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Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still rapidly spreading globally. To probe high-risk cities and the 
impacts of air pollution on public health, this study explores the relationship between the long-term average concentration 
of air pollution and the city-level case fatality rate (CFR) of COVID-19 globally. Then, geographically weighted regression 
(GWR) is applied to examine the spatial variability of the relationships. Six air pollution factors, including nitrogen dioxide 
(NO2), sulfur dioxide (SO2), ozone (O3), PM2.5 (particles with diameter ≤2.5 μm), PM10 (particles with diameter ≤10 μm), 
and air quality index (AQI), are positively associated with the city-level COVID-19 CFR. Our results indicate that a 1-unit 
increase in NO2 (part per billion, PPB), SO2 (PPB), O3 (PPB), PM2.5 (microgram per cubic meter, μg/m3), PM10 (μg/m3), 
AQI (score), is related to a 1.450%, 1.005%, 0.992%, 0.860%, 0.568%, and 0.776% increase in the city-level COVID-19 
CFR, respectively. Additionally, the effects of NO2, O3, PM2.5, AQI, and probability of living with poor AQI on COVID-
19 spatially vary in view of the estimation of the GWR. In other words, the adverse impacts of air pollution on health are 
different among the cities. In summary, long-term exposure to air pollution is negatively related to the COVID-19 health 
outcome, and the relationship is spatially non-stationary. Our research sheds light on the impacts of slashing air pollution on 
public health in the COVID-19 pandemic to help governments formulate air pollution policies in light of the local situations.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic is still 
rapidly spreading globally and will give rise to more deaths 
(Chang et al. 2020; Hsiang et al. 2020). As of 30 June 2021, 
cumulative confirmed cases of COVID-19 have reached over 
182.0 million worldwide, with more than 3.9 million deaths 
(WHO: https://​covid​19.​who.​int/). Previous studies proposed 
that almost a quarter of hospital-admitted patients needed 
intensive care due to the symptoms of respiratory complica-
tions, even though most other patients just had a mild illness 
(Wang et al. 2020). In this way, prioritizing limited medical 
resources to the vulnerable areas could curb deaths to some 
extent. Moreover, several studies illustrated that air pollution 

was positively related to the risk of death after being infected 
by COVID-19 (Jiang and Xu 2021; Travaglio et al. 2021; 
Zhang et al. 2021; Zheng et al. 2021). To provide helpful 
information for mitigating the adverse impact of COVID-19 
and reducing economic and social costs (Guo et al. 2020; 
Ikram et al. 2020, 2021; Nakamura and Managi 2020; Yoo 
and Managi 2020), we aim to explore the global relationship 
between air pollution and the COVID-19 health outcome.

Air pollution, including PM10 (particles with diameter 
≤10 μm), PM2.5 (particles with diameter ≤2.5 μm), sul-
fur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3), 
adversely impacts both human physical health by causing non-
malignant respiratory deaths, lung cancer, and cardiovascular 
disease (Brunekreef and Holgate 2002) and mental health, 
by yielding depression (Silva Moreira et al. 2021; Xue et al. 
2021). The adverse effects of long-term exposure to air pollu-
tion are irreversible because air pollution makes viruses easier 
to invade airway epithelial cells (Cruz-Sanchez et al. 2013) and 
hampers key inflammatory mediators (Popovic et al. 2019). 
Furthermore, long-term exposure to air pollution is also asso-
ciated with other chronic diseases, such as chronic obstructive 
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pulmonary disease and cerebrovascular disease, among others 
(Lelieveld et al. 2015). Air pollution, such as PM2.5 and PM10, 
entering the lungs could induce systemic oxidative stress and 
inflammation that lead to various pathological processes of 
cerebrovascular diseases, including increased thrombosis, 
hypercoagulability, and endothelial dysfunction, among oth-
ers (Chin 2015). The adverse health impacts of air pollution 
eventually exacerbate the severity of symptoms and shrink the 
probability of recovery after the infection (Benmarhnia 2020; 
Magazzino et al. 2020; Wu et al. 2020) because the COVID-
19 virus could make cardiovascular disorders or/and other 
comorbidities worse (Nishiga et al. 2020; Wisnu Wardana 
and Rosyid 2021). Moreover, several reports turned out that 
air pollution was correlated with mental disorders (Buoli et al. 
2018). Mental disorders might slash the confidence in recov-
ery or influence the attitude towards the disease after being 
infected by COVID-19 (Slater et al. 2020). Therefore, the peo-
ple exposed to air pollution for the long term are at stake after 
the infection of COVID-19.

Understanding the relationship between the local COVID-
19 health outcome and air pollution can help policymakers 
predict the health burdens (Fernández et al. 2021; Lee et al. 
2021). Every society in this world is considering the trade-off 
between health benefits and economic as well as social costs 
(Achebak et al. 2021; Guan et al. 2020; Hsiang et al. 2020; 
Yalaman et al. 2021). To temper the negative impacts and curb 
the deaths due to COVID-19, strict legislation, enough per-
sonal protective equipment, and vaccines should be prioritized 
in high-risk areas. Furthermore, previous studies regarding the 
relationship between air pollution and the health outcome of 
COVID-19 mainly concentrate on a single country or region, 
such as China (Zhang et al. 2021), the USA (Wu et al. 2020), 
Italy (Zoran et al. 2020), Spain (Achebak et al. 2021), and 
England (Travaglio et al. 2021), among others (Ogen 2020). 
Almost all these studies put forward a negative correlation 
between air pollution and the COVID-19 health outcome, but 
the relationship coefficients in each study are various. There-
fore, a global analysis of the relationship is desired. In addi-
tion, the local COVID-19 health outcome might be reflective 
of the average health status in the regions (Mollalo et al. 2021). 
Thus, the spatial variability of the COVID-19 health outcome 
might partially show the irreversible negative impacts of air 
pollution on public health. This variability could also help 
the public and governments notice the perils of air pollution, 
understand the spatial distributions of health status, and relo-
cate the medical sources even after the COVID-19 pandemic.

Materials and methods

Materials

City‑level case fatality rate of COVID‑19

The dependent variable is the city-level case fatality rate 
(CFR). The observed COVID-19 CFR is the percentage 
of recorded deaths in confirmed cases during a particu-
lar period (Cao et al. 2020). In previous research, several 
health outcome indicators of COVID-19 are widely used, 
including mortality (Achebak et al. 2021; Fernández et al. 
2021; Jiang and Xu 2021), incidence (Li et al. 2020; Zhu 
et al. 2020; Zoran et al. 2020), and CFR (Mollalo et al. 
2021). The COVID-19 CFR is on behalf of the risk of 
death after the infection (Fisman et al. 2020; Shim 2021). 
Mortality and incidence are relatively influenced more by 
the prevention and control regulations than the CFR. For 
instance, the mortality and incidence in China are obvi-
ously lower than they in the USA, due to the strict lock-
down policies in China. Yet, the COVID-19 CFRs in these 
two countries are close because the CFR primarily pre-
sents the medical level and average health status. The data 
source is the Oxford COVID-19 Government Response 
Tracker, using the R package “COVID-19” (Data sources 
are listed in Table S1). The mean of the CFRs in our 
research is 1.922%, close to the global value (2.169%, as 
of 30 June 2021). The CFRs range from 9.506 to almost 0 
(Table 1: descriptive statistics of cities).

The city-level data are not perfectly recorded in some 
countries, so we use upper-level data, such as state-/prov-
ince- or even national-level data, to substitute for the missing 
city-level data (Table S2: data level and number of cities; 
Fig. 1 shows the spatial distribution of city-level CFR). In 
the current data set, seemingly, most countries only have 
the country-level COVID-19 CFRs (Table S2). However, 
over half of these countries have no more than five cities’ 
data. Furthermore, though using country-level data might 
reduce the accuracy of the analysis, it could guarantee that 
most developing countries are put into the study. In addition, 
we also try to detect the relationship between the country-
level CFR and the medians of air pollution concentration in 
countries’ main cities (Table S3). Yet, nothing is significant. 
It is reasonable for several reasons. First, the air pollution 
measurements are all in the important cities in this data set, 
which cannot reflect the whole country. At least, the other 
rural areas are ignored. Secondly, the population density 
and age structure of the main cities are different from the 
countries’. Due to the results of country-level regression, we 
eventually employ the city-level regression.

In order to confirm whether the country-level CFR 
could reflect the city-level CFR, we check the standardized 

27497Environmental Science and Pollution Research  (2022) 29:27496–27509

1 3



difference between the country-level CFR with the mean of 
city-level CFR of the countries with city-level CFR in our 
data set, including Austria, Chile, Germany, and the USA, 
among others. The standardized difference is defined as 
the absolute value of the quotient of the difference between 
the country-level CFR with the mean of city-level CFR of 

a specific country and the standard deviation of city-level 
CFR. The equation is listed as follows:

(1)SDiff c =
|||||
CoCFRc − mean

(
CiCFRc

)

sd
(
CiCFRc

)
|||||

Table 1   Descriptive statistics of cities

Variable name Obs Mean SD Min 1st quantile 3rd  quantile Max

City-level CFR (%) 575 1.922 1.636 0.000 0.917 2.581 9.506
Average concentration of NO2 (PPB) 539 10.741 6.122 0.680 6.891 13.295 62.963
Average concentration of SO2 (PPB) 510 5.246 9.946 0.000 1.624 5.281 103.567
Average concentration of O3 (PPB) 526 20.579 8.887 0.000 15.912 24.639 124.515
Average concentration of PM2.5 (μg/m3) 559 58.187 30.616 0.877 35.716 73.117 173.151
Average concentration of PM10 (μg/m3) 539 29.086 19.492 1.000 15.849 37.706 139.048
Average AQI 593 27.772 18.111 0.0005 16.284 36.906 138.787
Probability of living with poor AQI (0-1) 593 0.145 0.214 0.000 0.005 0.217 0.963
Average temperature (°C) 618 15.700 5.853 − 3.483 11.698 18.542 42.282
Average atmospheric pressure (hPa) 617 1,002 47 653 1,010 1,016 1,100
Average humidity (%) 618 66.175 13.009 10.093 58.063 75.260 92.533
Days of InMR 578 265.661 157.548 0.000 133.250 435.000 489.000
Percentage of male 618 6.305 1.175 3.102 5.466 7.132 9.382
Logarithm of population density (1000/km2) 618 42.141 6.721 24.857 37.142 46.938 69.656
Percentage of population 15–44 618 24.802 4.660 6.078 21.541 27.687 42.604
Percentage of population 45–64 618 14.750 6.789 1.383 8.824 19.711 35.742
Percentage of population ≥ 65 618 2.306 0.079 1.951 2.258 2.364 2.458
Logarithm of GDP per capita (PPP) 575 1.922 1.636 0.000 0.917 2.581 9.506

Fig. 1   The spatial distribution of the city-level CFR of COVID-19
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where SDiffc is the standardized difference of country c, 
CoCFRc is the country-level CFR of country c, CiCFRc is 
the city-level CFR of country c in our data set, and sd and 
mean are the functions to obtain the standard deviation and 
mean, respectively. If the standardized difference of a cer-
tain county is slight, the country-level CFR is very similar 
to the mean of city-level CFR. The result shows that the 
largest standardized difference is 0.728 from Chile, while 
the smallest one is 0.022 from the USA. Because the larg-
est standardized difference is still lower than one standard 
deviation, the country-level data can represent the missing 
city-level data to some degree.

Air pollution data

The air pollution data are the atmospheric concentrations 
of several air pollutants, including PM2.5, PM10, SO2, NO2, 
and O3 (Data sources is listed in Table S1), Air Quality 
Index (AQI), and probability of living with poor AQI in 
more than 600 major cities of roughly 90 countries from 
2015 to 2020 (Spatial distributions of air pollution factors 
are illustrated in Fig. 2). PM2.5, PM10, SO2, NO2, and O3 
are the means of every record in the past 5 years. It must be 
mentioned that the records in 2019 and 2020 are the medi-
ans of each air pollutants in 24 h, while in other years, the 
periods might be longer. Furthermore, most cities have sev-
eral measurement points. The medians of air pollution are 
also based on the data from different measurement points 
in a specific city. The units of each type of air pollutant are 
transformed according to the United States Environmental 

Protection Agency requirements. The transformation pro-
cess is achieved by the data provider, the World Air Quality 
Project. The units of PM2.5 and PM10 are micrograms per 
cube meter (μg/m3); the units of SO2, NO2, and O3 are part 
per billion (PPB).

Because most of the counties in our data set do not pro-
vide AQI, we use the concentrations of air pollutants to cal-
culate the AQI based on European Union regulations and 
previous studies (Zoran et al. 2020). The AQI is estimated 
as follows:

where O3, NO2, PM10, SO2, and CO (carbon monoxide) rep-
resent the medians of each type of air pollution in a certain 
period, which is usually 1 day. However, because not all cit-
ies measure all those five air pollutants, any missing type of 
air pollution should be ignored. Based on the EU regulations 
and previous studies (Zoran et al. 2020), when AQI is higher 
than 50, the air quality would be classified as poor or very 
poor. The probability of living with poor AQI is calculated 
as follows:

where PoorAQI represents the probability of living with 
poor AQI, Count(AQI > 50) represents the days of poor AQI, 
and Count represents the total days in the data set (Table 1: 
descriptive statistics of cities).

(2)AQI = Max

(
O3

100
,
NO2

90
,
PM10

50
,
SO2

125
,

CO

10, 000

)
× 50

(3)PoorAQI =
Count(AQI > 50)

Count
× 100%

Fig. 2   The spatial distribution of NO2, SO2, O3, PM2.5, PM10, AQI concentrations, and probability of living with Poor AQI
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Other control variables

Ten other control variables are priced in at the beginning of 
this study. Meteorological variables, such as humidity, tem-
perature, and atmospheric pressure, are related to the health 
outcomes of COVID-19 (Irfan et al. 2021; McClymont and 
Hu 2021; Wu et al. 2020). Population age composition also 
impacts the city-level CFR of COVID-19 since the immune 
system of the elderly is relatively weaker than that of young 
people (Ioannidis et al. 2020; Liu et al. 2020; Onder et al. 
2020; Zheng et al. 2021). To obtain the population age com-
position data, we use the city location points to generate 
0.25 arc degree (roughly 25 km) buffers. Then, we calcu-
late the population in each age range based on the grid data 
with a 1-km resolution from “WorldPop” (Table S1: data 
source) (WorldPop 2019). In the meanwhile, the percentage 
of male and population density in the buffers are acquired. 
We estimate the GDP per capita of each city using a similar 
method, based on the grid data published in Scientific Data 
(Kummu et al. 2018). Here, the GDP per capita we use is 
the purchasing power parity in constant 2011 international 
USD. Internal movement restrictions (InMR) and interna-
tional movement restrictions (IMR) are effective policies 
controlling COVID-19. The InMR and IMR are obtained 
from Oxford COVID-19 Government Response Tracker. 
However, InMR and IMR are highly similar. To avoid the 
impact of multicollinearity, we only employ the InMR in our 
statistical analyses (Table 1: descriptive statistics of cities; 
Table S1: data source).

Methods

Mixed‑effects model (MEM)

We perform ordinary least square (OLS) regression at 
first, but the residuals of OLS are not normally distributed. 
To solve this problem, we exploit the MEM with random 
intercepts. From a general perspective, the policies about 
prevention and control are consistent in the same country 
(Yalaman et al. 2021). In this way, the COVID-19 CFR is 
related to countries, and the country variable should be used 
to determine the random intercepts. Nevertheless, we have 
only one or a few cities in many countries, so using the ran-
dom intercepts based on the country variable is not statisti-
cally rational. According to Moran’s I test, a previous study 
demonstrated the spatial autocorrelation of the country-level 
CFRs (Cao et al. 2020). In other words, the country-level 
CFRs are spatially clustering, and according to the figure in 
the research, there is a similarity of the CFRs within each 
continent (Cao et al. 2020). The city-level COVID-19 CFRs 
in each continent are relatively similar, while the difference 
is evident between different continents (Fig. S1). To slash 
the sum of square residuals in the regression, we employ 

MEM with random intercepts based on the continent vari-
able. In other words, except the intercept, other variables are 
fixed in the regressions. The formula is defined as follows:

where CFRij is the CFR of COVID-19 in city i in the conti-
nent j; APij is the air pollution data of city i in the continent j; 
DSCij is a vector of demographic, socioeconomic, and clini-
cal condition variables of city i in the continent j as control 
variables; β0j is the random intercept of the continent j; and 
εi is a random error term. β1 and β2 are the fixed param-
eters to be estimated. β1 is the coefficient of the relationship 
between air pollution and the COVID-19 CFR. β2 is a vector 
of coefficients of the association of the COVID-19 CFR with 
other variables.

The MEM assumes that there is no spatial difference 
among the cities in the relationship between air pollution 
and the city-level CFR, even though the intercepts in each 
continent are different. However, the effects of air pollution 
on the health outcome of COVID-19 in each city might be 
different. Therefore, the spatial variability of this relation-
ship could be more complicated. Furthermore, previous 
studies indicated that various sources of air pollution were 
attributable to premature mortality worldwide differently 
(Dedoussi et al. 2020; Lelieveld et al. 2015). In this study, 
we try to use a more complex spatial model, i.e., geographi-
cally weighted regression (GWR), to detect the spatial vari-
ability of the adverse impact of air pollution on the health 
outcome of COVID-19.

Geographically weighted regression (GWR)

GWR allows the estimated parameters to vary spatially, 
while MEM models always suppose that the relationships 
among variables are stationary (Li and Managi 2021a, b; 
Mollalo et al. 2020, 2021). Hence, the associations among 
the variables may be different or even opposite in terms 
of their spatial contexts, especially in large-scale analyses 
(Fotheringham and Oshan 2016; Li and Managi 2021a, c, 
Oshan et al. 2020). Moran’s I test on the residuals from 
the OLS regressions is performed to check whether the 
residuals are spatially clustering. It must be noted that 
the data used in the OLS regressions have removed the 
records with the country-level CFRs to delve into deep 
analyses. All the I statistics from Moran’s I tests are sig-
nificantly positive, indicating that spatial autocorrelation 
of the residuals exists. Therefore, GWR is a reasonable 
model to analyze the association of the COVID-19 CFR 
and air pollution. Basically, the GWR model divides the 
total data set into a large number of subsamples, based on 
a fixed distance, technologically called the bandwidth of 
the GWR. The root mean square prediction error for the 

(4)CFRij = �0j + �1APij + �2DSCij + �i
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GWR model is an essential index to acquire the optimal 
bandwidth. To obtain the optimal bandwidth in the analy-
sis, the cross-validation method based on the root mean 
square prediction error is employed:

where CV(b) is the sum of square residuals of Eq. 5 based 
on a specific bandwidth b, m is the total data size, p is the 
number of the parameters including the intercept in the anal-
ysis, CFRi is the COVID-19 CFR in the city i, and ̂CFRi(b) 
is the predicted CFR in the city i based on the bandwidth 
b. This function is U-shape (Brunsdon et al. 1998; Gollini 
et al. 2015). The b that makes the CV(b) close to the mini-
mum is considered the optimal bandwidth. In this study, all 
these functions are from the R package “GWmodel” (Gol-
lini et al. 2015). Based on the optimal bandwidth, the spa-
tially weighted matrix is built automatically. The spatially 
weighted matrix is calculated as follows:

where d denotes a vector of the distance between city i and 
other cities in the kth subsample and b denotes the largest 
distance, namely, the calibrated optimal bandwidth, in the 
vector d. Based on the general form of GWR, the equation 
in our study is designed as follows:

where CFRik is the CFR of COVID-19 in city i in the kth 
regression, APik is the air pollution data of city i in the kth 
regression, DSCik is a vector of control variables of city i 
in the kth regression, nk is the data size of the kth subsam-
ple, and εik is a random error term. β0k, β1k, and β2k are the 
parameters estimated in the kth regression, because the total 
sample is divided into several subsamples based on the spa-
tial contexts. To estimate the parameters, each subsample 
with its spatially weighted matrix is utilized:

where �̂k is a vector of parameters in the kth regression, 
including β0k, β1k, and β2k; Xk is a matrix of independent 
variables in the kth regression; Wi is the spatially weighted 
matrix of city i, based on the distance between the other cit-
ies and city i; and CFRk is a vector of CFR in cities of the 
kth subsample.

(5)CV(b) =
m
∑

i

�
CFRi −

̂CFRi(b)
�2

(m − p + 1)2

(6)Wi =

⎧
⎪⎨⎪⎩

�
1 −

�
d

b

�2
�2
, if element(i) ∈ sub sample k

0, if element(i) ∉ sub sample k

(7)CFRik = �0k + �1kAPik + �2kDSCik + �ik, i = 1,… , nk

(8)�̂k =
[
X
T
k
WiXk

]−1
X
T
k
WiCFRk

Quantitative effects of air pollution on COVID‑19 CFR

To demonstrate how much air pollution in cities influences 
the city-level COVID-19 CFR, we define a new index, the 
case fatality rate ratio (CFRR), to depict the CFR change 
after increasing air pollution. CFRR is the CFR change ratio 
after a 1-unit increase in a specific type of air pollution. 
For the MEM regression results, CFRRs are calculated as 
follows:

where CFRRl is the ratio of the predicted CFR change after 
a 1-unit increase in air pollution of type l to the current aver-
age CFR, β1l is the estimated parameter of air pollution of 
type l by Eq. 4, and CFR is the current average COVID-19 
CFR. Additionally, for the GWR results, CFRRs are esti-
mated as follows:

where CFRRil is the ratio of the predicted CFR change after 
a 1-unit increase in air pollution of type l to the COVID-19 
CFR in city i, β1kl is the estimated parameter of air pollution 
of type l in city i in the kth regression by Eq. 7, and CFRi is 
the COVID-19 CFR in city i.

Results

Air pollution’s impacts on the city‑level CFR

The associations of the COVID-19 CFR with seven air 
pollution factors are investigated. Model 1 to Model 7 are 
the estimation results based on Eq. 4, taking NO2, SO2, 
O3, PM2.5, PM10, AQI, and probability of living with poor 
AQI as the air pollution variable, respectively (shown in 
Table 2). Except the probability of living with poor AQI, all 
other air pollution factors are positively associated with the 
COVID-19 CFR. The coefficients of NO2, SO2, O3, PM2.5, 
PM10, and AQI on the COVID-19 CFR are 0.023 (95% con-
fidence interval: 0–0.045), 0.016 (95% CI: 0.001–0.030), 
0.015 (95% CI: 0.001–0.030), 0.014 (95% CI: 0.007–0.020), 
0.009 (95% CI: 0–0.018), and 0.012 (95% CI: 0.004–0.021), 
consistent with previous studies (Achebak et al. 2021; Wu 
et al. 2020; Zhang et al. 2021; Zoran et al. 2020). The posi-
tive coefficients of the relationships between air pollution 
and the COVID-19 CFR mean that the patients living with 
severe air pollution for a long time are more likely to die 
after the infection. Among five main air pollutants, the 
adverse impact of a 1-PPB increase in the concentration of 

(9)CFRRl =
�1l

CFR

(10)CFRRil =
�1kl

CFRi
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NO2 on the COVID-19 CFR is the strongest. However, the 
probability of living with poor AQI is not significantly asso-
ciated with the COVID-19 CFR. The probability of living 
with poor AQI is unable to exclude the situation that the 

cities are always with the AQI around 50, but their average 
AQI is still not high. In this way, the relationship between 
the COVID-19 CFR and the probability of living with poor 
AQI is not significant.

Table 2   MEM results

Note: *p < 0.1, **p < 0.05, ***p < 0.01

Dependent variable

City-level COVID-19 CFR (%)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Average concentration of NO2 0.023**

(0.012)
Average concentration of SO2 0.016**

(0.008)
Average concentration of O3 0.015**

(0.007)
Average concentration of PM2.5 0.014***

(0.003)
Average concentration of PM10 0.009*

(0.005)
Average AQI 0.012***

(0.004)
Probability of living with poor AQI 0.486

(0.417)
Average temperature 0.026* 0.020 0.013 0.006 0.016 0.013 0.014

(0.015) (0.015) (0.016) (0.014) (0.014) (0.013) (0.013)
Average atmospheric pressure 0.004*** 0.004*** 0.004*** 0.002* 0.003** 0.003*** 0.003**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Average humidity − 0.033*** − 0.041*** − 0.038*** − 0.037*** − 0.034*** − 0.035*** − 0.037***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.005) (0.005)
Days of InMR 0.002*** 0.001*** 0.002*** 0.002*** 0.001*** 0.002*** 0.001***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.0005) (0.0005)
Percentage of male − 0.115*** − 0.109** − 0.098** − 0.140*** − 0.108*** − 0.098** − 0.096**

(0.042) (0.042) (0.043) (0.041) (0.041) (0.039) (0.039)
Logarithm of population density − 0.059 0.020 0.017 − 0.061 − 0.062 − 0.025 − 0.006

(0.069) (0.067) (0.067) (0.068) (0.066) (0.061) (0.062)
Percentage of population 15–45 0.096*** 0.076** 0.092*** 0.077*** 0.079*** 0.076*** 0.074***

(0.030) (0.030) (0.030) (0.028) (0.029) (0.027) (0.028)
Percentage of population 45–65 0.003 − 0.015 − 0.0001 − 0.012 − 0.011 − 0.014 − 0.010

(0.021) (0.022) (0.022) (0.021) (0.021) (0.021) (0.022)
Percentage of population ≥ 65 0.094*** 0.085*** 0.090*** 0.088*** 0.084*** 0.088*** 0.081***

(0.028) (0.028) (0.029) (0.028) (0.028) (0.027) (0.027)
Logarithm of GDP per capita − 9.631*** − 9.557*** − 10.457*** − 4.896*** − 6.365*** − 7.382*** − 7.820***

(1.393) (1.441) (1.440) (1.350) (1.333) (1.223) (1.228)
Constant 22.570*** 23.380*** 23.715*** 15.540*** 16.969*** 18.078*** 19.489***

(3.109) (3.222) (3.198) (2.985) (3.050) (2.884) (2.853)
Observations 497 471 484 516 499 551 551
Log likelihood − 894.792 − 854.077 − 883.382 − 949.486 − 900.490 − 991.081 − 989.714
Akaike inf. crit. 1,817.584 1,736.154 1,794.763 1,926.972 1,828.979 2,010.162 2,007.429
Bayesian inf. crit. 1,876.504 1,794.322 1,853.313 1,986.417 1,887.956 2,070.526 2,067.793
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The results of the control variables in the analysis also 
make sense. The average atmospheric pressure is positively 
associated with the COVID-19 CFR. The cities always with 
a low atmospheric pressure have high altitudes. Normally, 
the human settlements with high population density and 
convenient transportation are distributed in the low-altitude 
areas, where the transmission of COVID-19 is relatively 
more serious. Furthermore, relatively high air pressure 
is associated with more medical consultations and harms 
physical health by inducing chronic obstructive pulmonary 
disease (Ferrari et al. 2012). In addition, the average humid-
ity is negatively correlated with the COVID-19 CFR. Living 
in dry air for a long time is related to a high probability of 
adverse health outcomes after the infection of COVID-19, 
in line with a previous study (Wu et al. 2020). In fact, high 
humidity could slash the transmission of COVID-19, even in 
the humid country, Bangladesh (Haque and Rahman 2020). 
A relatively lower prevalence of COVID-19 could reduce 
the pressure on the medical systems to save more patients. 
Days of InMR are positively associated with the COVID-19 
CFR because the cities with severe outbreaks tend to have a 
longer and stricter lockdown policy, lining up with previous 
research (Wu et al. 2020). The percentage of male is nega-
tively related to the COVID-19 CFR, but it does not mean 
that males are less susceptible. Previous studies proposed 
that the male patients of the COVID-19 are at higher risks 
of death relative to female patients (Williamson et al. 2020) 
since female patients have a higher antibody response (Kopel 
et al. 2020). However, in our data set, there is a significantly 
positive correlation between the percentage of male and the 
percentage of the population between 15 and 45 (correla-
tion coefficient = 0.538), and negative correlations among 
the percentage of male, the percentage of the population 
between 45 and 65 (correlation coefficient = − 0.290), and 
the percentage of the population over 65 (correlation coef-
ficient = − 0.501). Therefore, the negative association of the 
percentage of male with the COVID-19 CFR may be caused 
by the relative longevity of females. There is no significant 
relationship between population density and the COVID-19 
CFR. The COVID-19 CFR partially represents the propor-
tion of people with underlying diseases in the cities, which is 

generally not related to population density. The percentages 
of the population between 15 and 45 and over 65 are posi-
tively associated with the COVID-19 CFR. Elders are more 
vulnerable, tallying with previous studies (Williamson et al. 
2020; Wu et al. 2020). Young people are relatively loose in 
implementing lockdown policies, which might cause more 
infection ultimately influence the COVID-19 CFR (Cortis 
2020). The GDP per capita is negatively correlated with the 
COVID-19 CFR. Therefore, people living in rich cities have 
a relatively lower probability of death because, in those cit-
ies, the medical system is complete.

To demonstrate the impacts of air pollution on health 
outcomes in COVID-19, the CFRRs of each air pollution 
factor are calculated using Eq. 8, based on the parameters 
estimated by the MEM. The CFRRs of each air pollu-
tion factor, their 95% confidence intervals (CIs), and the 
t-values are listed in Table 3. A 1-PPB increase in the long-
term average concentration of NO2 is related to a 1.450% 
(95% CI: 0.002–2.870%) increase in city-level COVID-19 
CFR, according to Model 1. Additionally, the CFRRs of an 
increase in other air pollution factors, including SO2, O3, 
PM2.5, PM10, and AQI, are 1.005% (95% CI: 0.064–1.952%), 
0.992% (95% CI: 0.072–1.905%), 0.860% (95% CI: 
0.439–1.270%), 0.568% (95% CI: − 0.028 to 1.156%), 
and 0.776% (95% CI: 0.229–1.312%), respectively, based 
on Models 2–6 (shown in Fig. 3). In summary, long-term 
exposure to high air pollution concentrations is positively 
associated with the local COVID-19 CFR. Putting it another 
way, people living with higher air pollution concentrations 
are more likely to die after infection by the coronavirus and 
more possible to have other diseases, such as nonmalignant 
respiratory deaths, lung cancer, and cardiovascular disease, 
among others.

Spatial variability of air pollution’s impacts

Figure 4 illustrates the spatial distribution of the coefficients 
of each air pollution factor, estimated by the GWR. The 
results are spatially non-stationary, i.e., the coefficients are 
different among cities. Based on the t-values of coefficients, 
the local coefficients of SO2 and PM10 are not significant, 

Table 3   Coefficients, CFRR, 
95% confidence intervals, and t 
value for air pollution factors

Note: *p < 0.1, **p < 0.05, ***p < 0.01

Variable Coefficient CFRR(%) 95% CI t value

Model 1 Average concentration of NO2 0.023** 1.450 (0.002 to 2.870) 1.968
Model 2 Average concentration of SO2 0.016** 1.005 (0.064 to 1.952) 2.064
Model 3 Average concentration of O3 0.015** 0.992 (0.072 to 1.905) 2.100
Model 4 Average concentration of PM2.5 0.014*** 0.860 (0.439 to 1.270) 4.031
Model 5 Average concentration of PM10 0.009* 0.568 (-0.028 to 1.156) 1.863
Model 6 Average AQI 0.012*** 0.776 (0.229 to 1.312) 2.788
Model 7 Probability of living with poor AQI 0.486 30.445 (-21.213 to 80.735) 1.165
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and the local coefficients of other air pollution factors are 
partially significant. According to GWR results, there is a 
significant relationship between the COVID-19 CFR and the 
NO2 concentration in Europe, North America, and South 
America, shown in Fig. 4. In the Western United States, the 
negative impacts of NO2 on human health are the strong-
est. The O3 concentration is significantly associated with 

the COVID-19 CFR in Europe, especially Western Europe. 
The situation of the PM2.5 concentration is similar to O3’s, 
but the negative relationship between the CFR and the PM2.5 
concentration is found in Southern Australia, illustrated in 
Fig. 4. However, it does not mean that in Australia, air pol-
lution is good for health. Because most patients in Australia 
concentrate in Victoria, the cities in the Southern part of 

Fig. 3   The CFRRs of severn air 
pollution types

Fig. 4   The spatial distribution of the coefficients of NO2, O3, PM2.5, AQI, and probability of Living with Poor AQI
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Australia have fewer people infected. Therefore, the CFR in 
those Southern cities is relatively high because the denomi-
nator, the number of confirmed cases, is small (shown in 
Fig. 1). Furthermore, the cities with data in Australia are 
far from the cities in the data set, so the local data sets for 
those cities are limited, based on the bandwidths used in 
GWR. In Fig. 4, the AQI is positively related to the CFR in 
North America and South America, while the relationship in 
Eastern Australia is the opposite. The reason for this nega-
tive relationship is the same as the relationship between the 
PM2.5 concentration and the CFR. The association of the 
CFR with the probability of living with poor AQI is signifi-
cant in partial Europe, North America, and South America, 
in Fig. 4. The negative impacts of the probability of living 
with poor AQI are the strongest in the Canada and Northern 
part of the USA.

Figure  5 spatially illustrates the CFRRs of a 1-unit 
increase in particular air pollution factor, estimated by 
Eq. 10. The mean of the CFRR of a 1-PPB increase in NO2 
is 7.59%, ranging from 0.77 to 34.10%. The means of the 
CFRRs of a 1-unit increase in O3, PM2.5, AQI, and prob-
ability of living with poor AQI are 12.41% (1.49–46.44%), 
3.70% (− 0.59 to 15.04%), 2.39% (− 5.51 to 6.04%), and 
2.83% (0.27–10.81%), respectively. In France, the city-level 
CFRs are sensitive with the NO2, O3, and PM2.5 concentra-
tion (Fig. 5), because the CFRs in France are relatively lower 
(Fig. 1) and the coefficients of the relationship between the 
CFR and air pollution are relatively higher (Fig. 4). In this 
sense, French air pollution control has been effective in 
the past 5 years, and people in France do benefit from high 

air quality. The cities with high positive CFRRs are more 
easily affected by air pollution because they are relatively 
cleaner. People could gradually accept air pollution (Li and 
Managi 2021a). It must be noted that the negative values 
of the CFRRs only exist in Australia and need to be treated 
carefully because the data sizes are limited.

Policy discussion

Our analyses provide a critical view of how a range of air 
pollutants are significantly associated with the health out-
comes of COVID-19. This study discusses the negative 
impact of long-term exposure to air pollution on public 
health rather than its effects during the COVID-19 pan-
demic. COVID-19 intensively shows these negative impacts, 
i.e., the patients infected by COVID-19 with chronic dis-
eases are more likely to die, and this poor health status might 
be caused by long-term exposure to air pollution. Here, we 
examine the role of air pollutants on the city-level CFR by 
employing MEM and GWR. The results indicate that the 
long-term average concentrations of NO2, SO2, O3, PM2.5, 
PM10, and AQI are positively associated with the city-level 
CFR. Moreover, the relationships between the city-level 
CFR and air pollutants estimated by GWR show the local 
significance and spatial variability.

The relationship between long-term exposure to air pol-
lution and mortality risk is plausible for several reasons. 
Long-term exposure to air pollution causes more chronic 
diseases, a weaker respiratory system and immune system 
(Cruz-Sanchez et al. 2013; Popovic et al. 2019), and the 

Fig. 5   The spatial distribution of the CFRRs of 1-unit increase of NO2, O3, PM2.5, AQI, and probability with poor AQI
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reason for more deaths after being infected by COVID-19 
is the poor health status. First, a variety of adverse health 
outcomes is attributed to long-term exposure to air pollu-
tion. Evidence showed that acute respiratory symptoms, 
exacerbated asthma, and nonfatal heart attacks, among 
others, were associated with long-term exposure to air 
pollutants, especially PM2.5 and O3 (Dedoussi et al. 2020; 
Lelieveld et al. 2015; Pope et al. 2018). The mechanisms 
of these diseases are as follows: fine particles carry more 
radioactive elements producing free radicals; destroy the 
balance of intracellular calcium; and are related to inflam-
matory injury (Xing et al. 2016). Secondly, chronic dis-
eases exacerbate the severity of symptoms and reduce the 
probability of recovery after infection (Benmarhnia 2020; 
Magazzino et al. 2020; Wu et al. 2020). Previous stud-
ies indicated that pre-existing mortalities of 20 diseases 
were spatially associated with COVID-19 mortality (Mol-
lalo et al. 2021), and diabetes, severe asthma, and many 
other medical conditions are related to COVID-19-related 
deaths (Williamson et al. 2020). Additionally, previous 
studies demonstrated that air pollution was directly asso-
ciated with morbidity (Li et al. 2020; Zhang et al. 2020; 
Zhu et al. 2020). Specifically, the associations of PM2.5, 
PM10, NO2, SO2, and O3 with confirmed COVID-19 cases 
or mortalities are positive (Li et al. 2020; Ogen 2020; Zhu 
et al. 2020; Zoran et al. 2020). Air pollutants, such as 
PM2.5 and PM10, also influence the coronavirus spread, as 
the fine particles are considered carriers of the coronavi-
rus (Zhang et al. 2021). To sum up, severe air pollution is 
positively associated with the COVID-19 CFR.

The spatially significant coefficients of air pollutants are 
distributed in the lightly polluted cities, especially Europe, 
North America, and South America. Moreover, the coef-
ficients are spatially different, indicating that air pollutants’ 
effects might be various. For instance, air pollutants and the 
COVID-19 CFR in Europe, especially France, are low. After 
reviewing many previous studies, the effects of air pollutants 
are not totally the same in different countries (Katoto et al. 
2021), e.g., China (Zhang et al. 2021; Zhu et al. 2020), the 
USA (Wu et al. 2020), Europe (Ogen 2020), and the UK 
(Travaglio et al. 2021), among others. These indicate that 
the spatial variability of the relationship between air pollu-
tion and the COVID-19 health outcome exists. Due to vari-
ous living environments, the negative impacts of a marginal 
increase in air pollution are different (Li and Managi 2021a, 
b). Moreover, the different lifestyles, such as diets (Tilman 
and Clark 2014), work, and social connections (Imbulana 
Arachchi and Managi 2021), among others, also cause the 
variability of health status (Mollalo et al. 2021), and even-
tually matter to the impacts of air pollution on health. The 
GWR results illustrate the spatial variability of the relation-
ship between the COVID-19 outcomes and air pollution by 
the spatially non-stationary air pollution parameters.

Our study implies that policymakers should pay more 
attention to air pollution. The adverse impacts of air pol-
lution are intensively shown in this catastrophic pandemic, 
COVID-19. When combating the COVID-19, the policies 
should be flexible and targeted. In high-risk areas, such as 
places with severe air pollution, strict legislation, enough 
personal protective equipment and vaccines are required 
to avoid the higher mortality. Furthermore, we also should 
be aware of the trade-off between the environment and the 
economy to some degree (Guan et al. 2020; Hsiang et al. 
2020). The associations of the COVID-19 CFR with air pol-
lution are positive. However, the relationships between the 
economy and these pollutants are also positive, which indi-
cates that economic development is associated with more air 
pollution (Zhu et al. 2019). Accordingly, policies reducing 
air pollution should be treated carefully because the envi-
ronmental benefit may not completely offset the loss of the 
economy and society (Magazzino et al. 2021). Moreover, of 
note, the results also demonstrate that the effects of the dif-
ferent air pollutants have spatial variability. This emphasizes 
that air pollution may have different degrees of effects on 
public health globally, so air pollution policies should be 
adapted to local situations. In a nutshell, the governments 
and the public should care more about air pollution, even 
though the concentrations are at unnoticeable levels.

Limitations of this study

There are several limitations in this research. First, this study 
focuses on the CFR to indicate the disease fatality. However, 
the CFR accuracy varies spatially because mortality data 
are more accurate, while many infected people are never 
confirmed owing to no obvious symptoms. Even though a 
reliable data set is used (Oxford COVID-19 Government 
Response Tracker,) this problem still exists. Second, we 
could not perform further analysis without the city-level 
mortality rate and incidence rate due to the lack of an exact 
city-level population. Third, some sociodemographic and 
comorbidity characteristics, such as occupational composi-
tion and comorbidity mortalities, among others, cannot be 
obtained, which could also influence the CFR of COVID-19. 
Fourth, some countries do not have city-level data, so we 
must use subnational- or national-level data as substitutes. 
This is the main reason for the clustering residuals, which 
ultimately are the reason for removing national-level data 
in the GWR. Fifth, due to a lack of individual-level data, 
we cannot delve into the physical mechanism of air pol-
lution’s impacts on human health. Finally, the heterogene-
ity of factors within an individual city may be enormous, 
which is ignored in this study. In the future, the cumulative 
effects of long-term exposure to air pollution on the immune 
system should be determined. Furthermore, the impacts of 
air pollution on coronavirus variants are also an essential 
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topic to discuss. Since variants are more likely to survive 
in patients with weak immune systems, the poor air quality 
might increase the surviving variants of coronavirus.

Conclusions

To the best of our knowledge, our study is the first to analyze 
the global relationship between several air pollution factors 
and the city-level COVID-19 CFR. Patients who are exposed 
to air pollution in long term are more likely to die after infec-
tion of COVID-19. Our results indicate that a 1-unit increase 
in NO2 (PPB), SO2 (PPB), O3 (PPB), PM2.5 (μg/m3), PM10 
(μg/m3), and AQI (score), is related to a 1.450%, 1.005%, 
0.992%, 0.860%, 0.568%, and 0.776% increase in the city-
level COVID-19 CFR, respectively and globally. Addition-
ally, the effects of NO2, O3, PM2.5, AQI, and probability of 
living with poor AQI on COVID-19 spatially vary because 
of the difference in living environments, lifestyle, and aver-
age health status globally. Theoretically, the impacts of 
reducing air pollution on public health are positive during 
the COVID-19 pandemic, and long-term exposure to air pol-
lution might cause permanent health damage. Additionally, 
our results have several practical implications. First, decreas-
ing air pollution is significant in improving human health. 
People in some regions with poor air quality are more likely 
to die after the infection of COVID-19. Secondly, due to 
different environments and lifestyles, the impacts of air pol-
lution on health spatially vary. Thus, air pollution policies 
should be formulated according to local situations to balance 
the economic costs and health benefits. The air pollution 
restrictions should be stricter in severely polluted areas.
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