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Abstract
Norovirus (NoV) is a major cause of sporadic cases and outbreaks of acute gastroenteritis (AGE), thereby imposing threat 
to health globally. It is unclear how quantitation of wastewater NoV reflects the incidence of human AGE infections; there-
fore, we conducted this systematic review and meta-analysis of published NoV wastewater surveillance studies. A literature 
search was performed, and all studies on NoV wastewater surveillance were identified. Quantitative results were evaluated. 
The results showed that the overall detection rate of NoV in wastewater was 82.10% (95% confidence interval [CI]: 74.22–
89.92%); NoV concentration was statistically significant in terms of season (P < 0.001), with higher concentration in spring 
and winter. There were positive correlations between NoV GII concentration in wastewater and GII AGE cases (rs = 0.51, 
95% CI: 0.18–0.74, I2 = 0%), total AGE cases (rs = 0.40, 95% CI: 0.15–0.61, I2 = 23%) and NoV outbreaks (rs = 0.47, 95% CI: 
0.30–0.62, I2 = 0%). Results of cross-correlation analysis of partial data indicated that variations in GII concentration were 
consistent with or ahead of those in the number of AGE cases. The diversity of NoV genotypes in wastewater was elucidated, 
and the dominant strains in wastewater showed a consistent temporal distribution with those responsible for human AGE. 
Our study demonstrated the potential association of NoV detected in wastewater with AGE infections, and further studies 
are needed to confirm this conclusion.
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Introduction

Norovirus (NoV) is the leading cause of sporadic cases and 
outbreaks of acute gastroenteritis (AGE) in all age groups, 
causing more than 699 million infections and approximately 
212,000 deaths worldwide each year (Lopman et al. 2016; 
Netzler et al. 2019). NoVs are non-enveloped viruses of 
the Caliciviridae family that have a single-stranded RNA 
genome of approximately 7.5 kb in length which contain 

three open reading frames (ORFs): ORF1 encodes a poly-
protein, ORF2 encodes the major structural protein (VP1), 
and ORF3 encodes the minor structural protein (VP2). 
Based on the complete capsid amino acid sequences, NoVs 
were divided into 10 genogroups (GI-GX) and a further sub-
division into 49 genotypes (Chhabra et al. 2019). GI, GII, 
and GIV are reported to infect humans. Due to the genetic 
diversity and evolutionary complexity, there were at least six 
NoV mutant strains known to cause worldwide pandemics in 
the last 20 years (Nordgren and Svensson 2019).

Continuous monitoring for NoV is imperative. Several 
inter-regional NoV surveillance networks, including Noro-
Net (https:// www. rivm. nl/ en/ noron et) and CaliciNet (https:// 
www. cdc. gov/ norov irus/ repor ting/ calic inet/), have been 
developed worldwide. NoroNet collects molecular epidemio-
logical data on NoV infections from 19 countries in Europe, 
Asia, and Australia (Green 2018); whereas, CaliciNet moni-
tors NoV outbreaks mainly in the USA as well as in parts 
of China (Cannon et al. 2017; Jin et al. 2020). Clinical sur-
veillance relies primarily on clinical samples from patients 
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at healthcare facilities, which can barely focus on people 
with mild infections and asymptomatic infections. Evidence 
favors the notion that NoV may cause higher rates of asymp-
tomatic acute gastroenteritis infections within household and 
community (de Wit et al. 2001; Quee et al. 2020; Teunis 
et al. 2015).

Wastewater surveillance/wastewater-based epidemiol-
ogy (WBE) is another ideal approach for monitoring viruses 
prevalence and to date has been applied to screen for a wide 
range of water-borne and non-water-borne viruses (O'Brien 
and Xagoraraki 2019). It bridges the gap of individual clin-
ical testing by providing an unbiased estimate of disease 
prevalence in the whole population. Poliovirus wastewa-
ter surveillance as a complementary method to the Global 
Polio Eradication Initiative has been included in the World 
Health Organization (WHO) guidelines for environmental 
poliovirus surveillance (Sein 2013). During the COVID-19 
pandemic, detection technology and method for wastewa-
ter surveillance were conducted globally as SARS-CoV-2 
screening approach within communities. Besides early warn-
ings for localized outbreaks (Chavarria-Miró et al. 2021; 
Medema et al. 2020), several studies further found the con-
sistent trends in the temporal distribution of SARS-CoV-2 
concentration in raw sewage and local cases (Daughton 
2020; Peccia et al. 2020; Weidhaas et al. 2021; Wurtzer 
et al. 2020).

Host-specific NoV sheds through the feces of infected 
individuals—including those with severe, mild, and asymp-
tomatic infections—and enters wastewater, following which 
it can remain at high concentration in the water (Ngazoa 
et al. 2008). NoV cannot replicate in nonhost organisms in 
the environmental media, which means that the measured 
NoV concentration of raw wastewater can reflect AGE infec-
tion in the local population, theoretically. However, standard 
protocols and procedures for NoV detection have not yet 
been established in the field of viral wastewater surveillance, 
and it is unclear how NoV detection in wastewater quanti-
tatively reflects the incidence of human AGE infections. On 
the basis of the above evidence, we performed a systematic 
review and meta-analysis of past NoV wastewater surveil-
lance studies to explore and estimate the correlation between 
NoV occurrence in wastewater and AGE in the population.

Materials and methods

Search strategy

A literature search was conducted in PubMed and Embase 
databases from inception to August 13, 2021. The search 
keywords were as follows: (“sewage” OR “wastewater”) 
AND (“norovirus” OR “Norwalk-like virus” OR “small 
round structured viruses”). Hand searching and screening 

of the reference list was also conducted. The literature 
was screened by reading the title, and after eliminating 
irrelevant literature, study eligibility was further assessed 
by reading the abstract and full text. Screening abstracts, 
articles that meet the following criteria are included first:

(a) reported outcome indicators reflecting virus detection 
in wastewater, such as NoV detection rate, viral RNA 
concentration, and temporal distribution by genotype;

(b) continuous sampling for at least 3 months.

Then reading the full text, the final selection of eligible 
articles was based on the following exclusion criteria:

(a) studies that did not classify NoV genogroups;
(b) case reports or case series of viral gastroenteritis out-

breaks;
(c) studies that did not report detailed data;
(d) wastewater type was not raw wastewater (raw waste-

water was defined as influent sewage before or after 
primary screening and settling from the municipal 
wastewater treatment plant);

(e) full text not available; or
(f) reported duplicate data.

The literature was screened, selected, and cross-checked 
by two researchers independently. Disagreements, if any, 
were resolved through discussion or consultation with a 
third researcher.

Data extraction and assessment

Data for the following variables were extracted from all 
eligible articles: (a) basic information: title of study, first 
author, year of publication, and country or region; (b) sam-
pling and processing information: sample size, collection 
season or month, virus concentration method, and poly-
merase chain reaction (PCR) assay; (c) primary outcome 
indicators: NoV detection rate, viral concentration, and 
genotyping information for wastewater detection; (d) other 
outcome indicators, if available: content reflecting popu-
lation prevalence, i.e., number of GI or GII AGE cases, 
number of NoV outbreak, or number of total AGE cases; 
the limit of detection (LOD). GetData Graph Digitizer, 
version 2.25, was used to extract the required data from 
the images.

Each included study was independently reviewed and 
assessed by two researchers according to the AHRQ cross-
sectional study assessment scale. We modified some of the 
items to accommodate the included articles (Supplemen-
tary Sect. 1).
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Statistical analysis

During data processing, missing data on concentration that 
were below LOD were replaced with a value equal to the 
peer-reviewed LOD divided by square root of 2. The units 
of NoV RNA concentration were unified as log10 genome 
copies per liter (lg GC/L), to make the data close to the 
normal distribution.

IBM SPSS Statistics 25.0 and R 4.0.3 software programs 
were used for data analyses in this study. NoV detection rate 
was subjected to Freeman-Tukey double arcsine transforma-
tion. One-way analysis of variation (ANOVA) was used to 
assess the statistical significance of NoV concentration. In 
addition, Spearman’s correlation coefficients in each study 
that provided raw data was calculated. To estimate the stand-
ard errors, coefficients were converted to Fisher’s Z values. 
Meta-analysis and meta-regression were performed using 
the meta package in R. Heterogeneity among studies was 
determined using the Q test statistic and I2. For P < 0.05 
or I2 > 50%, heterogeneity was considered to exist and a 
random-effects model was used; otherwise, a fixed-effects 
model was used.

Results

Search results

A total of 8688 studies were identified following the data-
base search. After removing duplicates, 5719 studies 
remained for screening. By screening the title and abstract 
and after excluding irrelevant studies, 164 needed to be 
screened by reading the full text. Finally, 46 were selected 
for the analysis (Fig. 1).

Study characteristics and quality assessment

The characteristics and basic information of 46 included 
studies are presented in Table 1. According to WHO mor-
tality stratum (World Health Organization 2003a, b), there 
were 29 studies from developed countries, 13 from low-
mortality developing countries, and 4 from high-mortality 
developing countries. Most studies (n = 28) were sampled 
for ≤ 1 year, and only 4 studies were sampled for more than 
three years. Different methods were used for assessing the 
virus concentration, including adsorption-elution (n = 16), 

Fig. 1  Flow diagram of 
included studies and the selec-
tion process Records identified through database

searching

(n = 8688)

Full-text articles excluded,

with reasons (n = 118):
8 did not classify NoV

genogroups

34 viral gastroenteritis

outbreaks

39 no raw data

29 not raw sewage

6 cannot find full text

2 duplicate data

Additional records identified

through other sources

(n = 0)

Records after duplicates removed

(n = 5719)

Studies included in

qualitative synthesis

(n = 46)

Records screened

(n = 5719)

Records excluded

(n = 5555)

Studies included in

quantitative synthesis

(n = 46)

Full-text articles assessed
for eligibility

(n = 164)
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polyethylene glycol precipitation (n = 11), ultracentrifuga-
tion (n = 9), elution and skimmed-milk flocculation proce-
dure (n = 4), ultrafiltration (n = 3), and others (n = 3). GII was 
the most frequently detected genogroup (n = 42), with only 
few detected for GIV (n = 7). Eighteen studies collected both 
wastewater samples and population gastrointestinal infec-
tion data, but only a part of them provided detailed data 
for calculating correlation coefficients, and the remainder 
described phylogenetic results for positive samples.

On assessing the quality of each study, seven articles 
were evaluated as having high quality, 32 as moderate, and 
seven as low, with an average quality score of 6.30 ± 1.93 
(Supplementary Table S1). Regarding the assessment and 
adjustment of inhibition and recovery rates, approximately 
two-thirds of the studies did not report these rates.

Meta‑regression of NoV detection rates

A meta-analysis was performed on the NoV detection rate 
reported in 46 studies, and the overall detection rate was 
82.10% (95% confidence interval [CI]: 74.22–89.92%) (Sup-
plementary Table S2). NoV genogroup, country mortality, 
PCR method, sampling duration, and virus concentration 
quantification method were used as variables for the uni-
variate meta-regression analysis of NoV detection rates 
(Supplementary Table S3). The results showed that NoV 
genogroup and country mortality significantly affected the 

heterogeneity of the meta-analysis results. When including 
both NoV genogroup and country mortality into the multi-
factor regression model, the R2 was 52.81%, which suggests 
that NoV genogroup and country mortality can explain part 
of the heterogeneity in detection rates. Greater detection 
rates in NoV GI (81.90%, 95% CI: 71.26–90.70%) and GII 
(88.04%, 95% CI: 77.23–96.05%) and countries with higher 
development levels and lower overall mortality (developed 
countries (87.33%, 95% CI: 79.22–93.87%), low-mortality 
developing countries (78.01%, 95% CI: 63.77–89.68%)) 
were observed compared to GIV (30.89%, 95% CI: 
15.45–48.73%) and high-mortality developing countries 
(47.08%, 95% CI: 27.85–66.75%).

Seasonal differences in NoV concentration

Twenty-six studies reported data for NoV concentration in 
wastewater in different seasons, 22 studies monitored GI and 
GII, and four studies monitored only GII. NoV GIV was not 
included in the quantitative analysis owing to insufficient 
data. In total, the GI concentration in wastewater was 5.34 
(95% CI: 5.18–5.49) lg GC/L and the GII concentration was 
5.74 (95% CI: 5.62–5.87) lg GC/L. ANOVA results showed 
that the concentrations of GI and GII were statistically sig-
nificant in terms of season (P < 0.001), with higher concen-
tration observed in spring and winter than in summer and 
autumn (Fig. 2, Supplementary Table S4).

Fig. 2  Boxplot of seasonal 
variation of NoV GI and GII 
concentrations in wastewater
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Correlation between NoV detection and population 
infection

Seven articles provided detailed monthly data on NoV con-
centration in wastewater and gastrointestinal infections in 
local populations. They were divided into different indica-
tors (GI and GII AGE cases, total AGE cases, and NoV 
outbreaks) and analyzed separately. The percentage of NoV 
GI infection cases in AGE ranged from 0.00 to 8.00%, and 
the percentage of GII infection cases ranged from 12.00 to 
64.34%. The number of AGE cases and NoV outbreaks var-
ied widely depending on the size of the study area, but both 
indicators peaked during the cold season (November to May) 
(Supplementary Table S5).

Spearman’s correlation coefficient was calculated based 
on raw data from seven studies, and the portion of GII in 
Carducci et al. (2006) study was not included in the calcula-
tions due to severe data deficiencies. The results of the cor-
relation meta-analysis are shown in Fig. 3a, c, and e. Over-
all, significant positive correlations between the NoV GII 
concentration in wastewater and GII AGE cases (rs = 0.51, 
95% CI: 0.18–0.74, I2 = 0%), total AGE cases (rs = 0.40, 95% 
CI: 0.15–0.61, I2 = 23%), and NoV outbreaks (rs = 0.47, 95% 
CI: 0.30–0.62, I2 = 0%) were founded, while there was no 
correlation for NoV GI concentration and any of the above 
indicators. For GII, 32/86/97 data points were available for 
analysis from six studies. As shown in Fig. 3b, d, and f, 
these studies did not show consistent statistical significance, 
but the overall trends were similar and they were also con-
siderably homogeneous: they were conducted in developed 
regions of Europe and Asia, sampled at relatively similar 
periods and were all graded as medium to high quality. The 
homogeneity was also indicated by the fact that I2 statistics 
for heterogeneity tests were all below 25%, i.e., the inferred 
combined correlation coefficients were reasonable.

Notably, Kazama et al. (2017) conducted a cross-cor-
relation analysis of the concentrations of GI and GII in 
weekly samples and the number of locally AGE cases. They 
reported that a significant correlation for GII was observed 
with a lag of − 2 to + 6 weeks, and the peak coefficient 
(r = 0.51) was observed at a time lag of 0 weeks. This indi-
cated that changes in GII concentration in wastewater and 
the increase in the number of reported AGE cases occurred 
simultaneously. Therefore, the same analysis for other stud-
ies that sampled at a frequency of ≤ 2 weeks was performed. 
Similarly, peak coefficient time lags of zero, plus, or minus, 
indicated that the variation in virus concentration coincides 
with, lags, or exceeds the variation in the number of AGE 
cases (Kazama et al. 2017). It was observed only in the data 
of Wang et al. (2020) (sampling per 2 weeks): the concen-
tration of GII in wastewater correlated with the number of 
total AGE cases at time lags of − 6 to + 4 weeks, with the 
peak occurring at a time lag of − 2 weeks (r = 0.61). No 

significant correlations were observed in the other eligible 
studies.

Temporal distribution of the NoV genotype

Thirty studies analyzed the genotypes of NoV in wastewater 
during 2005–2018. Figure 4 shows the prevalence dynamics 
of the different genotypes at the period with a high sam-
pling frequency (winter 2012 to summer 2017), darker-color 
blocks represent higher detection rate. There were up to 17 
genotypes of NoV with high detection rates and frequency in 
wastewater. In comparison with the NoV genotype distribu-
tion in human AGE infections, a similar trend was observed 
in wastewater, especially for GII (Supplementary Fig. S1).

For NoV, GI, GI.2, GI.5, and GI.3 were frequently 
detected in wastewater, and since the summer of 2014, 
GI.6 was continuously detected at a high and positive rate. 
For NoV, GII, GII.4, GII.17, GII.2, GII.3, and GII.13 were 
detected frequently and continuously; particularly, GII.4 was 
detected at a higher rate before 2015. A notable difference 
after 2015 was that GI.1, GI.5, GII.4, and GII.6 were no 
longer detected continuously, but GII.2 was detected more 
frequently.

Discussion

WBE has great potential in the field of infectious disease 
surveillance, where it can serve as one of routine pas-
sive screening tools applied in community units to reveal 
asymptomatic or preclinical states of disease. In response 
to the COVID-19 pandemic, more precise virus detection 
and molecular quantification methods were developed and 
updated by various wastewater monitoring laboratories. 
Undeniably, undefined methodological criteria are one of 
the current barriers to interpreting wastewater data when 
associating virus concentrations in wastewater with dis-
ease incidence in contributing populations quantitatively 
(Greenwald et al. 2021). This systematic review and meta-
analysis comprehensively assessed NoV wastewater surveil-
lance studies and quantitatively estimated the correlation 
between the occurrence of NoV in wastewater and AGE in 
the population.

In terms of the quality assessment of including studies, 
the overall quality of NoV wastewater surveillance studies 
was not high. And most of them did not consider (or did not 
state) the recovery rate of the virus and the possible inhibi-
tion effect, which may have led to the underestimation of 
the results. The short sampling period is another feature. 
Many studies chose one year as the sampling period because 
this allowed observation of the complete trend of changes 
in the NoV detection level in different seasons. However, 
long-term sampling could, in addition, provide a clearer 
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observation of the trends in the individual genotypes of NoV 
and the determination of the distribution of local character-
istics and dominant genotypes.

The overall detection rate of NoV in wastewater was 
82.10%, suggesting its high prevalence in the human popula-
tion worldwide. NoV RNA is shed from the feces of infected 
people and not susceptible to degradation; therefore, NoV 
transmission constantly circulates between infected human 
populations and environmental water (Teunis et al. 2015). 
The results of meta-regression showed that the detection rate 
of NoV was associated with genogroup and country mortal-
ity: NoV GIV was less detected, and studies in high-mortal-
ity developing countries reported lower detection rates. NoV 
GIV is more difficult to detect in environmental, clinical, or 
bivalve samples, and the mechanisms of its transmission and 
mutation are still unclear and deserve further exploration 
(Kremer et al. 2011; La Rosa et al. 2012). The low detection 
rate of NoV in high-mortality developing countries should 
not be seen as a promising result; contrarily, it may indicate 
that bacteria and parasites were the dominant pathogens in 
water of low-income countries, where they contributed to the 
major disease burden of gastrointestinal infections, which is 
also consistent with the findings of previous studies (Ahmed 
et al. 2014). In our study, there were few studies from high-
mortality developing countries, and therefore, the inadequate 
sample size may have led to some estimation error.

This study compared seasonal differences in the con-
centrations of NoV GI and GII in wastewater. An apparent 
seasonal pattern for GI and GII was observed, with distinct 
peaks during winter and spring. This characteristic has also 
been verified in numerous clinical studies: NoV AGE cases 
and outbreaks tend to occur in winter or rather the cooler 
months (Ahmed et al. 2013; Farkas et al. 2018; Greer et al. 
2009; van Beek et al. 2018). These findings demonstrated 
that NoV has greater propagation and persistence in cold 
environments. Additionally, it may be influenced by other 
environmental factors such as relative humidity and latitude, 
as well as demographic characteristics and even infectious 
disease pandemic events such as the COVID-19 pandemic 
(Eftim et al. 2017; Oâ Reilly et al. 2021; Shamkhali Chenar 
and Deng 2017). It is necessary to conduct more exploration 
and argumentation studies.

The results of the meta-analysis suggested that the con-
centration of NoV GII in wastewater were positively cor-
related with indicators reflecting AGE in the population 
(number of GII AGE cases, total AGE cases, and number 
of outbreaks). The correlation coefficients ranged from 
0.40–0.51, which suggested changes in GII particles in 
wastewater can signify the occurrence of AGE. But for GI, 
no significant correlation was observed. It was impractical 
to establish a correlation between wastewater NoV detec-
tion and clinical cases of GI AGE infection, as GI mostly 
resulted in mild or asymptomatic infections, and was hard 
to detect in clinical surveillance. Of the NoV outbreaks, 
comparing GI and GII horizontally, it can be assumed that 
more outbreaks were caused by GII, which is consistent 
with the findings of clinical reports (Matthews et al. 2012; 
Parikh et al. 2020).

The predicted lead time provides significant evidence 
to prove the correlation. Kazama et al. (2017) found that 
the concentration of GII in sewage varied synchronously 
with the number of local AGE cases. By cross-correlation 
analysis with the data from Wang et al. (2020) study, the 
change in the concentration of GII was 2 weeks ahead of 
the occurrence of local AGE infection cases. A limitation 
of this result must be noted as the crude sampling frequency 
did not allow for calculating the lag period more precisely. 
However, it can still be argued that it further demonstrated 
the potential correlation.

This study mapped the global NoV diversity trends by 
bringing together numerous short-term, small-scale studies. 
At least 17 NoV genotypes were consistently and frequently 
detected in wastewater. Comparison with the genotype dis-
tribution of human AGE cases revealed relatively consistent 
trends, suggesting that multiple genotypes of NoV GI and 
GII co-circulation in the population. Several mutations of 
GII.4, which is the main strain causing the global NoV AGE 
pandemic, have been reported (Lindesmith et al. 2008; van 
Beek et al. 2013). Since 2012, GII.4 Sydney 2012 was the 
most frequently and predominantly detected strain in waste-
water. For the molecular epidemiological analysis of NoV 
in the last five years, the GII.4 Sydney 2012 variant remains 
the main strain causing AGE outbreaks in most regions of 
the world (Cannon et al. 2021; Utsumi et al. 2021; Zhou 
et al. 2020).

During the winter of 2014 and 2015, several Asian coun-
tries reported that GII.17 Kawasaki was the main pathogen 
causing NoV AGE outbreaks (Chan et al. 2015; de Graaf 
et al. 2015, Matsushima et al. 2015). In fact, GII.17 was 
first detected before 2014 in sewage but mostly at low lev-
els (Kazama et al. 2017; Suffredini et al. 2018) suggesting 
that it circulated in human populations until it became the 
dominant strain; molecular epidemiological studies of AGE 
cases in humans have also reported this finding (van Beek 
et al. 2018).

Fig. 3  Forest plots of correlation between NoV GI and GII detection 
in wastewater and number of a corresponding genogroups of AGE 
cases, c total AGE cases, and e outbreaks; bubble plots for correlation 
between NoV GII detection in wastewater and b GII AGE cases, d 
total AGE cases, and f outbreaks in each study. (For the forest plots, 
of concern are the respective combined results within subgroups 
(GI & GII). Heterogeneity exists in the correlation between NoV GI 
detection in wastewater and number of total AGE cases (c), using the 
random effects model; for the bubble plots, which showed the trends 
presented in data points from each study, colors represented different 
studies and the size of the bubbles was determined by the weights of 
each study.)

◂
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GII.2 was increasingly identified in wastewater surveil-
lance studies after mid-2015. Of note, most articles assessed 
in this review pointed out that GII.2 predominance stemmed 
from the recombinant GII.2[P16] (Lu et al. 2021; Lun et al. 
2018; Santiso-Bellón et  al. 2020). Reports about AGE 
cases and outbreaks caused by GII.2[P16] have focused on 
clinical surveillance in various regions during the winter of 
2016 and 2017 (Bidalot et al. 2017, Bonura et al. 2021; Li 
et al. 2018; Medici et al. 2018). The GII.P16 polymerase 
also paired with some other capsid genotypes, including 
the predominant strain GII.4 Sydney 2012. The occurrence 
of GII.2[P16] and GII.4 Sydney 2012[P16] suggested that 
recombination between such non-closely related sequences 
may facilitate their adaptation and transmission in the popu-
lation (van Beek et al. 2018).

Since the emergence of the COVID-19 pandemic, strict 
social restriction measures in each country have led to a sig-
nificant reduction in NoV infection (Ahn et al. 2021; Eigner 
et al. 2021; Lennon et al. 2020). Douglas et al. suggested that 
the reduction in referred NoV-positive samples and genotyp-
ing during the COVID-19 pandemic may have resulted in 
missing key indicators of NoV strain replacement events 
(Douglas et al. 2021). Therefore, there is a need to establish 
a sensitive and effective monitoring system to respond to 
possible peaks of outbreaks after the removal of restrictions.

This study had limitations. First, because of the insuf-
ficient information, we did not consider variables such as 
sewage sampling method (grab or composite sampling), stor-
age temperature and duration, efficiency of the PCR assay, 
population size served by WWTP, and local AGE prevalence 
during the sampling period, which prevented us to explore 

the heterogeneity of NoV detection rates in a more detailed 
manner. Second, the use of a value equal to the LOD divided 
by square root of 2 to replace values reported below the LOD 
may have led to the overestimation of the NoV concentration 
in the sewage water. Third, despite relaxing the criteria for 
our review, there were still too few studies reporting both 
NoV detection in wastewater and the gastroenteritis infec-
tion status in the population, which may result in a loss of 
partial representation. Furthermore, in these studies, the data 
reflecting the status of AGE infection included the number 
of clinical cases and outbreaks, rather than the local inci-
dence or prevalence, which may have led to biased estimates.

Conclusion

Through the review of previous NoV wastewater monitoring 
studies, a positive correlation between NoV GII concentra-
tion in wastewater and AGE infections was observed, and 
cross-correlation analysis of partial data indicated that vari-
ations in GII concentration were consistent with or ahead 
of that in the number of AGE cases. The diversity of NoV 
genotypes in wastewater was also observed, and the domi-
nant strains in the wastewater showed a consistent tempo-
ral distribution with that in human AGE cases. Our study 
demonstrates the potential association of NoV detection in 
wastewater with AGE infections in the population, and fur-
ther studies are needed to confirm this conclusion.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 021- 18202-x.

Fig. 4  Temporal distribution 
of NoV genotypes from winter 
2012 to summer 2017
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