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Abstract
Metal pollution is one of the main environmental threats in freshwater ecosystems. Aquatic animals can accumulate these 
substances and transfer them across the food web, posing risks for both predators and humans. Accumulation patterns strongly 
vary depending on the location, species, and size (which in fish and crayfish is related to age) of individuals. Moreover, high 
metal concentrations can negatively affect animals’ health. To assess the intraspecific relationship between metal accumula-
tion and size and health (proxied by the body condition) of individuals, the concentration of 14 metals (Al, As, Cd, Co, Cr, 
Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Zn) was analyzed in six alien species from the highly anthropogenically altered Arno River 
(Central Italy): five fish (Alburnus alburnus, Pseudorasbora parva, Lepomis gibbosus, Ictalurus punctatus, and Silurus 
glanis) and one crayfish (Procambarus clarkii). We found that in P. clarkii, Cu was negatively related to size, as well as Al 
in L. gibbosus and Mg for adult I. punctatus. Positive size-dependent relationships were found for Hg in L. gibbosus, Fe in 
S. glanis, and Cr in juvenile I. punctatus. Only Co and Mg in S. glanis were found to negatively correlate with individual 
health. Since metal concentrations in animal tissue depend on trade-offs between uptake and excretion, the few significant 
results suggest different types of trade-offs across different species and age classes. However, only predatory fish species 
(L. gibbosus, I. punctatus, and S. glanis) presented significant relationships, suggesting that feeding habits are one of the 
primary drivers of metal accumulation.
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Introduction

Metal and metalloid (hereafter “metal”) pollution is one of 
the most serious environmental hazards (Gall et al. 2015; 
Yang et al. 2018), posing both ecological and human health 
risks (Alhashemi et al. 2012; Liu et al. 2018, 2021). This 
threat originates from their uptake from the environment and 
subsequent bioaccumulation in animal tissues over time and 
their tendency to biomagnify through the transfer along the 
food chain to higher trophic positions (Markert et al. 2003; 
Madgett et al. 2021; Yang et al. 2021). While most metals 
are “essential” (i.e., needed for physiological functions as 
opposed to “non-essential” metals), high bioaccumulation 
causes detrimental effects on the health and fitness of aquatic 
animals (Reddy et al. 1997; Funes et al. 2006; Zeitoun and 
Mehana 2014; Javed and Usmani 2019), leading to behav-
ioral, biochemical, and histological changes and potentially 
even death (Has-Schön et al. 2015; Fonseca et al. 2017; Gre-
ani et al. 2017).
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Aquatic organisms accumulate metals from their local 
environment (i.e., water or sediment) either through their 
gills and skin, or through their digestive system after con-
sumption of contaminated food sources (Squadrone et al. 
2013; Has-Schön et al. 2015). Metal concentrations can be 
affected, among other factors, by the level of environmental 
contamination and the duration of exposure (Kouba et al. 
2010; Has-Schön et al. 2015). Therefore, as organisms grow, 
it can be expected that larger (i.e., older) individuals have 
accumulated higher metal concentrations than smaller (i.e., 
younger) ones. Another factor potentially affecting metal 
bioaccumulation is the species richness and biomass of 
the recipient environment (McKinley and Johnston 2010); 
as prey-rich ecosystems typically have more diverse path-
ways, metals can more easily transfer along the food chain 
(Balzani et al. 2021). As such, it can be assumed that gener-
alist predators relying on multiple prey species with diverse 
metal accumulation levels will express higher accumulation 
variability depending on the food web complexity, while at 
the same time differing from specialized consumers (Yev-
tushenko 1998).

The Arno River in Tuscany is the second biggest river 
in Central Italy. Particularly in Florence, the Arno River is 
anthropogenically and hydromorphologically altered (i.e., 
divided by weirs slowing its flow, channelization). The spe-
cies community is characterized by a dominance of alien 
species, which have led to a complete species turnover from 
a native community to an almost all-alien species assem-
blage (Haubrock et al. 2021a). The fish assemblage, in par-
ticular, is entirely composed of alien species, some of which 
are considered invasive. Among these alien species, there are 
the two catfish species, Silurus glanis and Ictalurus puncta-
tus, but also a variety of cyprinids (Alburnus alburnus, Bar-
bus barbus, Cyprinus carpio, Pseudorasbora parva, Tinca 
tinca; Squalius cephalus) and others (Lepomis gibbosus, 
Padogobius sp.) (Haubrock et al. 2019a). Among the crus-
taceans, the invasive Procambarus clarkii and Dikerogam-
marus villosus are the most prominent in terms of abundance 
(Haubrock et al. 2019a). The river is contaminated from 
a variety of substances, comprising drugs (Zuccato et al. 
2008), pesticides (Griffini et al. 1997), and metals (Cortecci 
et al. 2009) from both natural (i.e., weathering of metal-
bearing rocks) and anthropogenic sources (i.e., industrial 
and agricultural activities) (Dinelli et al. 2005). In addition 
to those, nitrate derived from fertilizers, soil-organic, and 
wastewater origin have also been recorded (Nisi et al. 2005).

Thus far, little is known on how metals accumulate within 
alien species assemblages and how this may be affected by 
intraspecific characteristics (Balzani et al. 2021). Since alien 
species can generally tolerate higher pollutant concentra-
tions than native species (El Haj et al. 2019), studying the 
sublethal effects on their fitness is an interesting avenue of 
research. To explore these relationships, we investigated 

intraspecific relationships for metal bioaccumulation in five 
fish and one crustacean species among the species present 
in the Arno River, using the alien species assemblage from 
this river as a model. We hypothesized that, in each spe-
cies, larger and thus older individuals will have accumulated 
higher metal concentrations and that metal concentration 
will negatively correlate with body condition.

Materials and methods

Study site and sampling

The sampling was conducted from April to June 2018 within 
one stretch of the inner-Florence section of the Arno River 
(43.765606  N 11.268234 E, ~ 2.4  km length), which is 
delimitated by weirs (Fig. 1). Fish were caught with standard 
fishing rods using a variety of baits, and crayfish were caught 
using funnel traps. Caught fish were immediately euthanized 
via stunning, followed by gill cutting with a clean ceramic 
blade, while crayfish were killed by freezing, in compliance 
with the authorization (“Autorizzazione alla pesca scienti-
fica Regione Toscana”). Samples were stored in ice during 
transport and then preserved in the freezer at − 20℃ until 
further processing. Overall, 110 individuals belonging to 
five fish and one crustacean alien species were collected: 7 
A. alburnus, 4 P. parva, 16 L. gibbosus, 37 S. glanis, 36 I. 
punctatus, and 10 P. clarkii. Life stages of I. punctatus were 
distinguished following Haubrock et al. (2018), with speci-
mens of a total length > 30 cm considered adults, resulting 
in a total of 16 juveniles and 20 adults caught. Only adults 
were caught for the other fish species based on primary and 
secondary sex characteristics.

For each individual crayfish, we measured the cephalo-
thorax length (CTL; from the tip of the rostrum to the end 
of carapace, cm ± 0.1), while for each individual fish, we 
measured weight (W; g ± 0.1) and total length (TL; from 
the tip of the snout to the tip of the longer lobe of the caudal 
fin, cm ± 0.1) and calculated the Fulton factor (K), defined 
as K = 100*W/TL3. The Fulton factor is a morphometric 
index of body condition, commonly used as a proxy to 
assess the health and fitness condition of an individual in 
relation to the size of the species population (Froese 2006; 
Nash et al. 2006). Indeed, it is based on the fact that greater 
body mass at a given length corresponds to better conditions 
(Schloesser and Fabrizio 2017).

Metal sample preparation and analysis

For the analysis of metals, a sample of abdominal muscle 
(for crayfish) and dorsal muscle without skin (for fish) was 
taken from each specimen. Samples were weighed wet, 
dried in an oven at 60℃ for 48 h, and weighed again dry. 
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Organic matrices were prepared, weighing 50–500 mg (dry 
weight). Each sample was diluted in 10 ml of nitric acid, 
then mineralized with microwave radiation (1600 W, 210℃; 
Olesik 1991; Low et al. 2009; Ghanthimathi et al. 2012) to 
homogenize them and subsequently analyzed through Induc-
tively Coupled Plasma – Optical Emission Spectrometry 
(ICP-OES). A total of 11 blanks (one every approximately 
10 samples) were also prepared to control for contamina-
tion. Before running the analyses and at the end of each 
measurement session, certified standards of known metal 
concentrations (multistandard concentrations: 0.1 ppm, 
1 ppm, and 10 ppm; Hg standard concentrations: 0.01 ppm 
and 0.05 ppm) were used to calibrate the instruments and 
to ensure that no instrumental bias occurred. In compliance 
with quality assurance and quality control (QA/QC), three 
replicates for each sample (from the same digestion solution) 
were run and their relative standard deviations (RSD) were 
calculated. The respective mean metal concentration was 
used for further analyses.

For each sample, the following metal concentrations were 
determined: aluminum (Al), arsenic (As), cadmium (Cd), 
cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), mercury 
(Hg), magnesium (Mg), manganese (Mn), nickel (Ni), lead 
(Pb), selenium (Se), and zinc (Zn). The analytical detection 
limit for all metals was 0.01 ppm on a dry weight basis. 
Concentrations in blanks were < 1% of the samples, and all 
the RSDs were < 10%.

Statistical analyses

Before running statistical analyses, each value of samples 
that presented metal concentrations below the detection 
limit (0.01) was substituted with the value of the detection 

limit itself (Soto et al. 2016) and metal concentrations were 
 log10-transformed to account for multiplicative effects.

To display correlations, an explorative correlation analy-
sis using Spearman’s rank correlation was performed (R 
package “corrplot”; Wei et al. 2017) for each species. A pre-
liminary linear model on  log10-transformed total length and 
weight was performed for fish. Since a significant relation-
ship was found (F1,197 = 2460.4, p < 0.001, adj. R2 = 0.93), 
only total length was used for subsequent analyses. To iden-
tify relationships between metal concentrations, size, and 
body condition, we built a linear model for each species 
using the “step” function for every  log10-transformed metal 
concentration as response variable and length (TL or CTL) 
and Fulton factor (K) as predictors. All statistical analyses 
were performed using the software R (4.0 version, R Core 
Team 2020), and the level of statistical significance (α) was 
set at p = 0.05.

Results

All the correlations of the measured metals with length, 
weight, and Fulton factor for every species are shown in 
Fig. 2.

The applied models showed significant relationships for 
only four species (P. clarkii, L. gibbosus, S. glanis, and I. 
punctatus). The cyprinid species A. alburnus and P. parva 
did not show a significant relationship with any metal (Sup-
plementary information 1). Only a few metals were found 
to significantly correlate with length (Cu for P. clarkii, Al 
and Hg for L. gibbosus, Fe for S. glanis, and Cr and Mg for 
juveniles and adults, respectively, of I. punctatus). Only two 
metals (Co and Mg) in one species (S. glanis) were found 
to significantly affect the species’ health as proxied by the 

Fig. 1  Map of the study site, 
which is a ~ 2.4 km stretch of 
the Arno River, showing the 
two weirs (A and B) enclosing 
the sampling area
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Fulton factor (Table 1). While the relationships with the Ful-
ton factor were both negative, the relationships with length 
were, depending on the metal, both positive (for Hg in L. 
gibbosus, Fe in S. glanis, and Cr in juvenile I. punctatus) 
and negative (for Cu in P. clarkii, Al in L. gibbosus, Mg in 
adult I. punctatus).

Discussion

There is evidence that some metals bioaccumulate within 
organisms through time, leading to positive size and age-
dependent relationships (Dragun et al. 2007; Rajkowska 
and Protasowicki 2013; Has-Schön et al. 2015). Among 
these, Hg, one of the most toxic metals even at low con-
centrations (Kaus et al. 2017; Waheed et al. 2020), is the 
one that most frequently follows this behavior (Squadrone 
et al. 2013; Zrnčić et al. 2013; Donadt et al. 2021). How-
ever, these relationships are not always obvious. In line 
with other studies (Jovičić et al. 2015; Léopold et al. 2015; 

Jia et al. 2017), we found only a few significant relation-
ships between metal concentrations and total length (a 
proxy for age). In line with previous literature (Rakocevic 
et al. 2018), significant relationships were mainly found 
for essential elements, while no clear or not-significant 
relationships were found for the non-essentials. The 
absence of clear patterns is likely due to fish belonging 
to the same age class (adults) except for I. punctatus, for 
which comparable concentrations in both young and old 
animals were found. This latter result could be due to dif-
ferent reasons: the young for higher metabolism and inges-
tion rate, the old for the longer exposure to pollutants (Yi 
and Zhang 2012; Liu et al. 2015; Jia et al. 2017), and for 
predators, the greater consumption of contaminated prey 
from higher trophic levels (Balzani et al. 2021). Moreo-
ver, the variability we identified in the sign of metal–size 
relationships is also in line with other studies (Jezierska 
and Witeska 2001; Dragun et al. 2016; Jia et al. 2017). 
Even the same species can show different accumulation 
patterns for the same metal depending on the location or 

Fig. 2  Correlation plot of all metal concentrations with length (CTL, cephalothorax length for crayfish; TL, total length for fish), weight (W), 
and Fulton factor (K) for each species
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season (Barak and Mason 1990; Farkas et al. 2003; Noël 
et al. 2013; Ghosn et al. 2020).

Negative relationships are generally more frequent for 
alkaline elements (e.g., Li, Na, and K), whereas positive 
relationships are more commonly found for transition ele-
ments (e.g., Mn, Fe, and Co; Dragun et al. 2016; Jiang 
et al. 2022). Indeed, we found a negative relationship with 
the length for Cu (in P. clarkii) and Mg (in I. punctatus 
and S. glanis) and positive for Fe (in S. glanis), Hg (in L. 
gibbosus), and Cr (in I. punctatus). Partially in line with 
previous studies (Merciai et al. 2014; Jiang et al. 2022), 
we found negative relationships with the length for two 
essential metals (Cu in P. clarkii and Mg in I. punctatus 
and S. glanis) and positive relationships for two essen-
tial (Fe in S. glanis and Cr in I. punctatus) and one non-
essential metal (Hg in L. gibbosus). Negative relationships 
could be indicative of faster metabolism in younger fish 
compared to older ones (Léopold et al. 2015) and higher 
tissue growing rate than metal uptake rate (Merciai et al. 
2014; Dragun et al. 2016). In addition to that, a better 
metal bioregulation could occur in older fish (De Wet et al. 
1994; Merciai et al. 2014). On the other hand, positive 
relationships can be due to a constant uptake and slow 
excretion rates (Has-Schön et al. 2015) as metal bioac-
cumulation depends on a trade-off between uptake and 
excretion (Adams et al. 2020), suggesting that our findings 
are likely the outcome of different trade-offs.

Crayfish size is known to correlate with some metal con-
centrations, especially Hg (Kouba et al. 2010). However, in 
this study, we found a significant (negative) relationship only 
for Cu. Although high Cu concentrations were found to be 
detrimental in P. clarkii (Bini and Chelazzi 2006; Zhao et al. 
2019a), muscle has a slow Cu uptake rate compared to other 
tissues (Soedarini et al. 2012) and Cu elimination seems to 
be quite efficient in this species (Zhao et al. 2019b), resulting 
in low accumulation after exposure (Maranhão et al. 1995).

High metal concentrations within an organism can nega-
tively affect its health (Wu et al. 2016; Fonseca et al. 2017), 
which can be proxied by the Fulton factor, that is used to 
assess body conditions (Froese 2006; Mozsár et al. 2015). 
However, in line with other studies (Jovičić et al. 2015), 
we found that the Fulton factor was mostly unaffected by 
metal concentration. The only exceptions were Mg and Co 
in S. glanis, which showed negative relationships, suggest-
ing that life-history changes may play a considerable role. 
Previous literature showed, however, that this relationship 
can be highly variable (Alhashemi et al. 2012; Luczynska 
et al. 2016; Dragun et al. 2016; Rakocevic et al. 2018). One 
possible explanation is that fish could have physiological 
mechanisms that reduce the impact of metals on body condi-
tion (Tenji et al. 2020). It should also be noted that the Ful-
ton factor is correlated with the body fat content (Schloesser 
and Fabrizio 2017), which can vary between individuals and 
species, and that metal accumulation can be positively or 

Table 1  Results of the significant linear models with  log10-transformed metal concentration as response variable and length (CTL, cephalothorax 
length for crayfish; TL, total length for fish) and Fulton factor (K) as predictors

Asterisks refer to the significance level: p < 0.05 (*); p < 0.01 (**); p < 0.001 (***)

Species Metal Covariate Estimate Standard error t-value p F Adj. R2

Procambarus clarkii Cu Intercept 2.39 0.16 15.12  < 0.001*** F1,8 = 15.89 0.62
CTL  − 0.09 0.02  − 3.99 0.004**

Lepomis gibbosus Al Intercept 2.17 0.29 7.55  < 0.001*** F1,14 = 20.55 0.57
TL  − 0.14 0.03  − 4.53  < 0.001***

Hg Intercept  − 3.24 0.78  − 4.17  < 0.001*** F1,14 = 9.25 0.35
TL 0.25 0.08 3.04  < 0.01**

Silurus glanis Co Intercept  − 1.27 0.26  − 4.88  < 0.001*** F1,35 = 6.46 0.13
K  − 1.18 0.46  − 2.54 0.02*

Fe Intercept 0.92 0.17 5.38  < 0.001*** F1,35 = 4.14 0.08
TL 0.01 0.01 2.04 0.049*

Mg Intercept 3.53 0.20 17.74  < 0.001*** F2,34 = 3.94 0.14
TL  − 0.01 0.004  − 2.44 0.11
K  − 0.50 0.22  − 2.29 0.03*

Ictalurus punctatus (juveniles and
adults)

Cr Intercept  − 1.88 0.31  − 6.13  < 0.001*** F1,34 = 13.57 0.26
TL 0.03 0.01 3.68  < 0.001***

Ictalurus punctatus (juveniles) Cr Intercept  − 3.92 0.39  − 10.14  < 0.001*** F1,14 = 51.79 0.77
TL 0.11 0.02 7.20  < 0.001***

Ictalurus punctatus (adults) Mg Intercept 3.06 0.09 34.44  < 0.001*** F1,18 = 10.91 0.34
TL  − 0.01 0.002  − 3.30  < 0.01**
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negatively related to the lipid content, depending on the 
metal (Sassd 2011; Charette et al. 2021).

Interspecific (as well as intraspecific, among tissues) dif-
ferences in metal accumulation compared with the environ-
mental concentrations and biomagnification processes in 
the Arno River community were disentangled in a recent 
study by Balzani et al. (2021). Nonetheless, by comparing 
intraspecific relationships, additional information on inter-
specific patterns can be derived. Interestingly, besides the 
omnivorous crayfish P. clarkii, only predatory fish species 
presented some significant relationships, whereas the more 
opportunistic cyprinids (A. alburnus and P. parva) did not. 
Considered separately, the two age classes of I. punctatus 
revealed additional information. First, the variance explained 
for the relationship between Cr and total length is much 
higher. Second, the relationship between Mg and total length 
was found to be significant for adult specimens. These obser-
vations could be due to ontogenetic differences in habitat 
use, behavior, and diet (Haubrock et al. 2018, 2020, 2021b) 
that are reflected in different metal accumulations (Balzani 
et al. 2021). Indeed, I. punctatus juveniles live close to the 
riverbank and feed more on detritus, while adults live on 
the bottom and feed in the whole water column (Endo et al. 
2015; Haubrock et al. 2020), possibly leading to Cr bioac-
cumulation in young individuals and a reduction with age 
in Mg concentrations in adults. However, S. glanis, which 
similarly to adults of I. punctatus occupies benthic habitats 
but expresses pelagic feeding (Haubrock et al. 2020; De San-
tis and Volta 2021), showed higher Fe bioaccumulation with 
increasing age. Also, the riparian species L. gibbosus and P. 
clarkii (Donato et al. 2018; Bissattini et al. 2021; Haubrock 
et al. 2021c) showed negative relationships between metal 
concentrations and size. Therefore, the role of the living or 
feeding habitat in bioaccumulation is not straightforward and 
seems to vary according to the involved species.

Most of the alien species examined in this study have 
not been subject to management in the Arno River, except 
for S. glanis, a popular fish among anglers who practice 
“catch-and-release,” which used to be managed in the past 
(Arlinghaus et al. 2007; Cerri et al. 2018). Additionally, 
although none of those species is officially known to be 
harvested for commercial purposes or for human consump-
tion in smaller quantities, anecdotal evidence suggests that 
the latter may be true (see also Squadrone et al. 2013). The 
lack of understanding of metal accumulation and interac-
tions with size and body condition or health of these inva-
sive species, together with the lack of management, there-
fore, poses a simultaneous risk to human health and to the 
already stressed ecosystem. The results of our study, in 
combination with earlier works shedding light on trophic 
interactions (Haubrock et al. 2019a), bioaccumulation and 
mechanisms through which those metals transfer across 
food webs to higher trophic levels (Balzani et al. 2021), 

can provide valuable input not only for conservation 
authorities concerned with impact mitigation but also for 
public health and food safety authorities. Indeed, despite 
the fact that several metal concentrations were found to be 
below the maximum permitted levels for human consump-
tion as determined by the European Commission (Balzani 
et al. 2021; European Commission 2008), for metals such 
as Hg, there is evidence for considerable bioaccumulation 
across the trophic chain (Balzani et al. 2021). Mercury 
was also found in this study to have a significant posi-
tive relationship with the length of L. gibbosus which may 
indicate for example that any attempts to control the inva-
sion, e.g., through removal/harvesting or other, could be 
targeted at earlier life stages. This result may also factor 
into management considerations for P. clarkii which is a 
key prey for L. gibbosus (Haubrock et al. 2019b) and for 
I. punctatus (adults), for which L. gibbosus is a key prey 
(Balzani et al. 2021).

At the same time, such works can help build a baseline for 
understanding interactions between these species and metals 
in other places where invasive populations have been estab-
lished. One of the examined species for which significant 
relationships were identified (P. clarkii), owing to its high 
impacts and costs (Haubrock et al. 2021d; Kourantidou et al. 
2021), is listed among the worst invasive species in Europe 
(Nentwig et al. 2018) and in the Union list of invasive spe-
cies of concern attached to the EU Regulation 1143/2014 on 
invasive alien species (the list of invasive species for which 
management actions are mandatory). With almost no native 
fish species left in the Arno River (Balzani et al. 2020; Hau-
brock et al. 2021a), our finding that predatory fish species 
were the only ones with significant relationships, suggesting 
that feeding habitats are likely among the primary drivers of 
metal accumulation, is key to future restoration initiatives. 
Indeed, despite the poor environmental quality status of the 
Arno River, several ecosystem services, which include sup-
porting services related to aquatic biodiversity in the river 
and its main tributaries, seem to be of great importance to 
nearby communities (Pacetti et al. 2020), reinforcing the 
need for restoration actions that require an adequate under-
standing of the underlying ecological mechanisms.

Last, it should be acknowledged that, in our study, the 
paucity of significant relationships could be the result of 
the small sample number, or the too narrow range of sizes 
sampled, thus representing only one age class. However, the 
importance of our contribution lies in the use of linear mod-
els that help ensure only robust relationships, as opposed to 
correlation analysis typically used to test such relationships, 
which can lead to overestimating the significant relation-
ships. Nevertheless, increasing knowledge of patterns of 
metal bioaccumulation represents an important contribution 
to the environmental monitoring of freshwater ecosystems. 
Our work points at the need for more studies comparing 
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native and alien populations to help identify stressors that 
contribute to underlying processes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 021- 17621-0.
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