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Abstract
Eco-toxicity profiles for commonly used disinfectants were lacking. Available traditional toxicity techniques have some 
limitations (assessments and ethical issues). Behaviour toxicology is a promising research area towards early warning and 
non-invasive approaches. We studied the potential eco-toxic effects of sodium hypochlorite (NaOCl) on the swimming 
behaviour of zebrafish. Zebrafish were exposed to different concentrations (Treatment I, Treatment II, Treatment III, and 
Treatment IV) of NaOCl for 360 h. Recovery study (144 h) was conducted for NaOCl treatment groups. The swimming 
behaviour of zebrafish was quantified efficiently using an online monitoring system (OMS). OMS dataset was processed for 
determination of behavioural differences by MATLAB and SPSS. Compared to the control group, the swimming strength of 
zebrafish under NaOCl treatments declined significantly (p < 0.001). Avoidance behaviour has occurred on zebrafish under 
NaOCl exposure periods. Furthermore, NaOCl toxicity also adjusted circadian rhythms on zebrafish. Zebrafish swimming 
strength was significantly (p < 0.001) improved under-recovery periods. Moreover, normal diurnal patterns have occurred. 
NaOCl could cause behavioural abnormalities in non-target organisms. Continuous exposure to common disinfectants could 
cause external and internal stress on non-target organisms, resulting in behavioural changes and circadian rhythm adjust-
ments. Continuous changes in behavioural and circadian rhythms might reduce organisms’ fitness and adaptation capacity. 
This study highlights (1) the importance of computer-based toxicity assessments, and (2) swimming behaviour is an early 
warning biomarker for eco-toxicity studies.
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Introduction

Water demand and pollution lead to the treatment and 
reuse of water resources (Senthil Rathi et al. 2021). Fail-
ure of water treatment systems in inactivating pathogens 
has resulted in outbreaks of many waterborne diseases and 
illnesses. Disinfectants are the best option for eradicat-
ing microbes in water treatment systems and other fields 
(aquaculture, agriculture, domestic purposes, and health 
care centres) (Holm et al. 2019; Yun et al. 2020; Choi et al. 
2021; Huang et al. 2021). Different kinds of disinfectants 
were commercially available (totally 131 household prod-
ucts) for use (Goh et al. 2021). Chlorine is predominantly 
disinfectant because of its significant antimicrobial activity 
and least expensive advantages (Dastagiri Reddy and Elias 
2021). Sodium hypochlorite (NaOCl) is a mostly used chlo-
rine-based disinfectant; since the seventeenth century, it has 
been capable of destroying pathogens (including persistent 
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pathogens) more efficiently (Ujimine et al. 2017). Thus, 
most household bleach contains NaOCl (up to 9%) as the 
active ingredient (CDC-https://​cfpub.​epa.​gov/​giwiz/​disin​
fecta​nts/​index.​cfm). NaOCl-based products are recognised 
as essential germicides (US-EPA 1967). They are used in 
different (domestic, industrial, aquaculture, agriculture, vet-
erinary practices, scientific, and biomedical) applications 
(dwell time: 30 s, pathogens: bacteria and viruses) (Emma-
nuel et al. 2004; Tudela et al. 2019; Duerschner et al. 2020). 
The EPA recently recommended NaOCl (EPA itemised: 72 
products, formulation type: dilutable, wipe, ready to use, 
Viking, electrostatic spray; surface type: hard nonporous, 
food contact post rinse required) as the active ingredient 
to inactive SARS-CoV-2 (US-EPA 2021). The WHO also 
recommended NaOCl as biocides at 0.1% and 0.5% for gen-
eral environmental and blood spill disinfections, respec-
tively, for SARS-CoV (WHO 2020). Overuse of disinfect-
ants (e.g., NaOCl) resulted in the mortality of 17 different 
free-living species in Chongqing, China (Nabi et al. 2020). 
Environmental factors govern the decomposition process 
of NaOCl, decompose slower with air, and the process is 
accelerated under direct light conditions. NaOCl has been 
categorised under Class-I toxic substance by US-EPA due to 
its developmental effects on biota (as mentioned in Elia et al. 
2006). The concern is that approximately 80% of waste-
water (including aquaculture wastewater) is rereleased to 
environmental compartments without proper treatment (Xie 
et al. 2019; Deere et al. 2020). Global use of disinfectants 
is also escalating (up to 0.78 billion during 2020) after the 
pandemic (Subpiramaniyam 2021). Generally, a high con-
centration (1000 ppm) of NaOCl is required to neutralise 
pathogens in the contaminated zones (bathroom and toilet) 
(Rim 2021). Hence, it is essential to measure disinfectant 
performance and the potential impacts on non-target organ-
isms to ensure their safety and sustainability (Macedo et al. 
2020; WHO 2020).

Increasing the biological effects of waterborne contami-
nants has led the scientific community to develop biomark-
ers using biological models (Makaras et al. 2018; Falcao 
et al. 2019). Biological monitoring methods provide infor-
mation on waterborne contaminants’ potential impacts on 
ecological risk assessment (Makaras et al. 2020) . Zebrafish 
is the most recommended model for various (behavioural, 
neuro-, and ecotoxicology) aquatic biological monitoring 
studies (Hong and Zha 2019; Loring et al. 2020; de Oliveria 
et al. 2021). Available traditional biological endpoints have 
some limitations: toxicity tests conducted at high concentra-
tions; no early-warning biomarkers are focused (Magalhaes 
et al. 2007; Hong and Zha 2019). Behavioural activity is 
the primary response of organisms to reveal the initiation 
of changes in physiological and ecological processes. Thus, 
an organism’s behavioural activity can be recognised as 
valid biomarkers to assess the water quality of an aquatic 

ecosystem and the toxicity of waterborne contaminants 
(Xia et al. 2016). Additionally, behaviour biomarkers do not 
require animal sacrifices even at long-term toxicity monitor-
ing. The swimming behaviour is a routine process of fish 
that governs other essential behavioural activities such as 
searching for feed, protecting from predators, reproduction, 
Etc. The swimming behaviour of a fish might affect under 
stress conditions. Thus, we can observe different stages 
(safe, acclimation, adjustment, or toxic) on the swimming 
response of fish (Ren et al. 2018). These behavioural changes 
could result in hyper- or hypo-activity. Generally, agitated 
(hyperactive) behaviour could occur under stress conditions 
when fish habitat is in the open environment. Suppose fish 
habitat is in an unescapable milieu. To elude themselves 
from the external stimuli, they could minimise the gill 
movement (increase distance between gill epithelium and 
the external environment) and water flow. This action could 
result in hypoactivity. This situation is an indication of the 
avoidance behaviour of fish. Noteworthy, avoidance behav-
iour could reveal fish’s sensing capability to stressors. The 
significance of these endpoints could increase the ecologi-
cal significance of risk assessment procedures. Behaviour 
anomalies associated with toxicant treatment can recover 
once fish are introduced to a toxicant free environment; thus, 
recovery responses are recognised as an assisting parameter 
in behavioural toxicology (Ren et al. 2021).

The continuous contamination of water systems has 
led to the development of reliable real-time monitoring 
approaches. Real-time ecological or biological monitoring 
is possible only with the computer-based apparatus. Thus, 
researchers developed different types of computer-based 
real-time monitoring sensors and systems in recent years. 
Noteworthy, online monitoring systems are inexpensive, 
user-friendly, require no human interference, and harmless 
to test specimens (Pasternak et al. 2017; Anas et al. 2020). 
Real-time monitoring technologies based on fish swimming 
behaviour are improved much in recent years, which signi-
fies the significance of behavioural toxicology (Zhang et al. 
2015). Long-term eco-toxicity assessment is possible using 
online behaviour monitoring systems. The generated behav-
iour data can be analysed using computer software, making 
online behaviour assessments more manageable and efficient 
monitoring systems (Xia et al. 2016).

This study’s hypothesis is to use fish swimming behav-
iour as an early warning non-invasive biomarker to assess 
the impacts of waterborne contaminants. We also highlight 
the importance of online monitoring systems in continu-
ous eco-toxicity assessments in this study. To evaluate the 
eco-toxicity of commonly used disinfectants on non-target 
organisms, we exposed zebrafish to different concentrations 
of NaOCl for 360 h. We analysed swimming behaviour using 
an online monitoring system (OMS). The recovery study 
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(after NaOCl treatment period, zebrafish were introduced 
to normal water) conducted for 144 h.

Materials and methods

Zebrafish care

Healthy Danio rerio (AB wild-type, 5–6 months old, length 
3.4 ± 0.4 cm, weight 0.4 ± 0.1 g) used in this study were 
obtained from our fish breeding laboratory (location: Insti-
tute of Environment and Ecology, Shandong Normal Univer-
sity, Jinan, China). Zebrafish were maintained in a recircu-
lating aquaculture system (water was aerated by air bubblers 
and purified with activated carbon and filter cotton, continu-
ously) at constant photoperiods (light - 12 h: dark - 12 h). 
Rearing conditions were set optimum with the following 
water-quality parameters, temperature (27 ± 0.5 °C), water 
hardness (250 ± 20 mg/L), and pH (7.8 ± 0.2). Zebrafish 
were fed twice a day with commercially available fish feed. 
We removed uneaten feed and fish faecal matters manually at 
regular (at least 1 h later to feeding) intervals. We used both 
sexes of zebrafish for tests. We avoided abdomen elongated 
zebrafish for tests.

Procurement of NaOCl and preparation of test 
concentrations

NaOCl was purchased from NAIS Group, Co., Ltd., China. 
NaOCl contaminated water was prepared by mixing NaOCl 
(appropriate amount, based on the requirement) in water 
(collected from the rearing system). Control: 0 µL of NaOCl, 
Treatment I: 0.0025% v/v, Treatment II: 0.005% v/v, Treat-
ment III: 0.0075% v/v, and Treatment IV: 0.01% v/v. NaOCl 
contaminated water renewed (5 L) at every 96 h of the study 
periods.

Online behavioural toxicity assessment

We used an OMS to assess the zebrafish’s swimming 
strength (Fig. 1). The main components of OMS are a fish 
chamber with metal sensors, a water-flow system (water 
tank, peristaltic pump), and a normal computer (central 
processing unit-CPU, monitor, and software). Fish cham-
ber (material: high-grade plastic, size: 5 cm in diameter and 
7 cm in length, shape: cylindrical) has two opening edges 
(top and bottom) and two pairs of metal electrodes (sensors) 
on its inner surface. Metal sensors are connected to the CPU 
through copper-coated PVC cables. The water-flow system 
connects the fish chamber with rubber tubes. Water from 
the tank pumped at 30 mL/min flows to the fish chamber 

through the peristaltic pump. The bottom valve of the fish 
chamber receives water from the tank, and the top valve 
ousts the water back to the same tank to complete a water 
cycle. The metal sensors are the automatic samplers of the 
OMS. The CPU and software process the samples through 
A/D transformers (analogue to digital convertor) and display 
them on the computer monitor. System calibrations were 
performed with and without zebrafish in the fish chamber 
at constant water flow. We managed the sensing capacity of 
the sensors to harvest behaviour strength of fish between 0 
and 1 to determine no movement and full movement, respec-
tively. The signal acquisition and transmission of the OMS 
are shown in Fig. 1. The sensor senses the fish movement 
by touch evoked electrical impulse. The sensors generate 
electrical signals. One pair of sensors sends a high frequency 
of the electrical signal of altering current, and the electrical 
signal was received by another pair of sensors in the fish 
chamber. The A/D transformers digitalised this electrical 
signal. The software in the computer analyses these digital-
ised signals. The result is displayed as a line graph on the 
computer monitor.

Main group: zebrafish (three numbers) were randomly 
collected from the rearing system and housed in the OMS 
fish chamber (single chamber). Zebrafish were starved for 
24 h before the commencement of the behavioural tests. 
Nevertheless, they were fed once a day with regular feed 
during the tests. An appropriate amount of NaOCl (Treat-
ment I: 0.0025% v/v) was mixed in the tank connected to the 
fish chamber. Replicates: Simultaneously, three replicates 
were also maintained. Similar setups were upheld for the 
control (without adding NaOCl), Treatment II (0.005% v/v), 
Treatment III (0.0075% v/v), and Treatment IV (0.01% v/v) 
groups. We used water from the rearing system to perform 
all tests. We also maintained the water-quality parameters 
and photoperiods similar to the rearing system.

We continuously monitored the behavioural toxic-
ity of NaOCl for 360 h with normal photoperiods (light-
12 h : dark-12 h). We conducted the recovery capability of 
zebrafish to NaOCl toxicity for 144 h with regular photoperi-
ods (light-12 h : dark-12 h).

Data analysis

We used MATLAB Environments (MATLAB 2009, @ 
1984–2009, The Math-Works, Inc.) to calculate the Mean 
value from the OMS dataset. Standard deviation (SD) was 
calculated using an MS-Excel worksheet. We used Statisti-
cal Product and Service Solutions (SPSS 16.0) to execute 
a general linear model (univariant analysis and Duncan’s 
multiple range tests-DMRT). We used MATLAB to process 
the real-time data and obtain figures for swimming strength, 
autocorrelation, and self-organising map (SOM). The Mean 
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Fig. 1   Water-flow and automatic signal acquisition processes of online monitoring system (OMS)
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of every hour was used for all analyses. We used different 
file format for SOM (text-tab delimited.txt), autocorrelation-
MS Office-Excel worksheet-.xlsx) (pls. see Suppl Material.
docx).

Circadian differences were calculated by using the for-
mula in MS-Excel worksheet:

where AVN and AVD are the average value of night and day 
time, respectively.

Time delay D (AVN − AVD) =
(AVD − AVN)

AVN
× 100%

Results

We showed real-time swimming behaviour (360 h) of the 
control and NaOCl treatment (Treatment I, II, III, and IV) 
groups in Fig. 2. The behaviour strength of the control group 
was found higher during the daytime and lowered during the 
night. A series of auxiliary actions have also resulted in the 
control group during the daytime. The behaviour strength of 
the NaOCl treatment groups was affected when compared to 
the control group. We visualised a series of abnormal, read-
justment, and undifferentiated actions on the NaOCl treat-
ment groups. However, we visualised a few auxiliary actions 
in the NaOCl treatment groups. The behaviour strength of 
the NaOCl Treatment I group is predominantly similar to 
the control group. Behaviour strength was partially identical 

Fig. 2   Real-time swimming behaviour of zebrafish for 360 h of study 
periods. Solid lines and shaded dotted lines signify real-time swim-
ming strength and S.D., respectively. Night of the study periods 
represented in shadow bars on the behaviour strength. Bar graphs 
beside behaviour strength of each group illustrate the differences in 

the behaviour strength at different photoperiods. Lowercase alphabets 
above the bars reveal statistical differences (DMRT, p < 0.001) among 
other groups. Symbols on the behaviour strength: oval, diamond, 
square box, and triangle to represent abnormal, auxiliary, undifferen-
tiated, and readjustment actions
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to the control group in both NaOCl Treatment II and III 
groups. A series of undifferentiated actions have occurred 
in both Treatment III and IV groups. Among NaOCl treat-
ment groups, behaviour strength affected the Treatment IV 
group immensely. Differences in behaviour strength of each 
group at different photoperiods are illustrated in bars. Over-
all, swimming behaviour declined significantly (p < 0.001) 
in NaOCl treatment groups compared to the control group. 
Bars reveal that zebrafish swimming activity was higher dur-
ing the daytime when compared to the night.

We illustrated recovery responses of zebrafish for 144 h 
study periods in Fig.  3. Zebrafish swimming strength 
improved under-recovery study periods in all NaOCl treat-
ment groups. However, NaOCl Treatment groups (except 
NaOCl Treatment I) were not similar to the control group. 
Not many alterations have occurred under control and 
NaOCl Treatment I exposure compared to 360 h of study 
periods. When compared among NaOCl treatment groups, 
zebrafish swimming strength greatly improved under Treat-
ment II. Observed recovery responses were statistically sig-
nificant (p < 0.001).

As shown in Table 1, differences in swimming strength 
were statistically significant (p < 0.001) among the factors 
such as groups, days, photoperiods, groups and days, groups 
and photoperiods, days and photoperiods, and groups and days 
and photoperiods. Adjusted “r” squared for 360 h and 144 h 
(recovery study) study periods were 7.72% and 7.96%, respec-
tively, which reveal a strong association between the factors.

The light period is 8:00 a.m. to 7:59 p.m. every day, and 
the dark period is 8:00 p.m. every day to 7:59 a.m. on the 
next day. Values represent Mean ± S.D for each group.

We tabulated zebrafish swimming differences at the dif-
ferent time-delayed trials in Table 2. Statistical analysis 
reveals that zebrafish swimming strength was higher dur-
ing daytime (AVD) in 360 and 144 h exposure periods. The 
control group AVD maximum percentage change resulted 
for NaOCl Treatment IV group, at 360  h (32.7%) and 
144 h (28%) study periods. A minimum percentage change 
occurred for NaOCl Treatment I (360 h: 8.7%) and Treat-
ment II (144 h: 0.2%). A maximum AVN percentage change 
resulted for NaOCl Treatment III (360 h: 20.1%) and Treat-
ment II (144 h: 28.3%) groups. A minimum AVN percentage 
change occurred for NaOCl Treatment I for 360 (2.8%) and 
144 (12.8%) h of study periods. Among the NaOCl treat-
ments, maximum percentage differences between AVN and 
AVD resulted in the Treatment I group (43.3%) for 360 h of 

study periods and the Treatment III group (47.8%) for 144 h 
of study periods. A minimum percentage change occurred 
for the Treatment IV group (24.9%) and the Treatment II 
group (11.7%) for 360 and 144 h study periods. Observed 
behavioural differences for AVD (daytime) and AVN (night) 
were statistically significant at p < 0.05.The light period is 
8:00 a.m. to 7:59 p.m. every day, and the dark period is 8:00 
p.m. every day to 7:59 a.m. on the next day. Values represent 
Mean ± S.D for each group. a Indicates p < 0.05 of different 
treatments compared to the control group.

SOM profiles for the control and different NaOCl treat-
ment groups are illustrated in Fig. 4. Daytime and night 
of the study periods were differentiated by ordination 
map, in which the upper zone is night and the lower zone 
is daytime. Six clusters are classified in this study. We 
represented each cluster in different colours in the den-
drogram. The Ward linkage method calculates the close-
ness between each cluster. Clusters 2 and 6 represent the 
daytime of the study periods. And, Clusters 3 and 4 sig-
nify the night of the study periods. Figure 4 illustrates 
SOM profiles for the control, NaOCl Treatment I, II, III, 
and IV groups. Zebrafish (under 0% NaOCl) swimming 
activity was higher during the daytime and decreased at 
night. Similar responses have resulted in NaOCl treat-
ment groups. However, SOM profiles for NaOCl treatment 
groups did not completely match the control group SOM.

SOM profiles for zebrafish under-recovery study peri-
ods are exemplified in Fig. 5. The upper and lower zones of 
the ordination map signify night and daytime, respectively. 
We visualised six clusters in the dendrogram. The close-
ness between clusters 1 and 4 indicates day, and clusters 2 
and 3 imply the night of the study periods. We visualised 
differences and partial matching of swimming strength in 
this study. SOM profiles for NaOCl treatment groups were 
predominantly matching with the control group.

We exemplified autocorrelation analysis to determine 
periodicity changes of zebrafish swimming strength for 
360 h and 144 h study periods in Fig. 6. Clear swinging 
peaks (diurnal pattern) represent that the circadian rhythms 
of the control group were not affected throughout the study 
periods. The circadian rhythms were affected under NaOCl 
treatments (360 h study periods) (Fig. 6a). Swinging peaks 
for NaOCl treatment groups were not similar to the con-
trol group. Nocturnal behaviour resulted in NaOCl treat-
ment periods. We noticed a gradual biphasic trend at minus 
series (nocturnal) for NaOCl Treatment I group. In other 
NaOCl treatment groups, peaks at minus series fluctu-
ate recurrently. The control and NaOCl treatment groups 
under-recovery study (144 h) periods showed clear swing-
ing peaks throughout the study periods, indicating that the 
circadian rhythm was not affected under normal (recovery) 
conditions (Fig. 6b).

Fig. 3   Recovery responses of zebrafish (144  h). Solid lines and 
shaded dotted lines signify real-time swimming strength and S.D., 
respectively. Night of the study periods represented in shadow bars on 
the behaviour strength. Bars beside behaviour strength of each group 
represent the differences in the behaviour strength at different photo-
periods. Lowercase alphabets above the bars reveal statistical differ-
ences (DMRT, p < 0.001) among other groups

◂
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Discussion

The environmental spreading of the virus that causes severe 
acute respiratory syndrome coronavirus (SARS-CoV-2) on 
humans can be prevented by disinfectants. Thus, regulatory 
agencies and public health organisations made recommen-
dations to disinfect regularly handling objects and board-
ing places with household bleach, soaps, alcohol wipes, 
and handwash (Rivera et al. 2020; Eldeirawi et al. 2021). 
Among different kinds of disinfectants (alcohols, aldehydes, 
bases, biguanides, chlorine, glycols, iodophors, metal ions, 
organic acids, phenolic compounds, surfactants, thiazoles), 
the use of chlorine-based disinfectants (> 0.5 mg/L residual 
free chlorine) increased globally during the SARS-CoV-2 
pandemic (Christen et al. 2017; Dhama et al. 2021). Fur-
thermore, the recommended levels for chlorine-based dis-
infectants on medical applications were 500 mg/L (with-
out obvious contamination) and 1000 mg/L (with obvious 
contamination) (Wang et al. 2020). Thus, the occurrence 
of disinfectants in the water ecosystem is well predictable 
(Amorim et al. 2017). A maximum concentration of 2 mg/L 

of NaOCl was used in WWTP at Junglang (Park et al. 2016). 
The concentration of NaOCl in the aquatic environment 
might occur at several hundreds of microlitres. No observed 
effect concentration and lowest observed effect concentra-
tion for chlorine-based disinfectants are 0.002 and 0.004% 
v/v, respectively (as mentioned in Subpriamaniyam 2021). 
We chose 0.0025, 0.005, 0.0075, and 0.01% v/v concentra-
tion to study the potential ecotoxicity of NaOCl. Disinfect-
ants can persist in the water system (Ton et al. 2012). The 
occurrence of NaOCl in the aquatic environment might pose 
health effects on biota (Deere et al. 2020). Hence, different 
aquatic biological models, such as fish, mussels, planktons, 
and amphibians, were considered for water quality moni-
toring. Among these bioindicators, fish are recognised as 
toxicity models among aquatic organisms because fish are 
the higher trophic organism, susceptible to environmental 
changes, biochemical functioning is similar to humans, 
easy to maintain/handle, and inexpensive. Among fishes, 
zebrafish are widely used to assess waterborne disinfect-
ants’ potential impacts (as mentioned in Ton et al. 2012). In 
this study, we have chosen zebrafish as an animal model to 

Table 1   Tests between subjects’ 
effects for NaOCl treatment and 
recovery groups

# Not significant
* Significant at p < 0.05

Factors NaOCl treatment Recovery

F value F value

Groups 359.5 Significance
p < 0.001
Adjusted r squared
7.72%

352.0 Significance
p < 0.001
Adjusted r squared
7.96%

Days 28.4 1.0
Photoperiods 2.5 1.1#

Groups and Days 24.6 9.3
Groups and Photoperiods 67.6 34.9
Days and Photoperiods 3.8 3.2*

Groups and Days and Photoperiods 1.8 2.6

Table 2   Comparison of zebrafish swimming strength under NaOCl and recovery Mean values in different photoperiods

The light period is 8:00 a.m. to 7:59 p.m. every day, and the dark period is 8:00 p.m. every day to 7:59 a.m. on the next day. Values represent 
Mean ± S.D for each group. Indicates p<0.05 of different treatments compared to the control group

Exposure periods Groups Parameters

AVD D (compared to 
control) %

AVN D (compared to 
control) %

D (AVN—
AVD) %

360 h
(8 a.m. of 1st day to 7:59 am of 16st day)

Control 0.75 ± 0.06 0.49 ± 0.07 52.4
Treatment I 0.68 ± 0.10a 8.7 0.48 ± 0.12a 2.8 43.3
Treatment II 0.58 ± 0.05a 22.6 0.45 ± 0.06a 9.3 30.1
Treatment III 0.54 ± 0.07a 27.7 0.39 ± 0.09a 20.1 37.9
Treatment IV 0.50 ± 0.04a 32.7 0.40 ± 0.04a 17.8 24.9

144 h
(8 a.m. of 1st day to 7:59 am of 7st day)

Control 0.80 ± 0.02 0.56 ± 0.08 43.6
Recovery I 0.67 ± 0.03a 15.8 0.48 ± 0.06a 12.8 38.8
Recovery II 0.80 ± 0.02a 0.2 0.71 ± 0.02a 28.3 11.7
Recovery III 0.61 ± 0.05a 23.4 0.41 ± 0.05a 25.6 47.8
Recovery IV 0.57 ± 0.01a 28.2 0.47 ± 0.02a 16.1 23.0
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assess the toxic effects of NaOCl on non-target organisms. 
Exposure to waterborne contaminants affects fish swimming 
behaviour even at lower concentrations (µg/L) (Brodin et al. 
2013, 2017). Concentration-dependent behaviour anoma-
lies resulted in zebrafish under NaOCl treatments. Magal-
haes et al. (2007) reported similar behaviour anomalies on 
zebrafish under NaOCl treatments, where the swimming 
activity decreased with increasing NaOCl concentration. In 
our previous studies, we also noticed a correlation between 
declined swimming activity of zebrafish with chemical con-
centrations (Zhao et al. 2020; Poopal et al. 2021; Ren et al. 
2021). Declined swimming strength under (360 h) NaOCl 
treatments reveals the avoidance behaviour of zebrafish. 
Avoidance or escaping sign is a common response of fish 
to reveal stress in its environment. Continuous exposure to 
environmental stressors could affect the normal behavioural 
activity of fish; hyperactivity or hypoactivity is a sign of 
avoiding stress (Hong and Zha 2019). The fractal dimension 
of zebrafish swimming velocity increased under NaOCl-
based aqueous solutions (0 to 0.005% v/v) treatments (Nim-
kerdphol and Nakagawa 2008). The authors also noticed that 
water quality parameters increased zebrafish swimming tra-
jectories under NaOCl treatments. 

We visualised a series of abnormal, auxiliary, undiffer-
entiated, and readjustment actions under NaOCl treatments. 

Normally, fish swimming activity requires higher energy 
consumption. Under continuous environmental stress condi-
tions, fish might cease swimming to conserve energy to cope 
with the stress, which could decline the swimming strength; 
thus, we can visualise abnormal behaviour strength. The 
term abnormal (Latin abnormis) means deviating from the 
normal. A series of abnormal actions were shown under 
NaOCl exposure periods, indicating that zebrafish sensed 
NaOCl toxicity and might activate its coping mechanisms 
against the toxicity. Acclimatisation is a typical survival 
strategy for fish under tolerable stress conditions. During 
acclimatisation, fish might undergo a series of adjustments. 
The occurrence of adjustments on fish purely depends on the 
strength of the stressors. The term auxiliary actions mean 
the occurrence of additional actions (adjustments). The 
occurrence of auxiliary actions during the daytime signifies 
acclimatised state of zebrafish to their current environment. 
Adjustment is the state of being adjusted to the current envi-
ronmental change. Readjustment is adapting oneself again to 
the current environmental change. The occurrence of read-
justment actions at night under NaOCl treatments indicates 
internal stress (the activation of detoxification and ejecting 
mechanisms). Under normal or tolerable stress conditions, 
the behavioural strength could be higher in the daytime and 
lower at night; this results in zig-zag patterns. When the 

Fig. 4   SOM analysis for zebrafish swimming strength under 360  h 
study period. Ordination map-blue colour text and red colour text 
represents daytime and night of the study. SOM profiles—dark blue 

to dark red colour indicates lower to higher swimming strength. The 
symbol ring (red—night, black—daytime) and the diamond represent 
differences and partial matching in swimming strength
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stress overwhelms the tolerance capacity of fish, the behav-
iour strength could be unspecifiable, not able to differentiate 
the action. We witnessed a series of undifferentiated behav-
iour strengths under higher concentrations of NaOCl (Treat-
ment III and IV). The undifferentiated area on real-time data 
reveals that zebrafish’s coping capacity was overwhelmed by 
NaOCl stress at higher concentrations.

Swimming performance is essential for survival for fish; 
chemical exposure could affect ion homeostasis, resulting in 
behavioural changes in fish (as mentioned in Goulding et al. 
2013). NaOCl forms hydrogen cations and hypochlorite ions 
in the aquatic ecosystem, which could damage the membrane 
potential of cells and result in disruption of biochemical 
(including enzymes) and ion homeostasis mechanisms (Lopez-
Galindo et al. 2010a,b). NaOCl entry through gill tissues might 
affect the tissue morphology, resulting in disruption of rou-
tine metabolism (ion-regulation mechanism, respiration, and 
excretion) of zebrafish; thus, alteration in swimming behav-
iour might occur. Exposure to commonly used disinfectants 
can generate reactive oxygen species in tissues and affect the 
antioxidant defence system of fish. Additionally, disinfect-
ants can affect the biochemical and hormonal functioning of 
fish (Elia et al. 2006; Kim and Ji 2019). Swimming activity 
depends on the energy metabolism (biochemical activities) 

of an organism. The decline of swimming strength might 
result from internal stress (imbalanced energy metabolism of 
zebrafish) caused by NaOCl. Painter et al. (2009) reported that 
waterborne chemicals could impair nervous cell signalling by 
binding or blocking synaptic receptors that could affect nerve 
impulse communication transmission; as a result, behaviour 
anomalies (declined behavioural performance) could occur on 
organisms. NaOCl treatment inhibited acetylcholine activity on 
Mytilus galloprovincialis under long-term exposure (Lopez-
Galindo et al. 2010a). Thus, a decline in swimming activity 
indicates the neuro-toxic effect of NaOCl on zebrafish. How-
ever, internal stress (histological, biochemical, and hormonal 
changes) could recover considerably under normal conditions 
(without environmental stressors). It is shown through the 
recovery response of zebrafish. Zebrafish swimming strength 
increased after reintroducing to normal conditions (water 
without NaOCl). A concentration-dependent improvement 
occurred in zebrafish swimming strength under-recovery peri-
ods. A similar result was observed on zebrafish under chemical 
treatments (Poopal et al. 2021).

Online biological behaviour monitoring systems are con-
sidered an important tool in early warning pollution assess-
ments (Magalhaes et al. 2007). Noticeably, the observed 
behavioural anomalies have occurred at lower concentrations 

Fig. 5   SOM analysis for zebrafish swimming strength under 144  h 
(recovery) study period. Ordination map—blue colour text and red 
colour text represent daytime and night of the study. SOM profiles—
dark blue to dark red colour indicates lower to higher swimming 

strength. The symbol ring and the diamond (red—night, black—
daytime) represent differences and partial matching in swimming 
strength

41858 Environmental Science and Pollution Research (2022) 29:41849–41862



1 3

(even at 0.002% v/v) of NaOCl treatments when compared 
to the concentration (0.1 mg/L) reported by Lopez-Galindo 
et al. (2010b) to cause histological, enzymological, and 
antioxidants changes on Solea senegalensis. A considerable 
amount of data was generated in this study using OMS, and 
the complexity in the data was solved by SOM. Changes 
in the behaviour activity of zebrafish were visualised on 
SOM. SOM differentiates the photoperiods of the study. 
We further analysed the data to determine changes in a cir-
cadian rhythm by autocorrelation analysis using MATLAB. 
Circadian rhythms are a fundamental behavioural trait and 
an essential factor governing organisms’ physiology and 
behavioural activities (Melvin 2017; Zheng et al. 2021). 
Circadian rhythms have an essential role in sleep cycles, 
hormone secretion, blood pressure, and other routine life 
processes. Zebrafish is a good model organism for circa-
dian rhythms studies (Doria et al. 2018; Yang et al. 2019). 
The circadian rhythms are endogenously driven, controlled 
by genes. Waterborne chemicals can affect circadian genes 

(Liang et al. 2019). Shi et al. (2019) reported that transcrip-
tional alteration of circadian rhythm genes on zebrafish 
could occur even at nanogram concentration of chemicals. 
Waterborne chemicals induce the circadian rhythms of fish 
through neuroendocrine pathways (Melvin 2017). Zhao et al. 
(2018) noticed a correlation between locomotory behav-
iour changes and disruption in clock genes of fish. Biocide 
exposure enhanced the circadian gene (clock 1a) expression, 
which resulted in behavioural changes in zebrafish (Yang 
et al. 2019). Changes in circadian rhythms reflect the adap-
tation of an organism. Circadian rhythms of NaOCl treat-
ment groups were affected under 360 h study periods. This 
indicates that zebrafish recognised stressors and initiated 
their adaptation mechanisms. Circadian rhythms regulate 
immune processes in an organism (Ren et al. 2018), which 
can be adjusted due to chemical-mediated changes in inter-
nal homeostasis towards adaptation (Yang et al. 2018). Cel-
lular free radicals and the circadian clock are interconnected; 
thus, alterations in antioxidants’ defence mechanisms result 

Fig. 6   Autocorrelation analysis. Periodicity changes occurred on zebrafish swimming strength at a) 360 h and b) 144 h study periods. Arrows 
specify continuity of behaviour strength at minus series
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in fish circadian disruption (Zheng et al. 2021). NaOCl has 
the potential to cross-link fibrinogen and affect blood plasma 
antioxidants defence mechanisms (immunostimulatory prop-
erties) (Manucat-Tan et al. 2021). Bao et al. (2019) reported 
that waterborne contaminants (perfluorooctane sulfonate) 
affect networking genes (hypothalamus-pituitary–gonadal-
liver axis) of female zebrafish. Biotransformation and detox-
ification processes mainly occur in the liver tissue; exposure 
to NaOCl might accelerate the formation of free radicals in 
the liver tissue of zebrafish. These free radicals might dis-
tribute through blood and cause an oxidative imbalance in 
zebrafish. Thus, circadian rhythm adjustments might result 
from internal stress (the antioxidant homeostasis).

In summary, under closed conditions, swimming behav-
iour could be an ideal indicator for ecotoxicological studies. 
The real-time swimming behaviour of fish can be quantified 
efficiently using OMS. We can analyse the OMS dataset for 
statistical differences using MATLAB and SPSS software. 
Zebrafish are highly sensitive to NaOCl toxicity, even at 
lower concentrations. The NaOCl is potentially a toxic sub-
stance at studied concentrations. A concentration-dependent 
toxic effect has resulted in this study. However, the NaOCl-
mediated toxic effects are reversible (based on concentra-
tion) even at higher concentrations.

Conclusion

We exemplified the toxicity of NaOCl by monitoring 
(online) the swimming behaviour of zebrafish. The swim-
ming strength of zebrafish was quantified efficiently using 
OMS. NaOCl induced behaviour anomalies on zebrafish 
even at lower concentrations (0.0025% v/v). We observed 
avoidance behaviour under 360 h of NaOCl exposure peri-
ods. Escaping or avoidance behaviour is not only stimu-
lus–response but also reflects fitness of fish. Under pro-
longed toxicant exposure periods, avoidance behaviour 
might be overwhelmed by internal stress (morphological 
and biochemical changes), which could affect the fitness of 
fish. In that aspect, continuous contamination of NaOCl is a 
severe threat to aquatic biota. Circadian rhythm of zebrafish 
was affected under 360 h NaOCl treatment periods; this is 
also a risk to organisms because adjustments in endogenous 
timing mechanism can affect organisms’ adaptive capacity. 
The recovery responses (improvement in zebrafish swim-
ming strength) reveal that the resulting behaviour anomalies 
under 360 h of study periods are based on stressor effects. 
This study highlighted the importance of behaviour toxicol-
ogy towards water quality assessments. This study also sig-
nifies that swimming behaviour is a non-invasive biomarker 
in early warning signal approaches for toxicity studies. More 
biological behaviour studies are warranted to assess eco-
toxic effects of emerging and unintentional or accidental 

pollutants. Future scope: Mathematical modelling based on 
the OMS dataset will be a promising method for eco-toxicity 
prediction assessments.
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