Skip to main content

Advertisement

Log in

Potential innovation against Alzheimer’s disorder: a tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disorder (AD) is very difficult to manage and treat. The complexity of the brain, the blood–brain barrier influencing a multitude of parameters/biomarkers, as well as numerous other factors involved often contribute to the decline in the chances of treatment success. Development of the new drug moiety also takes time, being necessary to consider both its toxicity and related issues. As a strategic plan, a combined strategy is being developed and considered to address AD pathology using several approaches. A combination of vitamin E, quercetin, and basil oil in a nano-based formulation is designed to be administered nasally. The antioxidant present in these natural-based products helps to treat and alleviate AD if a synergistic approach is considered. The three active substances mentioned above are well known for the treatment of neurodegenerative disorders. The nanoformulation helps the co-delivery of the drug moiety to the brain through the intranasal route. In this review, a correlation and use of vitamin E, quercetin, and basil oil in a nano-based formulation is described as an effective way to treat AD. The intranasal administration of drugs is a promising approach for the treatment of neurodegenerative and mental disorders, as this route is non-invasive, enhances the bioavailability, allows a drug dose reduction, bypasses the blood–brain barrier, and reduces the systemic undesired effect. The use of natural products is generally considered to be just as safe; therefore, by using this combined approach, the level of toxicity can be minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AChE:

Acetylcholinesterase

Akt:

Akt/PKB (protein kinase B)

AMPK:

AMP-activated protein kinase

BACE-1:

Beta-site amyloid precursor protein (APP) cleaving enzyme 1

JNK:

Jun N-terminal kinase

NADPH:

Nicotinamide adenine dinucleotide phosphate

NRF2:

Nuclear factor erythroid 2-related factor 2

P13K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

SOD2:

Mitochondrial superoxide dismutase

Tau:

Ubiquitin–proteasome

References

  • Aalinkeel R, Kutscher HL, Singh A, Cwiklinski K, Khechen N, Schwartz SA, … Mahajan SD (2018) Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer’s disease? J Drug Target 26(2):182–193. https://doi.org/10.1080/1061186x.2017.1354002

  • Abdel-Daim MM, Abo ELKS, Aleya L, Bungău SG, Najda A, Saluja R (2018) Alleviation of drugs and chemicals toxicity: biomedical value of antioxidants. Oxid Med Cell Longev. https://doi.org/10.1155/2018/6276438

  • Adrita S, Tasnim K, Ryu JH, Sharker S (2020) Nanotheranostic carbon dots as an emerging platform for cancer therapy. Nanomaterials 1:59–78. https://doi.org/10.3390/jnt1010006

    Article  Google Scholar 

  • Ahmed AAM, Masoud RA (2014) Cardioprotective potential of basil oil and vitamin E against oxidative stress in experimental myocardial infarction induced by epinephrine in rats. AAMJ 12(4)

  • Akram M, Nawaz A (2017) Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res 12(4):660–670. https://doi.org/10.4103/1673-5374.205108

    Article  Google Scholar 

  • Akter R, Chowdhury MAR, Rahman MH (2021a) Flavonoids and polyphenolic compounds as potential talented agents for the treatment of Alzheimer’s disease and their antioxidant activities. Curr Pharm Des 27(3):345–356. https://doi.org/10.2174/1381612826666201102102810

    Article  CAS  Google Scholar 

  • Akter R, Rahman MH, Behl T, Chowdhury MAR, Manirujjaman M, Bulbul IJ, … Bungau S (2021b) Prospective role of polyphenolic compounds in the treatment of neurodegenerative diseases. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527320666210218084444

  • Akter R, Najda A, Rahman M, Shah M, Wesołowska S, Mubin S, Saeeda S (2021c) Potential role of Natural products to combat radiotherapy and their future perspectives. Molecules 26(19):5997

    Article  CAS  Google Scholar 

  • Akter R, Rahman H, Behl T, Chowdhury M, Rahman A, Manirujjaman M, … Targets ND-D (2020) Prospective role of polyphenolic compounds in the treatment of neurodegenerative diseases

  • Al Harthi S, Alavi SE, Radwan MA, El Khatib MM, AlSarra IAJSR (2019) Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. 9(1):1–20

  • Alzheimer’s Association, (2019) 2019 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 15(3):321–387

    Article  Google Scholar 

  • Arya A, Chahal R, Rao R, Rahman M, Kaushik D, Akhtar MF, … Kamel MJB (2021a) Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy 11(3):350

  • Arya A, Chahal R, Rao R, Rahman MH, Kaushik D, Akhtar MF, Mittal V (2021) Acetylcholinesterase inhibitory potential of various sesquiterpene analogues for Alzheimer’s disease therapy. Biomolecules 11(3). https://doi.org/10.3390/biom11030350

  • Arya A, Dwivedi VD (2021) Synergistic effect of vitamin D and remdesivir can fight COVID-19. J Biomol Struct Dyn 39(11):4198–4199. https://doi.org/10.1080/07391102.2020.1773929

    Article  CAS  Google Scholar 

  • Ashraf J, Ahmad J, Ali A, Ul-Haq Z (2018) Analyzing the behavior of neuronal pathways in Alzheimer’s disease using Petri net modeling approach. Front Neuroinform 12:26. https://doi.org/10.3389/fninf.2018.00026

    Article  Google Scholar 

  • Bagi Z, Cseko C, Tóth E, Koller AJAJoP-H, Physiology C (2003) Oxidative stress-induced dysregulation of arteriolar wall shear stress and blood pressure in hyperhomocysteinemia is prevented by chronic vitamin C treatment. 285(6):H2277–H2283

  • Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Bungau S (2021) Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: pathophysiological and therapeutic perspectives. Int J Mol Sci 22(3). https://doi.org/10.3390/ijms22031413

  • Bhattacharya T, Dey PS, Akter R, Kabir MT, Rahman MH, Rauf A (2021a) Effect of natural leaf extracts as phytomedicine in curing geriatrics. Exp Gerontol 150:111352. https://doi.org/10.1016/j.exger.2021.111352

    Article  CAS  Google Scholar 

  • Bhattacharya T, Dey PS, Akter R, Kabir MT, Rahman MH, Rauf AJEG (2021) Effect of natural leaf extracts as phytomedicine in curing geriatrics. 150

  • Blessed G, Tomlinson BE, Roth M (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 114(512):797–811. https://doi.org/10.1192/bjp.114.512.797

    Article  CAS  Google Scholar 

  • Boakye D, Jansen L, Schöttker B, Jansen E, Schneider M, Halama N, … Brenner H (2020) Blood markers of oxidative stress are strongly associated with poorer prognosis in colorectal cancer patients. Int J Cancer 147(9):2373–2386. https://doi.org/10.1002/ijc.33018

  • Boothby LA, Doering PL (2005) Vitamin C and vitamin E for Alzheimer’s disease. Ann Pharmacother 39(12):2073–2080. https://doi.org/10.1345/aph.1E495

    Article  CAS  Google Scholar 

  • Bungau S, Behl T, Aleya L, Bourgeade P, Aloui-Sossé B, Purza AL, … Samuel AD (2021) Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ Sci Pollut Res Int 28(24):30528–30550. https://doi.org/10.1007/s11356-021-14127-7

  • Businaro R, Vauzour D, Sarris J, Münch G, Gyengesi E, Brogelli L, Zuzarte P (2021) Therapeutic opportunities for food supplements in neurodegenerative disease and depression. Front Nutr 8:669846. https://doi.org/10.3389/fnut.2021.669846

    Article  CAS  Google Scholar 

  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci U S A 88(9):3633–3636. https://doi.org/10.1073/pnas.88.9.3633

    Article  CAS  Google Scholar 

  • Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H (2019) Targeted drug delivery to the brain via intranasal nanoemulsion: available proof of concept and existing challenges. Int J Pharm 565:258–268. https://doi.org/10.1016/j.ijpharm.2019.05.032

    Article  CAS  Google Scholar 

  • Chen M, Du ZY, Zheng X, Li DL, Zhou RP, Zhang K (2018) Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 13(4):742–752. https://doi.org/10.4103/1673-5374.230303

    Article  CAS  Google Scholar 

  • Constantinides PP, Chaubal MV, Shorr R (2008) Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev 60(6):757–767. https://doi.org/10.1016/j.addr.2007.10.013

    Article  CAS  Google Scholar 

  • Cristache CM, Totu EE, Iorgulescu G, Pantazi A, Dorobantu D, Nechifor AC, … Enachescu M (2020) Eighteen months follow-up with patient-centered outcomes assessment of complete dentures manufactured using a hybrid nanocomposite and additive CAD/CAM protocol. J Clin Med, 9(2). https://doi.org/10.3390/jcm9020324

  • Csaba N, Garcia-Fuentes M, Alonso MJ (2006) The performance of nanocarriers for transmucosal drug delivery. Expert Opin Drug Deliv 3(4):463–478. https://doi.org/10.1517/17425247.3.4.463

    Article  CAS  Google Scholar 

  • Daily JW, Kang S, Park S (2021) Protection against Alzheimer’s disease by luteolin: role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. BioFactors 47(2):218–231. https://doi.org/10.1002/biof.1703

    Article  CAS  Google Scholar 

  • DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5

    Article  Google Scholar 

  • Dias-Santagata D, Fulga TA, Duttaroy A, Feany MBJTJoci (2007) Oxidative stress mediates tau-induced neurodegeneration in Drosophila. 117(1):236–245

  • Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, … Guarino PD (2014) Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 311(1):33–44. https://doi.org/10.1001/jama.2013.282834

  • Echeverry C, Arredondo F, Abin-Carriquiry JA, Midiwo JO, Ochieng C, Kerubo L, Dajas F (2010) Pretreatment with natural flavones and neuronal cell survival after oxidative stress: a structure-activity relationship study. J Agric Food Chem 58(4):2111–2115. https://doi.org/10.1021/jf902951v

    Article  CAS  Google Scholar 

  • Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno Y, … Hyman BT (2018) Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 99(5):925-940.e927. https://doi.org/10.1016/j.neuron.2018.07.039

  • Epperly T, Dunay MA, Boice JL (2017) Alzheimer disease: pharmacologic and nonpharmacologic therapies for cognitive and functional symptoms. Am Fam Physician 95(12):771–778

    Google Scholar 

  • Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E (2020) Attenuation of Nrf2/Keap1/ARE in Alzheimer’s disease by plant secondary metabolites: a mechanistic review. Molecules 25(21). https://doi.org/10.3390/molecules25214926

  • Farina N, Isaac MG, Clark AR, Rusted J, Tabet N (2012) Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev 11(11):Cd002854. https://doi.org/10.1002/14651858.CD002854.pub3

  • Farombi EO, Onyema OO (2006) Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol 25(5):251–259. https://doi.org/10.1191/0960327106ht621oa

    Article  CAS  Google Scholar 

  • Feng T, Wang J (2020) Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes 12(1):1801944. https://doi.org/10.1080/19490976.2020.1801944

    Article  CAS  Google Scholar 

  • Feng Z, Zhang J-tJFRB, Medicine. (2004) Protective effect of melatonin on β-amyloid-induced apoptosis in rat astroglioma c6 cells and its mechanism. 37(11):1790–1801

  • Fink HA, Jutkowitz E, McCarten JR, Hemmy LS, Butler M, Davila H, … Kane RL (2018) Pharmacologic interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: a systematic review. Ann Intern Med 168(1):39–51. https://doi.org/10.7326/m17-1529

  • Freudenberg-Hua Y, Li W, Davies P (2018) The role of genetics in advancing precision medicine for Alzheimer’s disease-a narrative review. Front Med (lausanne) 5:108. https://doi.org/10.3389/fmed.2018.00108

    Article  Google Scholar 

  • Gaitán JM, Boots EA, Dougherty RJ, Oh JM, Ma Y, Edwards DF, … Okonkwo OC (2019) Brain glucose metabolism, cognition, and cardiorespiratory fitness following exercise training in adults at risk for Alzheimer’s disease. Brain Plast 5(1):83–95. https://doi.org/10.3233/bpl-190093

  • Gao N, Liu H, Li S, Tu X, Tian S, Liu J, … Ma Y (2019) Volatile oil from Acorus gramineus ameliorates the injury neurons in the hippocampus of amyloid beta 1–42 injected mice. Anat Rec (hoboken) 302(12):2261–2270. https://doi.org/10.1002/ar.24236

  • Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC (2019) ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas. Pharmaceutics 12(1). https://doi.org/10.3390/pharmaceutics12010020

  • Guzik-Makaruk EM, Pływaczewski EW, Mroczko P, Olesiuk-Okomska M, Kulczyńska-Przybik A (2018) Consent to medical procedures of patients with neurodegenerative diseases: a comparative study of legal regulations in selected European countries and in the United States. J Alzheimer’s Dis: JAD 63(1):53–67. https://doi.org/10.3233/jad-171176

    Article  Google Scholar 

  • Hafeman DM, Rooks B, Merranko J, Liao F, Gill MK, Goldstein TR, … Birmaher B (2020) Lithium versus other mood-stabilizing medications in a longitudinal study of youth diagnosed with bipolar disorder. J Am Acad Child Adolesc Psychiatry 59(10):1146–1155. https://doi.org/10.1016/j.jaac.2019.06.013

  • Hampel H, Vergallo A, Perry G, Lista S (2019) The Alzheimer Precision Medicine Initiative. J Alzheimers Dis 68(1):1–24. https://doi.org/10.3233/jad-181121

    Article  Google Scholar 

  • Hara H, Kato H, Kogure K (1990) Protective effect of α-tocopherol on ischemic neuronal damage in the gerbil hippocampus. Brain Res 510(2):335–338. https://doi.org/10.1016/0006-8993(90)91386-U

    Article  CAS  Google Scholar 

  • Harrison FE (2012) A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Dis 29(4):711–726. https://doi.org/10.3233/jad-2012-111853

    Article  CAS  Google Scholar 

  • Hellings PW, Fokkens WJ, Bachert C, Akdis CA, Bieber T, Agache I, … Bousquet J (2017) Positioning the principles of precision medicine in care pathways for allergic rhinitis and chronic rhinosinusitis - a EUFOREA-ARIA-EPOS-AIRWAYS ICP statement. Allergy 72(9):1297–1305. https://doi.org/10.1111/all.13162

  • Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W, … et al (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15(5):1203–1218. https://doi.org/10.1016/0896-6273(95)90107-8

  • Ichitani Y, Okaichi H, Yoshikawa T, Ibata Y (1992) Learning behaviour in chronic vitamin E-deficient and -supplemented rats: radial arm maze learning and passive avoidance response. Behav Brain Res 51(2):157–164. https://doi.org/10.1016/s0166-4328(05)80209-8

    Article  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47(6 Suppl 3):S161-170. https://doi.org/10.1212/wnl.47.6_suppl_3.161s

    Article  CAS  Google Scholar 

  • Justin Thenmozhi A, William Raja TR, Manivasagam T, Janakiraman U, Essa MM (2017) Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 20(6):360–368. https://doi.org/10.1080/1028415x.2016.1144846

    Article  CAS  Google Scholar 

  • Kaplan L, Chow BW, Gu C (2020) Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci 21(8):416–432. https://doi.org/10.1038/s41583-020-0322-2

    Article  CAS  Google Scholar 

  • Karnati HK, Garcia JH, Tweedie D, Becker RE, Kapogiannis D, Greig NH (2019) Neuronal enriched extracellular vesicle proteins as biomarkers for traumatic brain injury. J Neurotrauma 36(7):975–987. https://doi.org/10.1089/neu.2018.5898

    Article  Google Scholar 

  • Karuppagounder SS, Madathil SK, Pandey M, Haobam R, Rajamma U, Mohanakumar KP (2013) Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 236:136–148. https://doi.org/10.1016/j.neuroscience.2013.01.032

    Article  CAS  Google Scholar 

  • Kashyap K, Shukla R (2019) Drug delivery and targeting to the brain through nasal route: mechanisms, applications and challenges. Curr Drug Deliv 16(10):887–901. https://doi.org/10.2174/1567201816666191029122740

    Article  CAS  Google Scholar 

  • Keller LA, Merkel O, Popp A (2021) Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 1–23. https://doi.org/10.1007/s13346-020-00891-5

  • Khan H, Tundis R, Ullah H, Aschner M, Belwal T, Mirzaei H, Akkol EK (2020) Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol 146:111817. https://doi.org/10.1016/j.fct.2020.111817

    Article  CAS  Google Scholar 

  • Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18(7):419–434. https://doi.org/10.1038/nrn.2017.48

    Article  CAS  Google Scholar 

  • Kohlstadt I (2019) Advancing medicine with food and nutrients. CRC Press

    Google Scholar 

  • Kontush A, Mann U, Arlt S, Ujeyl A, Lührs C, Müller-Thomsen T, Beisiegel U (2001) Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer’s disease. Free Radic Biol Med 31(3):345–354. https://doi.org/10.1016/s0891-5849(01)00595-0

    Article  CAS  Google Scholar 

  • La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6(12):5453–5472. https://doi.org/10.3390/nu6125453

    Article  CAS  Google Scholar 

  • Li WW, Wang Z, Fan DY, Shen YY, Chen DW, Li HY, … Wang YJ (2020) Association of polygenic risk score with age at onset and cerebrospinal fluid biomarkers of Alzheimer’s disease in a Chinese cohort. Neurosci Bull 36(7):696–704. https://doi.org/10.1007/s12264-020-00469-8

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GMJJON (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. 21(21):8370–8377

  • Lloret A, Esteve D, Monllor P, Cervera-Ferri A (2019) The effectiveness of vitamin E treatment in Alzheimer’s disease. Int J Mol Sci, 20(4). https://doi.org/10.3390/ijms20040879

  • Maan G, Sikdar B, Kumar A, Shukla R, Mishra A (2020) Role of flavonoids in neurodegenerative diseases: limitations and future perspectives. Curr Top Med Chem 20(13):1169–1194. https://doi.org/10.2174/1568026620666200416085330

    Article  CAS  Google Scholar 

  • Makkar R, Behl T, Bungau S, Zengin G, Mehta V, Kumar A, …, Oancea R (2020) Nutraceuticals in neurological disorders. Int J Mol Sci 21(12). https://doi.org/10.3390/ijms21124424

  • Mehta D, Jackson R, Paul G, Shi J, Sabbagh M (2017) Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010–2015. Expert Opin Investig Drugs 26(6):735–739. https://doi.org/10.1080/13543784.2017.1323868

    Article  CAS  Google Scholar 

  • Mendelson SD (2019) Herbal treatment of major depression: scientific basis and practical use. CRC Press

    Book  Google Scholar 

  • Meydani M, Macauley JB, Blumberg JB (1988) Effect of dietary vitamin E and selenium on susceptibility of brain regions to lipid peroxidation. Lipids 23(5):405–409. https://doi.org/10.1007/bf02535510

    Article  CAS  Google Scholar 

  • Miricioiu MG, Niculescu V-C, Filote C, Raboaca MS, Nechifor G (2021) Coal fly ash derived silica nanomaterial for MMMs—application in CO2/CH4 separation. Membranes 11(2). https://doi.org/10.3390/membranes11020078

  • Mirza A, King A, Troakes C, Exley C (2017) Aluminium in brain tissue in familial Alzheimer’s disease. J Trace Elem Med Biol 40:30–36. https://doi.org/10.1016/j.jtemb.2016.12.001

    Article  CAS  Google Scholar 

  • Monji A, Morimoto N, Okuyama I, Yamashita N, Tashiro N (1994) Effect of dietary vitamin E on lipofuscin accumulation with age in the rat brain. Brain Res 634(1):62–68. https://doi.org/10.1016/0006-8993(94)90258-5

    Article  CAS  Google Scholar 

  • Montiel T, Quiroz-Baez R, Massieu L, Arias CJEN (2006) Role of oxidative stress on β-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: protection by antioxidants. 200(2):496–508

  • Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43(11):2412–2414. https://doi.org/10.1212/wnl.43.11.2412-a

    Article  CAS  Google Scholar 

  • Mukhtar M, Bilal M, Rahdar A, Barani M, Arshad R, Behl T, …, Bungau S (2020) Nanomaterials for diagnosis and treatment of brain cancer: recent updates. Chemosensors, 8(4).https://doi.org/10.3390/chemosensors8040117

  • Murphy MP, Hartley RC (2018) Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 17(12):865–886. https://doi.org/10.1038/nrd.2018.174

    Article  CAS  Google Scholar 

  • Nadeau A, Roberge AJIjfv, & nutrition, n. r. I. Z. f. V.-u. E. J. i. d. v. e. d. (1988) Effects of vitamin B12 supplementation on choline acetyltransferase activity in cat brain. 58(4), 402–406

  • Nakashima H, Ishihara T, Yokota O, Terada S, Trojanowski JQ, Lee VM-Y, …, Medicine (2004) Effects of α-tocopherol on an animal model of tauopathies. 37(2), 176–186.

  • Nakashima H, Ishihara T, Yokota O, Terada S, Trojanowski JQ, Lee VM, Kuroda S (2004b) Effects of alpha-tocopherol on an animal model of tauopathies. Free Radic Biol Med 37(2):176–186. https://doi.org/10.1016/j.freeradbiomed.2004.04.037

    Article  CAS  Google Scholar 

  • Nechifor AC, Cotorcea S, Bungau C, Albu PC, Pascu D, Oprea O, …, Nechifor G (2021) Removing of the sulfur compounds by impregnated polypropylene fibers with silver nanoparticles-cellulose derivatives for air odor correction. Membranes, 11(4).https://doi.org/10.3390/membranes11040256

  • Nechifor G, Eftimie Totu E, Nechifor AC, Isildak I, Oprea O, Cristache CM (2019) Non-resorbable nanocomposite membranes for guided bone regeneration based on polysulfone-quartz fiber grafted with nano-TiO2. Nanomaterials (Basel), 9(7). doi:https://doi.org/10.3390/nano9070985

  • Nuñez MT, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel) 11(4). https://doi.org/10.3390/ph11040109

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, … Moher D (2021a) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol 134:178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, … Moher D (2021b) Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol 134:103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003

  • Pardini B, Sabo AA, Birolo G, Calin GA (2019) Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers (Basel) 11(8). https://doi.org/10.3390/cancers11081170

  • Parihar R, Dadhich S (2020) Therapeutic uses of Nasya Karma: conceptual critical review. Int J Ayurveda Pharma Res 126–132

  • Pasic MD, Diamandis EP, McLaurin J, Holtzman DM, Schmitt-Ulms G, Quirion R (2011) Alzheimer disease: advances in pathogenesis, diagnosis, and therapy. Clin Chem 57(5):664–669. https://doi.org/10.1373/clinchem.2011.161828

    Article  CAS  Google Scholar 

  • Pavaloiu R-D, Sha’at F, Neagu G, Albulescu R, Sha’at M, Hlevca C, …, Berger D (2020) In vitro cytotoxicity of polymeric nanoparticles coated with lipid layer loaded with cardiovascular drugs. Proceedings 57(1). https://doi.org/10.3390/proceedings2020057009

  • Pavaloiu R-D, Sha’At F, Sha’At M, Nechifor G (2021) Intracellular uptake study of polymeric nanoparticles loaded with cardiovascular drugs using confocal laser scanning microscopy. Chem Proc 3(1). https://doi.org/10.3390/ecsoc-24-08427

  • Păvăloiu RD, Sha'at F, Bubueanu C, Deaconu M, Neagu G, Sha'at M, …, Berger D (2019) Polyphenolic extract from Sambucus ebulus L. leaves free and loaded into lipid vesicles. Nanomaterials (Basel) 10(1). https://doi.org/10.3390/nano10010056

  • Pavlik VN, Doody RS, Rountree SD, Darby EJ (2009a) Vitamin E use is associated with improved survival in an Alzheimer’s disease cohort. Dement Geriatr Cogn Disord 28(6):536–540. https://doi.org/10.1159/000255105

    Article  CAS  Google Scholar 

  • Pavlik, V. N., Doody, R. S., Rountree, S. D., Darby, E. J. J. D., & disorders, g. c. (2009). Vitamin E use is associated with improved survival in an Alzheimer’s disease cohort. 28(6), 536–540.

  • Pillai SR, Traber MG, Steiss JE, Kayden HJ, Cox NR (1993) Alpha-tocopherol concentrations of the nervous system and selected tissues of adult dogs fed three levels of vitamin E. Lipids 28(12):1101–1105. https://doi.org/10.1007/bf02537077

    Article  CAS  Google Scholar 

  • Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J (2018) Amyloid-β and tau complexity - towards improved biomarkers and targeted therapies. Nat Rev Neurol 14(1):22–39. https://doi.org/10.1038/nrneurol.2017.162

    Article  CAS  Google Scholar 

  • Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S (2008) Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine 4(1):70–78. https://doi.org/10.1016/j.nano.2007.12.001

    Article  CAS  Google Scholar 

  • Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh Thi T, Akter R, … Lee K-JJP (2021a) Redox effects of molecular hydrogen and its therapeutic efficacy in the treatment of neurodegenerative diseases. Processes 9(2):308. https://doi.org/10.3390/pr9020308

  • Rahman M, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, Lee KJ (2021b) Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules 26(17):5327

    Article  CAS  Google Scholar 

  • Rahman MH, Akter R, Bhattacharya T, Abdel-Daim MM, Alkahtani S, Arafah MW, … Mittal V (2020a) Resveratrol and neuroprotection: impact and its therapeutic potential in Alzheimer’s disease. Front Pharmacol 11:619024. https://doi.org/10.3389/fphar.2020.619024

  • Rahman MH, Sarkar B, Islam M, Abdullah M (2020b) Discovering biomarkers and pathways shared by Alzheimer’s disease and Parkinson’s disease to identify novel therapeutic targets

  • Rahman MH, Peng S, Chen C, Lio’ P, Moni MA (2018) Genetic effect of type 2 diabetes to the progression of neurological diseases. bioRxiv, 480400.https://doi.org/10.1101/480400

  • Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals review. Neurocomputing 223:26–44

    Article  Google Scholar 

  • Rodrigues J, Rinaldo D, dos Santos LC, Vilegas W (2007) An unusual C6–C6" linked flavonoid from Miconia cabucu (Melastomataceae). Phytochemistry 68(13):1781–1784. https://doi.org/10.1016/j.phytochem.2007.04.020

    Article  CAS  Google Scholar 

  • Sabatino JJ Jr, Pröbstel AK, Zamvil SS (2019) B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 20(12):728–745. https://doi.org/10.1038/s41583-019-0233-2

    Article  CAS  Google Scholar 

  • Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145. https://doi.org/10.1016/j.neuropharm.2015.01.027

    Article  CAS  Google Scholar 

  • Sacchetti G, Bruni R (2007) The encyclopedia of vitamin E. In (pp. 457–469)

  • Salehi B, Armstrong L, Rescigno A, Yeskaliyeva B, Seitimova G, Beyatli A, … Sharifi-Rad J (2019) Lamium plants—a comprehensive review on health benefits and biological activities. Molecules 24(10). https://doi.org/10.3390/molecules24101913

  • Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Thal LJ (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med. 336(17):1216–1222. https://doi.org/10.1056/nejm199704243361704

    Article  CAS  Google Scholar 

  • Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, … Pfeiffer EJNEJoM (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. 336(17):1216–1222

  • Schaeffer MJ, Chan L, Barber PA (2021) The neuroimaging of neurodegenerative and vascular disease in the secondary prevention of cognitive decline. Neural Regen Res 16(8):1490–1499. https://doi.org/10.4103/1673-5374.303011

    Article  Google Scholar 

  • Schippling S, Kontush A, Arlt S, Buhmann C, Stürenburg HJ, Mann U, … Beisiegel U (2000) Increased lipoprotein oxidation in Alzheimer’s disease. Free Radic Biol Med 28(3):351–360. https://doi.org/10.1016/s0891-5849(99)00247-6

  • Seyed Hameed AS, Rawat PS, Meng X, Liu W (2020) Biotransformation of dietary phytoestrogens by gut microbes: a review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnol Adv 43:107576. https://doi.org/10.1016/j.biotechadv.2020.107576

    Article  CAS  Google Scholar 

  • Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53(20):7749–7759. https://doi.org/10.1021/jf051513y

    Article  CAS  Google Scholar 

  • Sharma AK, Singh V, Gera R, Purohit MP, Ghosh D (2017) Zinc oxide nanoparticle induces microglial death by NADPH-oxidase-independent reactive oxygen species as well as energy depletion. Mol Neurobiol 54(8):6273–6286. https://doi.org/10.1007/s12035-016-0133-7

    Article  CAS  Google Scholar 

  • Sharma VK, Singh TG, Garg N, Dhiman S, Gupta S, Rahman M, … Albadrani GMJB (2021) Dysbiosis and Alzheimer’s disease: a role for chronic stress? 11(5), 678

  • Sharma VK, Singh TG, Garg N, Dhiman S, Gupta S, Rahman MH, … Abdel-Daim MM (2021) Dysbiosis and Alzheimer’s disease: a role for chronic stress? Biomolecules, 11(5). https://doi.org/10.3390/biom11050678

  • Shekelle PG, Morton SC, Jungvig LK, Udani J, Spar M, Tu W, … Hardy M (2004) Effect of supplemental vitamin E for the prevention and treatment of cardiovascular disease. J Gen Intern Med 19(4):380–389. https://doi.org/10.1111/j.1525-1497.2004.30090.x

  • Socci DJ, Crandall BM, Arendash GW (1995) Chronic antioxidant treatment improves the cognitive performance of aged rats. Brain Res 693(1–2):88–94. https://doi.org/10.1016/0006-8993(95)00707-w

    Article  CAS  Google Scholar 

  • Spuch C, Navarro C (2011) Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Journal of Drug Delivery 2011:469679. https://doi.org/10.1155/2011/469679

    Article  CAS  Google Scholar 

  • Srivastava S, Singh D, Patel S, Singh MR (2017) Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int J Biol Macromol 101:502–517. https://doi.org/10.1016/j.ijbiomac.2017.03.100

    Article  CAS  Google Scholar 

  • Sung S, Yao Y, Uryu K, Yang H, Lee VMY, Trojanowski JQ, Praticò DJTFJ (2004) Early Vitamin E Supplementation in Young but Not Aged Mice Reduces Aβ Levels and Amyloid Deposition in a Transgenic Model of Alzheimer’s Disease 18(2):323–325

  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99(1):21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  Google Scholar 

  • Tavanai E, Mohammadkhani G (2017) Role of antioxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol 274(4):1821–1834. https://doi.org/10.1007/s00405-016-4378-6

    Article  Google Scholar 

  • Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Blood-brain delivery methods using nanotechnology. Pharmaceutics, 10(4). https://doi.org/10.3390/pharmaceutics10040269

  • Tosi G, Duskey JT, Kreuter J (2020) Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opin Drug Deliv 17(1):23–32. https://doi.org/10.1080/17425247.2020.1698544

    Article  CAS  Google Scholar 

  • Trela A, Szymańska R (2019) Less widespread plant oils as a good source of vitamin E. Food Chem 296:160–166. https://doi.org/10.1016/j.foodchem.2019.05.185

    Article  CAS  Google Scholar 

  • Vatassery GT, Brin MF, Fahn S, Kayden HJ, Traber MG (1988) Effect of high doses of dietary vitamin E on the concentrations of vitamin E in several brain regions, plasma, liver, and adipose tissue of rats. J Neurochem 51(2):621–623. https://doi.org/10.1111/j.1471-4159.1988.tb01083.x

    Article  CAS  Google Scholar 

  • Wang J, Liu W, Luo G, Li Z, Zhao C, Zhang H, … Zhao C (2018) Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ Sci 11(12):3375–3379

  • Wang M, Tan Y, Shi Y, Wang X, Liao Z, Wei P (2020) Diabetes and sarcopenic obesity: pathogenesis, diagnosis, and treatments. Front Endocrinol (lausanne) 11:568. https://doi.org/10.3389/fendo.2020.00568

    Article  Google Scholar 

  • Wong HL, Wu XY, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64(7):686–700. https://doi.org/10.1016/j.addr.2011.10.007

    Article  CAS  Google Scholar 

  • Wörtwein G, Stackman RW, Walsh TJ (1994) Vitamin E prevents the place learning deficit and the cholinergic hypofunction induced by AF64A. Exp Neurol 125(1):15–21. https://doi.org/10.1006/exnr.1994.1002

    Article  Google Scholar 

  • Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6). doi:https://doi.org/10.3390/molecules24061123

  • Yap H-M, Lye K-L (2020) An insight of vitamin E as neuroprotective agents. Progress in Microbes & Molecular Biology 3. https://doi.org/10.36877/pmmb.a0000071

  • Yara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A. S., & Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules, 22(9). doi:https://doi.org/10.3390/molecules22091474

  • Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K (2019) Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci 224:109–119. https://doi.org/10.1016/j.lfs.2019.03.055

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under grant no. KEP-36–130-41. The authors, therefore, acknowledge with thanks the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

Chenmala Karthika: conceptualization and writing draft; Anoop Pattanoor Appu: reviewing; Rokeya Akter: writing and reviewing; Md. Habibur Rahman: Conceptualization, writing, reviewing and editing; Priti Tagde: reviewing; Ghulam Md. Ashraf: reviewing; Mohamed M. Abdel-Daim: reviewing; Syed Shams ul Hassan: reviewing; Areha Abid: reviewing; Simona Bungau: reviewing and editing.

Corresponding author

Correspondence to Md. Habibur Rahman.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Antioxidant of natural based products helps to treat and alleviate AD.

• Use of vitamin E, quercetin, and basil oil in a nano-based formulation is effective against AD.

• Administration of drugs is a promising approach for the treatment of neurodegenerative and mental disorders.

• Natural products that reduced toxicity are considered safe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthika, C., Appu, A.P., Akter, R. et al. Potential innovation against Alzheimer’s disorder: a tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery. Environ Sci Pollut Res 29, 10950–10965 (2022). https://doi.org/10.1007/s11356-021-17830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17830-7

Keywords

Navigation