) 
length;

• Average Feret Diameter (mm): average caliper (Feret) 
length;

For each parameter, the following statistical measure-
ments were calculated: average, standard variation, and 
minimum and maximum values. Furthermore, the frequency 
distribution plots of Maximum Feret diameter for microplas-
tic categories and polymer type were built and evaluated.

(1)Sensitivity =
TP

TP + FN

(2)Specificity =
TP

TP + FN

(3)(Perimeter)2

4�Area

The procedure carried out for the morphological and 
morphometrical characterization is composed by four main 
phases: spatial calibration, image binarization, particle 
counting&labeling, and morphological and morphometrical 
measurements. The first phase consists in the spatial calibra-
tion of the image by converting pixels into millimeters. The 
second phase is the binarization of the image to obtain black 
microplastic particles on a white background; this is neces-
sary to carry out, in the third phase, particle counting and 
labeling. Finally, in the fourth phase, selected morphological 
and morphometrical parameters are measured. Data obtained 
in terms of sizes, shapes and categories were analyzed and 
correlated to polymer type.

Experimental results

Microplastic concentrations

The average abundance was 5.87 particles/m3 equivalent to 
0.88 particles/m2, with minimum value of 1.89 particles/
m3 (Isola Serafini) and maximum value of 8.22 particles/
m3 (Boretto). Similar abundances were found in the other 
two sites, a concentration of 6.52 particles/m3 was detected 
at Pontelagoscuro and 6.85 particles/m3 at Po di Goro. 
The daily outflow was 653  m3/s at Isola Serafini, 882  m3/s 
at Boretto and 1056  m3/s at Pontelagoscuro (Arpae Idro-
Meteo-Clima, Annali Idrological 2019). Besides the flow 
rate, considering that sampling was carried out in different 
stations, there are many other factors and variables affect-
ing microplastics abundance and movement in the riverine 
system: weather conditions, hydrology (flow conditions and 
daily discharge), morphology (vegetation pattern), water-
course obstructions such as groynes and barrages (Lambert 
and Wagner 2018).

The division by category of collected microplastics 
showed that the more represented categories were fragment 
(44%) and foam (29%), followed by granule (16%), pellet 
(8%) and filament (3%). In particular, the fragments were 
predominant at Isola Serafini (63%), Boretto (45%) and Po di 
Goro (54%), whereas at Pontelagoscuro fragment (30%) was 
the second category after foam (36%). The filaments were 
always the category less represented in all the stations: Isola 
Serafini (21%), Boretto (1.4%), Po di Goro (1.8%), Pontel-
agoscuro (2.7%). At Isola Serafini the pellet and foam cat-
egories were not detected. Concerning the possible sources 
of microplastics, fragment, foam and granule microplastic 
categories, being of secondary origin, indicate their frag-
mentation from larger items probably started in land envi-
ronment and their transportation by surface runoff. On the 
contrary, the scarce presence of pellets, being of primary 
origin, may indicate the adoption of correct policies by the 
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local industries to avoid their spillage in the environment, 
in agreement with what observed by Munari et al. (2021). 
The lower presence of filaments, usually come from fishing 
nets, clothing or other textiles, in comparison to the other 
microplastic categories, could be justified considering that 
major losses can happen when using surface tow nets with 
coarse meshes. In fact, their fibrous shape, characterized by 
a minimum diameter smaller than the size of the adopted 
sampling manta net, makes difficult their collection (Ryan 
et al. 2020).

Overall, regarding the color, white is the dominant 
color (88%), more precisely opaque white (51%) and trans-
parent white (37%). Among the sites, opaque white was 
the dominant microplastics color, with the exception of 

Pontelagoscuro site in which transparent white was prevail-
ing. In all dataset the other colors found in descending order 
were blue, black, green, red.

Hyperspectral imaging analysis

Spectra characterization and PCA

The raw average reflectance spectra of reference polymers 
(EPS, PA, PE, PET, PP, PS, and PVC), the corresponding 
preprocessed spectra and the PCA score-plot of the train-
ing dataset are reported in Fig. 4. As shown in Fig. 4a, 
polymers show different spectral signatures in the SWIR 
range depending on variation of the overtone bands of the 

Fig. 4  Raw average reflectance spectra acquired by HSI in SWIR range (1000–2500 nm) (a), corresponding preprocessed average spectra (b) 
and PCA score plot (c) of reference polymers (EPS, PA, PE, PET, PP, PS and PVC) used for the construction of the HI-PLS-DA model
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fundamental groups containing O–H, C–H, N–H and C–O 
bonds. The identification of polymers in 1000–2500 nm 
range is mainly based on the stretching vibration modes of 
CH,  CH2 and  CH3 groups between second and first over-
tone region and the first combination bands (Workman 
and Weyer 2012; Stuart 2004). The application of selected 
pre-processing algorithms  (2nd Derivative, SNV and MC) 
allowed to better highlight spectral differences between 
polymers (Fig. 4b). PCA score plot (Fig. 4c) indicates that 
most of the variance was captured by the first two principal 
components, which explain 44% and 23% of the variance, 
respectively. The spectral data of polymers are clustered in 
two different regions of the score plot based on the similari-
ties/differences of the spectral signatures. More in details, 
PCA shows that PC1 negative values identify PA, PP, PE, 
and PVC, whereas PC1 positive values identify PS, EPS, 
and PET samples. Due to the complexity of data, clearly 
shown by the score plot, in which there is overlapping of 
pixels belonging to different polymers, a hierarchical model 
to simplify the classification problem was developed. In this 
perspective PCA score plot of Fig. 4c is representative of 
Node 0 of the HI-PLS-DA model.

The average preprocessed spectra of polymers and the 
corresponding PCA score plot for the other nodes of the 
HI-PLS-DA model are reported in Figure S1 of the Sup-
plementary Material. For each rule, most of variance was 
captured by the first two principal components (PC1-PC2). 
As shown in the four PCA score plots, the spectral data of 
polymer samples are clustered into distinct clusters accord-
ing to their spectral signatures. In more detail, in Node 1 
the positive values of PC1 for PA allows its separation from 
the other plastics, in Node 2 it is possible to identify PP, PE 
and PVC samples, being clustered in different regions of the 
score plot, in Node 3 PET can be identified from EPS and PS 
based on PC1 values and, finally, in Node 4-pixel clusters of 
EPS and PS are clearly separated in the score plot.

Microplastic classification by HI‑PLS‑DA

The classification results of microplastic particles obtained 
by the application of the HI-PLS-DA model based on seven 
different polymer classes are reported in Fig. 5 in terms of 
predicted images for each microplastic category collected in 
each sampling station.

Sensitivity and Specificity values in calibration and cross-
validation for the different rules of the hierarchical model 
range from 0.996 to 1.000 for both parameters confirming 
the very good performance of the classification model. All 
the values are reported in Supplementary Material.

The characterization of microplastics in terms of overall 
polymer type abundance, amount of polymer types in each 
sampling station and correlation between polymer type and 
corresponding microplastic category are shown in Fig. 6.

As shown in Fig. 6a, microplastic particles are mainly 
composed of EPS (30.8%), PE (30.4%) and PP (29.1%), fol-
lowed by PS (6.7%) and PA (2.0%). The presence of these 
polymers is in agreement with their density values, being 
lower than that of water. The other identified polymers rep-
resent a total fraction equal to 1%: PET (0.7%) and PVC 
(0.3%).

From Fig. 6b, it can be noticed as in Boretto, Pontel-
agoscuro and Po di Goro stations the most abundant pol-
ymers are: EPS (Boretto: 42.5%; Pontelagoscuro: 34.3%; 
Po di Goro: 24.2%), PE (Boretto: 30.1%; Pontelagoscuro: 
27.8%; Po di Goro: 32.3%) and PP (Boretto: 23.3%; Pon-
telagoscuro: 24.1%; Po di Goro: 37.4%), followed by PS 
(Boretto: 2.7%; Pontelagoscuro: 11.1%; Po di Goro: 5.1%). 
In Boretto and Pontelagoscuro stations the order of abun-
dance of the polymers is the same (EPS, PE, PP and PS) 
although with some variations in percentages, especially of 
EPS and PS. In microplastic samples from Po di Goro sta-
tion, however, the order of abundance is reversed compared 
to that observed in the two previous stations (PP, PE and 
EPS always followed by PS). On the contrary, in microplas-
tic samples collected at Isola Serafini station, a different 
composition is observed: the most abundant polymers are 
PE and PP (both with 36.8%), followed by PA (21.1%) and 
PS (5.3%), whereas EPS was not detected. The reason can 
be explained by the greatest abundance of PA filaments col-
lected at Isola Serafini station (see Paragraph 3.1), probably 
indicating a secondary origin from textile. PET and PVC 
constitute a negligible fraction: the first was detected only at 
Boretto and Pontelagoscuro stations (1.4% and 0.9%, respec-
tively). As regards PVC, only one particle was identified at 
Pontelagoscuro station, corresponding to 0.9%.

Concerning the distribution of polymers among the 
microplastic categories (Fig. 6c), it is possible to note that 
fragments, a microplastic category of secondary origin, 
are mainly constituted by PE and PP (55.3% and 34.8%, 
respectively), followed by PS (4.5%), EPS (3.0%) and PA, 
PET and PVC (0.8% each). This result can be explained 
considering that PE and PP are the most demanded poly-
mers in the market, especially for packaging products, that 
are easily dispersed in the environment, representing about 
50% of global plastics production (Plastics Europe 2020). PS 
and EPS are largely used in food packaging, especially for 
dairy and fishery products. Furthermore, these polymers are 
characterized by a density lower than that of water, floating 
on the water surface and easily carried by currents (Hidalgo-
Ruz et al. 2012). Filaments are constituted mainly by PA 
(55.6%), followed by PP (33.3%) and PE (11.1%). This 
category is usually of secondary origin, deriving from the 
degradation of nylon ropes, fabrics and fishing lines. Gran-
ules have a heterogeneous composition, being mainly com-
posed by PP (49.0%) followed by PS (26.5%), PE (16.3%) 
and EPS (8.2%). They can also be considered secondary 
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a b c
Isola Serafini

a b c d
Boretto

a b c

d e
Pontelagoscuro

Fig. 5  Digital images and corresponding predicted images obtained 
by the application of the HI-PLS-DA classification model on micro-
plastic particles collected at Isola Serafini, Boretto, Pontelagoscuro 

and Po di Goro stations, belonging to fragment (a), filament (b), 
granule (c), foam (d) and pellet (e) category, respectively
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microplastics. Microplastics belonging to the foam category 
are composed almost only by EPS (98.8%) and are probably 
due to the degradation of domestic packaging and/or box 
used in fishing activities. The polymers constituting pellets, 
which are considered primary microplastics, are mainly PE 
(54.2%) and PP (41.7%), followed by PS (4.2%). This result, 
as already observed for fragments, agrees with the fact that 
PE and PP are the two polymers most used by industries.

Morphological and morphometrical 
characterization

In the following, the most relevant results related to the mor-
phological and morphometrical analysis are highlighted. Full 
data are reported in Table S2 of Supplementary Material for 

each detected microplastic category, in terms of minimum, 
maximum, mean and standard deviation of the investigated 
parameter.

The results obtained for the fragment category high-
light a great variability for most size and shape parameters 
(Area ranged from 0.16 to 24.58  mm2 and Perimeter from 
1.30 to 21.02 mm). Furthermore, they are, as expected, 
less rounded than pellets and granules (Aspect from 1.06 
to 7.89 and Roundness from 1.00 to 3.46). The results for 
filaments are in agreement with the elongated shape of this 
category of microplastics, being characterized by small 
Areas (from 0.19 to 3.58  mm2) and large Perimeters (from 
4.43 to 20.50 mm). Granule category shows a reduced vari-
ability of measured parameters, in agreement with its small 
size and round shape. Granules are on average the smallest 

a b

c d e
Po di Goro

Fig. 5  (continued)
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(Area: 0.67 ± 0.47  mm2 and Maximum Feret Diameter: 
0.94 ± 0.29 mm) and have a “rounded” shape, as shown by 
the Roundness and Aspect values (1.00–1.14 and 1.01–1.93, 
respectively). Some variability in shape and size parameters 
is evident for foam microplastics (Aspect ranged from 1.04 
to 2.75 and Area ranged from 0.26 to 14.39  mm2). Finally, 
pellets show, as expected, homogeneous size and shape, 
being well rounded (Roundness values ranging from 1.00 to 
1.10), according to their primary origin, but greater in size 
than granules (Area: 2.01 ± 1.31  mm2 and Maximum Feret 
Diameter: 1.67 ± 0.53 mm).

The size class distribution of microplastic particles 
divided by category, in terms of Maximum Feret Diam-
eter, is reported in Fig. 7a showing that most of them are 
characterized by diameter values less than 5 mm, in agree-
ment with the standard size defined for microplastics. In 
more detail, 87% of fragment particles have a diameter less 

than 5 mm whereas all granule, foam and pellet particles 
are smaller than 5 mm. Fragment category shows the wid-
est size distribution, with particles in all the size classes 
from < 0.5 to > 8.0 mm, followed by foam category, with 
particles from < 0.5 to 5 mm. Pellet and foam categories 
show a more uniform size class distribution, ranging from 
0.5 to 4 mm and 0.5 and 3.0 mm, respectively. The mode of 
the frequency distribution is 1–2 mm for fragment, foam and 
pellet particles, whereas for granules is smaller, as expected, 
being 0.5–1.0 mm. Concerning the mean of particle size dis-
tribution, fragments (132 particles) show the greatest value 
(2.42 mm), followed by foam (85 particles) with an average 
value of 2.07 mm, pellet (24 particles) with an average value 
of 1.67 mm and granule (49 particles) with an average value 
of 0.94 mm.

Concerning fragments, the most abundant microplas-
tic category, further considerations were made in terms of 

Fig. 6  Polymer type overall abundance (a), polymer type distribution in each sampling station (b) and polymer type distribution for the different 
microplastic categories (c). All data are reported in number of microplastics (%)
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Fig. 7  Frequency distribution (in number of particles) of Maximum 
Feret diameter for microplastics belonging to the fragment, granule, 
foam and pellet category (a) and frequency distribution (in number of 

particles) of Maximum Feret diameter for fragment category divided 
by polymer type (b). The curve in black indicates the size distribution 
of all particles
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frequency distribution of Maximum Feret Diameter divided 
per polymer type considering only the most abundant ones 
(i.e. EPS, PE, PP and PS) (Fig. 7b). From the graph it can be 
noticed as the mode of the size class distribution is 1–2 mm 
for fragment particles of all polymer types. PE and PP 
particles are characterized by the greatest size variability, 
ranging from 0.5 to 8 mm, PS particles range from 0.5 to 
5 mm, whereas EPS fragments show the smallest and most 
homogeneous particle size, being distributed equally among 
0.5–1 mm and 1–2 mm classes. Concerning the mean of par-
ticle size distribution, PE (69 particles) shows the greatest 
value (2.70 mm), followed by PP (49 particles) with an aver-
age value of 2.23 mm, PS (6 particles) with an average value 
of 1.95 mm and EPS (4 particles) with an average value of 
1.19 mm. The size distribution of fragments belonging to 
different polymers, that are microplastics of secondary ori-
gin, could be correlated to their different degradation behav-
ior. Taking into account only PP and PE, being the most 
abundant polymers in fragment category, the results suggest 
a fragmentation in smaller particles for PP with respect to 
PE. This result is in agreement with what observed in a pre-
vious study on microplastics sampled in marine waters (Ser-
ranti et al. 2018) and in several studies related to artificial 
degradation of polymers, showing that the fragmentation 
rate is higher for PP than for PE when exposed to UV rays 
(Cai et al. 2018; Song et al. 2017). In fact, PE is character-
ized by higher crystallinity values than those of PP (Lambert 
and Wagner 2018) suggesting that its more complex and 
ordered structure counteracts degradation.

Comparison with other studies 
on microplastics collected along foreign 
and Italian rivers

Microplastic concentrations measured along Po river in this 
work were first compared with those found in rivers from 
different areas of the world. In most cases, concentrations 
were higher than those detected in Po river. However, it must 
be taken into account that the comparison of measured con-
centrations can be affected by different sampling and analyti-
cal strategies used in different studies. River contamination 
varies between sampling sites, ranging from values close to 
a few tens to a few thousand of fragments/m3.

More in details, in China, values equal to 10,200, 4100, 
and 0.7 fragments/m3 were detected at Yangtze River Estu-
ary, Minjiang Estuary and Pearl River (Zhao et al. 2014; 
Zhao et al. 2015; Mai et al. 2019), respectively. In Africa, the 
highest abundance of microplastics were from South-eastern 
bays of South Africa having 1215 particles/m3, whereas in 
the Australian estuarine areas microplastics achieved aver-
age values exceeding 1000 fragments/m3 (Hitchcock and 
Mitrovic 2019). In Brazil (Guanabra) and in North America 

(Chicago Metropolitan Area) microplastic concentrations of 
21.3 fragments/m3 (Olivatto et al. 2019) and 5.7 fragments/
m3 (McCormick et al. 2016) were detected, respectively.

Microplastic concentrations measured in the main Euro-
pean rivers are comparable, with some variations, to those 
measured in the present study: Seine (1.7–37.7 particles/m3, 
Alligant et al. 2019; 3–108 particles/m3, Dris et al. 2015), 
Thames (14.2–24.8 particles/m3, Rowley et al. 2020), Rhone 
(0.3–59 particles/m3, Constant et al. 2020), Ebro (1.95–4.3 
particles/m3, Simon-Sánchez et al. 2019), Rhine (1.85–4.92 
particles/m3, Van der Wal et al. 2015), Danube (10.6 par-
ticles/m3, Van der Wal et al. 2015) and Meuse – Dommel 
(67–11.532 particles/m3, Mintening et al. 2020). The French 
coastal river Têt (located in the Eastern Pyrenees) showed 
higher concentration values, equal to 618 fragments/m3 
(Constant et al. 2020).

Few studies have been carried out on microplastic occur-
rence in Italian rivers, collected from both freshwaters and 
sediments. The results of these studies are summarized and 
compared with those of this work in Table 1, in terms of 
sampling origin, concentration, mesh size and/or sampling 
volume and depth, particle size ranges, identified categories, 
and polymer types. The comparison of data among differ-
ent studies is currently hindered by the enormous variety 
of adopted methodologies in all the steps of microplastic 
analysis, such as field sampling, preparation, identification, 
categorization, quantification (Cowger et al. 2020).

Microplastic concentration ranged from 0.29 to 84 parti-
cles/m3 in water and from 2.92 to 1069 particles/DW kg in 
beach sediment. Studies related to microplastics collected in 
Po river water show values lower (0.29–3.47 particles/m3, 
Munari et al. 2021) and higher (14.6 particles/m3, Van der 
Wal et al. 2015; 1–84 particles/m3, Atwood et al. 2019) than 
those measured in the present study. Furthermore, Po river 
water microplastic concentrations are comparable to those 
detected in Ofanto river (from 0.9 ± 0.4 to 13 ± 5 particles/
m3, Campanale et al. 2020). Different sampling methods 
were used in the studies, as can be seen from Table 1: the 
studies carried out on the river surface used a manta net with 
mesh sizes ranging between 300 µm (Munari et al. 2021; 
Atwood et al. 2019), 330 µm (Van der Wal et al. 2015) and 
333 µm (present study, Campanale et al. 2020); the sediment 
samples were taken at a depth of 5 cm in the studies of Piehl 
et al. (2019) and Blašković et al. (2018) and up to 50 cm in 
the study of Guerranti et al. (2017).

In the studies on Italian rivers, microplastics have on 
average a size smaller than 5 mm in water and/or sediments, 
except in the study by Guerranti et al. (2017), in which sam-
ples reached 10 mm, in the study by Munari et al. (2021) 
and in the present study, in which 87.1% and 80.6% of the 
collected plastics has a size < 5 mm, respectively). The most 
abundant microplastic category is fragment in all the studies, 
including those related to Po surface waters, according to its 

48601Environmental Science and Pollution Research  (2022) 29:48588–48606

1 3



Ta
bl

e 
1 

 S
um

m
ar

y 
of

 th
e 

m
ai

n 
stu

di
es

 c
ar

rie
d 

ou
t o

n 
m

ic
ro

pl
as

tic
 o

cc
ur

re
nc

e 
in

 It
al

ia
n 

riv
er

s 
in

 te
rm

s 
of

 s
am

pl
in

g 
or

ig
in

 (s
ed

im
en

t o
r w

at
er

), 
in

ve
sti

ga
te

d 
pa

rti
cl

e 
si

ze
 ra

ng
es

, m
os

t a
bu

nd
an

t 
m

ic
ro

pl
as

tic
 c

at
eg

or
y,

 m
ic

ro
pl

as
tic

 c
on

ce
nt

ra
tio

ns
, p

ol
ym

er
 ty

pe
s a

nd
 m

ea
su

re
m

en
t m

et
ho

d

D
W

 d
ry

 w
ei

gh
t; 

EP
S 

ex
pa

nd
ed

 p
ol

ys
ty

re
ne

; P
E 

po
ly

et
hy

le
ne

; P
P 

po
ly

pr
op

yl
en

e;
 P

S 
po

ly
sty

re
ne

; P
A 

po
ly

am
id

e;
 P

ET
 p

ol
ye

th
yl

en
e 

te
re

ph
th

al
at

e;
 P

VC
 p

ol
yv

in
yl

 c
hl

or
id

e;
 T

D
I-

PU
R 

po
ly

ur
e-

th
an

e;
 P

y-
G

C
–M

S 
py

ro
ly

si
s 

ga
s 

ch
ro

m
at

og
ra

ph
y 

m
as

s 
sp

ec
tro

m
et

ry
; H

SI
 h

yp
er

sp
ec

tra
l i

m
ag

in
g;

 A
TR

 F
T-

IR
 a

tte
nu

at
ed

 to
ta

l r
efl

ec
tio

n 
Fo

ur
ie

r t
ra

ns
fo

rm
 in

fr
ar

ed
 s

pe
ct

ro
sc

op
y;

 N
IR

 n
ea

r i
nf

ra
-

re
d 

sp
ec

tro
sc

op
y.

Lo
ca

tio
n

Sa
m

pl
in

g 
or

ig
in

M
ic

ro
pl

as
tic

 c
on

-
ce

nt
ra

tio
ns

M
es

h 
si

ze
/s

am
-

pl
in

g 
vo

lu
m

e 
an

d 
de

pt
h

Pa
rti

cl
e 

si
ze

 ra
ng

es
M

os
t a

bu
nd

an
t 

m
ic

ro
pl

as
tic

 c
at

-
eg

or
y

M
ea

su
re

m
en

t m
et

ho
d 

an
d 

po
ly

m
er

 ty
pe

s
Re

fe
re

nc
e

Po
 ri

ve
r (

no
rth

er
n 

Ita
ly

)
R

iv
er

 su
rfa

ce
1.

89
 –

 8
.2

2 
pa

rti
-

cl
es

/m
3

M
an

ta
 tr

aw
l

33
3 

µm
0.

50
–7

.8
4 

m
m

Fr
ag

m
en

ts
 (4

4%
), 

fo
am

s (
29

%
), 

gr
an

ul
es

 (1
6%

), 
pe

lle
ts

 (8
%

) a
nd

 
fil

am
en

ts
 (3

%
)

M
et

ho
d:

 H
SI

EP
S 

(3
0.

8%
), 

PE
 (3

0.
4%

), 
PP

 (2
9.

1%
), 

PS
 (6

.7
%

), 
PA

 (2
.0

%
), 

PE
T 

(0
.7

%
) a

nd
 

PV
C

 (0
.3

%
)

Pr
es

en
t s

tu
dy

Po
 ri

ve
r (

no
rth

er
n 

Ita
ly

)
R

iv
er

 su
rfa

ce
0.

29
 –

 3
.4

7
pa

rti
cl

es
/m

3
H

yd
ro

-B
io

s
M

an
ta

 tr
aw

l
30

0 
µm

80
.6

%
 w

ith
 d

im
en

-
si

on
 <

 5 
m

m
Fr

ag
m

en
ts

 (6
7%

),
fib

er
s (

30
%

) a
nd

 
pe

lle
ts

 (3
%

)

M
et

ho
d:

 F
T-

IR
 sp

ec
tro

sc
op

y
PE

 (4
0.

5%
), 

PP
 (2

5.
7%

), 
PS

 (1
4.

9%
), 

PE
T 

(8
.1

%
), 

PV
C

 (5
.4

%
), 

PA
 (4

.1
%

) 
an

d 
EV

A
 (1

.3
%

)

M
un

ar
i e

t a
l. 

20
21

Po
 ri

ve
r (

no
rth

er
n 

Ita
ly

)
W

at
er

s a
nd

 b
ea

ch
 

se
di

m
en

t
W

at
er

s:
1–

84
 p

ar
tic

le
s/

m
3

B
ea

ch
 se

di
m

en
t: 

up
 

to
 7

8 
pa

rti
cl

es
/

D
W

 k
g

M
in

i-m
an

ta
 tr

aw
l

30
0 

µm
1–

5 
m

m
-

M
et

ho
d:

 F
T-

IR
 sp

ec
tro

sc
op

y
PE

, P
S 

an
d 

PP
A

tw
oo

d 
et

 a
l. 

20
19

Po
 R

iv
er

 d
el

ta
 

(n
or

th
er

n 
Ita

ly
)

B
ea

ch
se

di
m

en
ts

2.
92

—
23

.3
0 

pa
rti

-
cl

es
/D

W
 k

g
St

ai
nl

es
s 

ste
el

 fr
am

e 
(2

5 ×
 25

 c
m

),
up

pe
r 5

 c
m

 w
as

 
ex

tra
ct

ed

1–
5 

m
m

Fr
ag

m
en

t (
95

.0
%

)
M

et
ho

d:
 F

T-
IR

 
sp

ec
tro

sc
op

y
PE

, P
S 

an
d 

PP

Pi
eh

l e
t a

l. 
20

19

Po
 R

iv
er

(n
or

th
er

n 
Ita

ly
)

R
iv

er
 su

rfa
ce

14
.6

 p
ar

tic
le

s/
m

3
M

an
ta

 N
et

33
0 

µm
 <

 5 
m

m
Fr

ag
m

en
t

M
et

ho
d:

 A
TR

 
FT

IR
 a

nd
 N

IR
PE

 (7
5%

), 
PP

 
(1

7%
), 

PS
 (4

%
) 

an
d 

ot
he

rs

Va
n 

de
r W

al
 e

t a
l. 

20
15

C
ec

in
a 

riv
er

 e
stu

-
ar

y 
(T

us
ca

ny
, 

ce
nt

ra
l I

ta
ly

)

Se
di

m
en

ts
 fr

om
 th

e 
co

as
ta

l a
re

a
72

—
19

1 
pa

rti
cl

es
/

D
W

 k
g

5 
cm

 o
f d

ep
th

in
 w

id
e 

1 
L 

gl
as

s 
ja

rs

 <
 5 

m
m

Fr
ag

m
en

t, 
fib

er
 a

nd
 

gr
an

ul
e

-
B

la
šk

ov
ić

 e
t a

l. 
20

18

O
m

br
on

e 
riv

er
 

(T
us

ca
ny

, c
en

tra
l 

Ita
ly

)

Se
di

m
en

ts
 sa

m
pl

es
45

—
10

69
 p

ar
ti-

cl
es

/D
W

 k
g

50
 c

m
 o

f d
ep

th
 in

 2
 

L 
bu

ck
et

0.
5–

10
 m

m
Fi

la
m

en
t a

nd
 fr

ag
-

m
en

t
-

G
ue

rr
an

ti 
et

 a
l. 

20
17

O
fa

nt
o 

riv
er

(s
ou

th
ea

st 
Ita

ly
)

R
iv

er
 su

rfa
ce

0.
9 ±

 0.
4 

–
13

 ±
 5 

pa
rti

cl
es

/m
3

Pl
an

kt
on

 n
et

s
33

3 
µm

an
d 

an
 o

pe
ni

ng
 o

f 
55

 ×
 55

 c
m

30
0–

50
00

 µ
m

Fr
ag

m
en

t (
56

%
) 

an
d 

fla
ke

 (2
6%

)
M

et
ho

d:
 P

y-
G

C
–

M
S

PE
 (7

6%
), 

PS
 

(1
2%

), 
PP

 (1
0%

), 
PV

C
 (0

.7
%

) 
an

d 
TD

I-
PU

R
 

(0
.3

5%
)

C
am

pa
na

le
 e

t a
l. 

20
20

48602 Environmental Science and Pollution Research  (2022) 29:48588–48606

1 3



secondary origin from the degradation of larger plastic waste 
dispersed in the environment.

Different analytical methods were used to perform poly-
mer identification: HSI (present study), FT-IR (Munari et al. 
2021; Atwood et al. 2019; Piehl et al. 2019), FT-IR and 
NIR spectroscopy (Van der Wal et al. 2015) and Py-GC–MS 
(Campanale et al. 2020). The advantages and limitations 
among techniques were discussed in the Introduction, in 
any case the great variety of techniques suggests the need to 
define standardized methods for microplastic investigation 
in order to produce more comparable data.

In all studies carried out along Po river, including this 
work, the most abundant polymers are always PP, PE and 
PS (in our case the latter is subdivided in PS and EPS), with 
some variation in the order of abundance, probably depend-
ing on several factors, related to both sampling location and 
analytical methods.

Conclusions

In this study, freshwater microplastics collected along the 
Italian Po river were characterized by developing and imple-
menting a hierarchical PLS-DA classification model applied 
to hyperspectral images acquired in the SWIR range. In addi-
tion to the polymer type identification, abundance, catego-
ries and morphological and morphomerical parameters of 
microplastic particles from the four different sampling sta-
tions were defined and compared. The data achieved in terms 
of concentration constitute a solid estimate of the microplas-
tics abundance in the Po river. It is important to consider that 
these data can be influenced by environmental factors such 
as flow rate, weather conditions, run-off phenomena and the 
intrinsic diversity of the sampling locations.

Seven different types of polymers were identified by HSI: 
the most abundant are EPS, PE, PP, and PS, as expected by 
their density which is lower than that of water, followed by 
PA, PET and PVC. These polymers are the most diffused in 
the market, most of them especially as packaging materials. 
The results of morphological and morphometrical characteri-
zation of microplastics are consistent with the classification 
in categories. Furthermore, most of the collected microplas-
tics have a maximum Feret diameter less than 5 mm and the 
most populated size class is between 1 and 2 mm. Finally, the 
comparison among the particle sizes of the two most abun-
dant polymers in fragment category shows that on average PE 
microplastics are larger than PP microplastics, suggesting a 
different fragmentation behavior probably due to the polymer 
properties, such as density and crystallinity.

Overall, the results show that the application of HSI on 
freshwater microplastics can be considered as an emerging 
suitable method for the characterization and classification 
of samples in a rapid, reliable and non-destructive way. Its 

features are very promising and useful for monitoring micro-
plastic pollution of rivers, oceans, and coasts, contributing 
to the definition of the best waste management strategies.
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