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Abstract
The Pan-Third Pole (PTP) region, which encompasses the Eurasian highlands and their surroundings, has experienced 
unprecedented, accelerated warming during the past decades. This study evaluates the performance of historical simulation 
runs of the Coupled Model Intercomparison Project (CMIP6) in capturing spatial patterns and temporal variations observed 
over the PTP region for mean and extreme temperatures. In addition, projected changes in temperatures under four Shared 
Socioeconomic Pathway (SSP) scenarios (SSP1‐2.6, SSP2‐4.5, SSP3-7.0, and SSP5‐8.5) are also reported. Four indices were 
used to characterize changes in temperature extremes: the annual maximum value of daily maximum temperature (TXx), 
the annual minimum value of daily minimum temperature (TNn), and indices for the percentage of warm days (TX90p) and 
warm nights (TN90p). Results indicate that most CMIP6 models generally capture the characteristics of the observed mean 
and extreme temperatures over the PTP region, but there still are slight cold biases in the Tibetan Plateau. Future changes of 
mean and extreme temperatures demonstrate that a strong increase will occur for the entire PTP region during the twenty-
first century under all four SSP scenarios. Between 2015 and 2099, ensemble area-averaged annual mean temperatures are 
projected to increase by 1.24 °C/100 year, 3.28 °C/100 year, 5.57 °C/100 year, and 7.40 °C/100 year for the SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. For TXx and TNn, the most intense warming is projected in Central 
Asia. The greatest number of projected TX90p and TN90p will occur in the Southeast Asia and Tibetan Plateau, respectively.
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Introduction

Warming of the climate system is unequivocal, a fact that 
has drawn overwhelming attention from the public, govern-
ments, and academic communities in recent decades (Gou 
et al. 2021). The warming has exerted profound, worldwide 
impacts on human life (Cheng et al. 2018; Sun et al. 2019), 
agricultural production (Liu et al. 2019, 2021; Tigchelaar 
et al. 2018), land use (Seneviratne et al. 2018), and natural 
ecosystems (Gou et al. 2020; Zheng et al. 2021). Among the 
areas expected to be sensitive to this warming is the region 
known as the Third Pole, which includes the Tibetan Plateau 
and the mountains surrounding it. Extending westward and 
northward from the Third Pole, the Pan-Third Pole (PTP) 
region is the core region of the “The Belt and Road” initia-
tive promoted by the Chinese government, which has been 
building a new platform for international cooperation among 
more than 70 countries in Asia, Africa, and Europe. It covers 
more than 20 million km2 and supports over 3 billion people 
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with its resources. The PTP region is among the regions in 
the world most vulnerable to the impact of climate change, 
since it has the world’s highest elevations and hosts the larg-
est mass of glaciers and snow cover outside the polar regions 
(Wang et al. 2020). Under global warming, the PTP region, 
and especially the Tibetan Plateau, has experienced rates of 
warming twice the global average over the last 50–60 years 
(Deng et al. 2017; Pepin et al. 2019; You et al. 2019). Fur-
thermore, the projected warming of some areas of the PTP 
region will exceed 4 °C above pre-industrial levels by 2100, 
which far exceeds the 2 °C goal set by the Paris Agreement 
of the United Nations Framework Convention on Climate 
Change (Yao et al. 2017). The warming in the PTP region 
is causing Earth system changes characterized by inten-
sive interactions among the processes of the atmosphere, 
hydrosphere, cryosphere, and biosphere, and is resulting in 
environmental threats such as glacier retreat, ice collapse, 
glacial lake expansion, and frequent glacier lake outburst 
flood (Miao et al. 2021; Yang et al. 2014; Yao et al. 2019). 
These changes may have impacts on the regional and global 
hydrologic cycle, thereby hindering socioeconomic devel-
opment in countries along the routes of the Belt and Road 
Initiative. A deeper understanding of climate changes in the 
PTP region can inform science-based adaptation strategies 
to reduce climate risks.

Global climate models (GCMs) have become a major 
and vital tool for projecting future changes in climate; 
their reliability depends on their ability to reproduce 
historical and current climate features. To this end, the 
World Climate Research Programme has promoted a 
set of experiments known as the Coupled Model Inter-
comparison Project (CMIP) since the 1990s, which have 
delivered systematic and high-quality simulations for bet-
ter understanding past climate changes and making pro-
jections and uncertainty estimates of the future (Annan 
and Hargreaves 2011; Meehl et al. 2000). Studies using 
simulations from the fifth phase of CMIP (CMIP5; Taylor 
et al. 2012) have advanced our understanding of region-
ally heterogeneous climate warming (Bannister et  al. 
2017; Ongoma et al. 2018; Sun et al. 2017, 2020), high-
lighting strong warming trends in the high latitudes of 
the Northern Hemisphere and moderate warming trends 
in the middle latitudes (Feng et al. 2014). Several stud-
ies have investigated the performance of CMIP models 
for the PTP region. For example, Dong et  al. (2018) 
assessed the performance of CMIP5 historical simula-
tions and projected future changes under three Repre-
sentative Concentration Pathways (RCP2.6, RCP4.5, and 
RCP8.5) over critical Belt and Road regions based on data 
from 22 models. They found the most significant areas 
of warming are expected in Kazakhstan and the northern 
part of the south Belt and Road region. Kamworapan and 
Surussavadee (2019) evaluated the performances of forty 

CMIP5 models for simulating climatological temperature 
and precipitation for Southeast Asia and suggest the use 
of an ensemble they called 6-GCM-Ensemble for climate 
studies and projections. Jia et al. (2019) comprehensively 
assessed the performance of 33 CMIP5 models by an 
improved-score‐based and multiple‐criteria method and 
demonstrated that most models could capture the seasonal 
temperature patterns.

The sixth phase of CMIP (CMIP6; Eyring et al. 2016) 
is now in progress, and it features updates to parameteriza-
tions, the addition of new physical processes, and somewhat 
higher resolution compared to CMIP5 (Eyring et al. 2019). 
CMIP6 contains future scenario experiments named the Sce-
nario Model Intercomparison Project (ScenarioMIP; O'Neill 
et al. 2016; O’Neill et al. 2020), which produce projections 
for a new set of emissions and land use scenarios based on 
the Shared Socioeconomic Pathways (SSPs; Riahi et al. 
2017). The SSPs describe plausible future changes in soci-
etal aspects such as demographic, technological, economic, 
social, governance, and environmental factors (O’Neill et al. 
2017). The CMIP6 models provide a new opportunity to 
examine the climate system and make regional projections 
of the climate under new scenarios, including for the PTP 
region.

Before assessing projections into the future, it is essen-
tial to evaluate the credibility of CMIP6 simulations with 
respect to observations on regional scales. Recent studies 
have already investigated the performance of CMIP6 in 
simulating regional historical climate and achieved posi-
tive results (Fan et al. 2020b; Grose et al. 2020; Li et al. 
2021; Lovino et al. 2021; Srivastava et al. 2020). However, 
a comprehensive assessment relative to historical obser-
vations over the PTP region has not yet been performed, 
especially for looking at the climate extremes. Similarly, 
projected climate changes under the new SSP scenar-
ios have not yet been reported. Motivated by the above 
issues, this study aims to (1) evaluate the performance of 
the CMIP6 models in simulating near-surface mean and 
extreme temperatures over the PTP region during the his-
torical period and (2) assess future climate change in the 
PTP region based on CMIP6 model simulations for the 
twenty-first century.

The paper is organized as follows: the “Data and meth-
ods” section briefly describes the study area and introduces 
the data and methodology used in this study. The perfor-
mance of CMIP6 models in reproducing the observed tem-
perature over the PTP region is assessed in the “Evalua-
tions of historical temperature simulations” section. The 
“Projected temperatures in the twenty-first century” sec-
tion investigates the projected changes of temperature over 
the different subregions of PTP in the twenty-first century. 
Finally, the “Summary and conclusions” section presents 
the main conclusions.
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Data and methods

Study area

The PTP region is located in one of the most fragile and 
rapidly developing regions of the Earth, around the Third 
Pole, which mainly includes the Tibetan Plateau and the 
northern intracontinental arid region of Asia, extending to 
the Caucasus Mountains in the west and the western Loess 
Plateau in the east (Yao et al. 2017). Figure 1 shows the areal 
extent considered in this study (35°E–125°E and 0°N–60°N) 
and its three subregions (Tibetan plateau (TP), Southeast 
Asia (SEA), and Central Asia (CA)). Home to three billion 
people, the PTP region hosts a substantial part of the “Silk 
Road Economic Belt” initiative proposed and advanced by 
China. The climate in the PTP region ranges from arid con-
tinental to humid tropical, primarily influenced by alternat-
ing predominance of the westerlies in winter and the Asian 
monsoon in summer. In turn, the PTP region exerts profound 
thermal and dynamic effects on atmospheric circulation, 
thus affecting the climate of Asia, the Northern Hemisphere, 
and beyond (Kang et al. 2019; Miao et al. 2019).

CMIP6 datasets and observations

We obtained monthly simulations of near-surface tem-
peratures and daily minimum and maximum near-surface 
temperatures from the CMIP6 database (https://​esgf-​node.​
llnl.​gov/​search/​cmip6/) using the historical simulations 
(1850–2014) and future scenario simulations (2015–2099) 
from ScenarioMIP. ScenarioMIP recommends four Tier 1 

simulation protocols, reflecting different SSPs that result in 
different radiative forcing magnitudes by 2100: SSP1‐2.6 
(a low-forcing “sustainability” pathway; + 2.6  W/m2), 
SSP2‐4.5 (a medium-forcing “middle‐of‐the‐road” path-
way; + 4.5 W/m2), SSP3‐7.0 (a medium‐ to high‐forcing 
pathway; + 7.0 W/m2), and SSP5‐8.5 (a high‐forcing path-
way; + 8.5 W/m2). Table 1 provides the basic information 
of 16 GCMs that were involved to analyze the changes in 
annual mean temperature. Only the last 12 GCMs in Table 1 
were used to analyze the changes in temperature extremes 
when considering the availability of daily data in historical 
experiment and four SSP scenarios.

The reference mean temperature dataset used in this study 
is the gauge-based gridded Climatic Research Unit (CRU) 
TS v. 4.03 (Harris et al. 2020), which covers the period 
1901–2018 with a 0.5° × 0.5° spatial resolution (available 
at https://​cruda​ta.​uea.​ac.​uk/​cru/​data/​hrg/​cru_​ts_4.​03/). The 
dataset is derived by interpolating monthly climate anoma-
lies from extensive networks of weather station observations, 
and it has been subject to extensive quality control measures. 
Numerous studies have utilized CRU datasets for tempera-
ture-related analysis and reported its capability in simulat-
ing temperature in various regions of globe (Ahmed et al. 
2020; Fan et al. 2020a; Li et al. 2018; Osborn et al. 2021). 
All monthly simulations of CMIP6 models were bilinearly 
interpolated to a common 0.5° × 0.5° grid to keep the resolu-
tion consistent with CRU data.

The HadEX3 dataset (Dunn et al. 2020) is used to investi-
gate observed changes in temperature extremes. This dataset 
is the recent global land-based climate extremes data devel-
oped by the World Meteorological Organization’s Expert 
Team on Climate Change Detection and Indices (ETCCDI), 

Fig. 1   Location map of the 
study area. The blue rectan-
gles represent the latitude and 
longitude ranges of the three 
subregions: Central Asia (CA), 
Tibetan Plateau (TP), and 
Southeast Asia (SEA)
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available on a 1.875° × 1.25° longitude-latitude grid for the 
period from 1901 to 2018 (https://​www.​metof​fi ce.​gov.​uk/​
hadobs/​hadex3).

Methods

Calculation of extreme temperature indices

Four indices of temperature extremes (Table 2) from the 
ETCCDI were selected to assess historical and future 
changes related to daily maximum temperatures (TX) and 
daily minimum temperatures (TN) from 1951 to 2099. 
There are three hot indices (annual maximum value of 
TX, TXx; the percentage of warm days, TX90p; and the 
percentage of warm nights, TN90p) and one cold index 
(annual minimum value of TN, TNn), which together can 
characterize the intensity and frequency of temperatures 
extremes. These indices have been widely used to investi-
gate the observed and projected changes in extreme tem-
peratures (Li et al. 2019; Wehner 2020; Zhou et al. 2014). 

We calculated all indices at the models’ native resolution 
using the R package climdex.pcic.ncdf and regridded the 
outputs to a common 1° × 1° grid by bilinear interpolation 
to balance the resolution of HadEX3. The HadEX3 indi-
ces are also re-gridded to a 1° × 1° grid. When calculat-
ing the TX90p and TN90p indices, the same base period 
(1961–1990) from HadEX3 was applied to the CMIP6 
models.

Model performance metric

Taylor diagrams were employed to quantify the degree of 
correspondence between model simulations and observa-
tions, taking into consideration mean temperature clima-
tology patterns, which are shown by spatial correlation 
coefficients, root mean square error (RMSE), and the ratio 
of standard deviations (Taylor 2001). When the correlation 
coefficient and the standard deviation are close to 1 and 
the RMSE is close to 0, this is indicative of the best match 
between observation and model simulation. Additionally, 

Table 1   List of 16 CMIP6 models in this study and their spatial resolutions

Model name Modeling center Spatial resolution

BCC-CSM2-MR Beijing Climate Center, China 320 × 160
CAMS-CSM1-0 Chinese Academy of Meteorological Sciences, China 320 × 160
CESM2-WACCM National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, United States 288 × 192
CESM2 National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, United States 288 × 192
CNRM-CM6-1 National Centre for Meteorological Research, France 256 × 128
CNRM-ESM2-1 National Centre for Meteorological Research, France 256 × 128
CanESM5 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Canada 128 × 64
EC-Earth3-Veg EC-Earth Consortium, Europe 512 × 256
EC-Earth3 EC-Earth Consortium, Europe 512 × 256
FGOALS-g3 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, China 180 × 80
GFDL-ESM4 National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, United 

States
288 × 180

IPSL-CM6A-LR Institut Pierre Simon Laplace, France 144 × 143
MIROC-ES2L JAMSTEC (Japan Agency for Marine-Earth Science and Technology), AORI (Atmosphere and Ocean 

Research Institute, The University of Tokyo), NIES (National Institute for Environmental Studies), and 
R-CCS (RIKEN Center for Computational Science), Japan

128 × 64

MIROC6 JAMSTEC, AORI, NIES and R-CCS, Japan 256 × 128
MRI-ESM2-0 Meteorological Research Institute, Japan 320 × 160
UKESM1-0-LL Met Office Hadley Centre, United Kingdom 192 × 144

Table 2   Definitions of the 
extreme temperature indices 
used in this study

Label Index name Index definition Units

TXx Max TX Annual maximum value of daily maximum temperature °C
TNn Min TN Annual minimum value of daily minimum temperature °C
TX90p Warm days Percentage of days when the daily maximum temperature is 

above the 90th percentile for the base period 1961–1990
%

TN90p Warm nights Percentage of days when the daily minimum temperature is 
above the 90th percentile for the base period 1961–1990

%
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we compared the average bias of the spatial pattern of the 
mean state of temperature between the observational data 
and the CMIP6 ensembles.

To evaluate the performance of the CMIP6 models in 
simulating temperature extremes for the PTP region, we 
construct a “portrait” diagram based on the relative model 
RMSE (RMSE′) of the climatology pattern for the period 
1951–2014 (Sillmann et al. 2013). This diagram provides 
a concise graphical overview of the model performance for 
various temperature extreme indices. First, we calculated 
RMSEs for all individual models relative to the HadEX3 
data. Then, the RMSEs for all models were collected to 
derive the relative model error for each model, RMSE′, 
defined as:

where RMSEmedian is the median of RMSEs for indi-
vidual models. Negative values of RMSE′ indicate that 
the corresponding model performs better than the majority 
(50%) of models.

(1)RMSE
�

=

RMSE − RMSE
median

RMSE
median

Evaluations of historical temperature 
simulations

Evaluations of historical mean temperatures

The spatial distributions of annual mean temperatures from 
the 16 CMIP6 models and CRU observations over the PTP 
region are shown in Fig. 2. Generally, the observed annual 
mean temperature exhibits an increasing gradient from the 
north to south with the lowest temperatures occurring in 
the high-elevation TP. All the CMIP6 models reproduce the 
spatial distribution of annual temperature reasonably well 
and are able to capture the lowest temperatures in the TP. 
However, there are consistent cold biases in the TP and SEA 
for most models. Additionally, some models tend to over-
estimate the annual temperatures in South Asia, especially 
MIROC6 and MIROC-ES2L. The multi‐model mean results 
are notably similar to observations in most regions, and the 
biases are relatively smaller than those of most individual 
models.

Next, we use bias calculations and Taylor diagrams 
to quantitatively assess the performance of models in 
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Fig. 2   Spatial distributions of annual mean temperatures from 16 CMIP6 models, ensemble averages, and CRU observations over the PTP 
region for 1970–1999 average
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simulating the spatial pattern of annual mean temperature. 
The length of each bar in Fig. 3(a) shows the spread in 
regional average temperature biases simulated by the CMIP6 
models relative to the CRU observations. We found that the 
overall biases of the PTP region vary between − 2.35 and 
2.45 °C. Among the three subregions, the TP region exhib-
its the largest negative biases, while the CA region shows 
large positive biases. The bias of the CMIP6 multi-model 
mean is below 2 °C, which indicates smaller differences 
compared with the corresponding observed data than most 
models produce in simulating spatial patterns. Figure 3(b) 
depicts the Taylor diagram of the model simulations against 
observations, which summarizes the degree of correspond-
ence between the observed and simulated fields. All 16 
CMIP6 models are in line with observations, with correla-
tion coefficients (dotted radial lines) all above 0.9. Also, 
most of the models exhibit a ratio of the standard deviations 
that is close to 1 and the centered pattern RMSE difference 
range was 0.17–0.30. This indicates that the CMIP6 models 
perform reasonably well in simulating the spatial distribu-
tion of annual mean temperatures over the PTP region. With 
respect to the statistical parameters in the Taylor diagram, 
CESM2-WACCM, CESM2, EC-Earth3, and EC-Earth3-Veg 
exhibit superior performance compared with other models. 
However, the CMIP6 ensemble average outperforms many 

of the individual models, as indicated by its closer distance 
to the reference point on the Taylor diagram.

Figure 4 shows 10-year moving average values for annual 
mean temperature for the ensemble of the 16 models and 
for the observations. The analysis shows that the observed 
annual mean temperature lies within the 5th–95th percentile 
range of CMIP6 multi-model ensembles, implying that there 
is consistency between the observed record and the CMIP6 
models. Additionally, the CMIP6 historical simulations can 
reproduce the observed annual temperature warming trends 
in the PTP region and its three subregions, although with 
different magnitudes for bias.

Evaluations of historical temperature extremes

The spatial distributions of the four annual mean temper-
ature extreme indices (TXx, TNn, TX90p, and TN90p) 
from HadEX3 and the CMIP6 multi-model mean dur-
ing 1970–1999 over the PTP region are shown in Fig. 5. 
In general, the CMIP6 ensemble mean could capture the 
key features of the spatial patterns of temperature extremes 
effectively. We also investigate the spatial variability of cli-
matological annual mean temperature extreme indices for 12 
individual models, and the results are shown in Figures S1 to 
S4. For TXx, the multi-model mean and each model display 
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Fig. 3   Area-averaged annual biases of temperature relative to the 
CRU observational dataset for each CMIP6 ensemble mean during 
1970–1999 over the PTP region and its three subregions, (a) the light 
purple bars represent the maximum and minimum biases of the 16 
GCMs, and the horizontal line in dark purple represents the bias of 
the multi-model mean. Taylor diagram displaying statistics of cli-

matological annual mean temperature generated from 16 GCMs 
and CRU in the PTP region during 1970–1999, (b) the vertical axis 
indicates standard deviation ratios, the numbers along the arc are the 
spatial correlations, and the green circles centered at CRU measure 
RMSE difference relative to the standard deviation of the observa-
tions
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consistent positive biases in most regions but show a nega-
tive bias in the TP. MIROC6 shows a larger warm bias than 
other models, but a smaller bias in the TP region. Among 
the four extreme indices, the CMIP6 models perform best 
in simulating TNn, with considerable consistency across 
models. However, most models underestimate the observed 
TNn of the TP. The TX90p for the CMIP6 models and the 
multi-model mean displays substantially positive biases of 
about 2% over most parts of the PTP region, especially in 
the northern parts of the PTP region and South Asia. Several 
models (especially EC-Earth3-Veg, EC-Earth3, CanESM5, 
GFDL-ESM4, and IPSL‐CM6A‐LR, and MRI-ESM2-0) 
simulate high TN90p over parts of the PTP region. These 
biases are also found in the CMIP6 multi-model mean, but 
with smaller magnitude. In general, the four extreme indi-
ces simulated by the CMIP6 models are basically biased in 
the TP region, which may be due to the lack of observation 
stations and complex terrain in this region, with the coarse 
resolutions of the climate models leading to difficulties in 
the model simulation (You et al. 2018; Zhu and Yang 2020).

A portrait diagram is a powerful tool for evaluating indi-
vidual models against a reference dataset. Figure 6 presents 

a portrait diagram for the chosen temperature extreme indi-
ces, displaying the relative magnitude of spatially averaged 
RMSE and the average RMSE for all indices (RMSE_all) in 
the top row. The cold colors indicate when a model’s perfor-
mance is better than others’, on average, and the warm colors 
indicate when its performance is worse. In general, most 
models shown exhibit reasonable skill in representing the 
temperature-based indices at the annual scale, while the per-
formance of several models deviates greatly from that of the 
median model with respect to HadEX3 (e.g., MIROC6 for 
TXx, CanESM5 and IPSL‐CM6A‐LR for TNn, EC-Earth3-
Veg for TN90p and TN90p). Models that perform relatively 
well for these four indices include MIROC-ES2L, MRI-
ESM2-0, UKESM1-0-LL, CNRM-CM6-1, and CNRM-
ESM2-1. Based on the RMSE_all (top raw), MIROC-ES2L 
shows the best performance, with negative relative RMSEs 
for all four indices, followed by MRI-ESM2-0, UKESM1-
0-LL, and CNRM-ESM2-1, which exhibit relatively small 
RMSE′ of around 0. The performance of the multi-model 
mean is superior to that of most individual models due to 
substantial reduction of the systematic errors in individual 
models (Kim et al. 2020; Sillmann et al. 2013).

The temporal evolution of the regional averaged indices 
over the PTP region in the models and HadEX3 is shown in 
Fig. 7 for the time period 1951–2014, and the time series of 
the three subregions are shown in Figures S5–S7. Note that 
we use HadEX3 to mask the CMIP6 models to avoid effects 
related to changes in the spatial coverage of the HadEX3 
dataset over time. We found that the HadEX3 temperature 
indices generally lie within the CMIP6 model spread, with 
similar variability in many cases. Some exceptions are TNn 
for whole PTP region and its subregions (Figs. 7, S5–S7), 
and TXx before 1960s for the TP region (Figure S6). For all 
four indices, there are similar warming trends in the models 
and HadEX3 for the entire PTP region and the three sub-
regions (except TXx in TP, which may be due to the lack 
of observed stations in TP). For the extreme indices based 
on the TX (TXx and TX90p), the trend simulation of the 
CMIP6 multi-model average generally overestimates the 
warming trend of the observations, while for the extremes 
indices based on the TN (TNn and TN90p), the CMIP6 
multi-model average shows a lower increase compared to 
the HadEX3 dataset.

Projected temperatures in the twenty‑first 
century

Projected changes in mean temperatures

In this section, we present the projected changes of tem-
perature over the PTP region in the twenty-first century 
under the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and 
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SSP5-8.5. We found that the performance of the model is 
inconsistent for different temperature variables. However, 
the multi-model means generally exhibit better performance 
than most individual models, so we use the multi-model 
mean for projections of the future. Figure 8 shows the spatial 
distributions of climatological changes in mean tempera-
ture in terms of multi-model ensemble means for the near-
term (2025–2049), mid-term (2050–2074), and long-term 
(2075–2099) periods of the twenty-first century, compared 
to the baseline period (1970–1999). Projected changes in 
annual mean temperature suggest increasingly widespread 
temperature increases under the four future scenarios across 
the whole PTP region. The largest increases of temperature 
are predicted for the northern parts of the PTP region—Cen-
tral Asia and the Tibetan Plateau. In the near term, the differ-
ent emission scenarios do not lead to dramatically different 
temperature responses and the multi-model mean projects a 

Fig. 5   Spatial distributions of 
annual mean max TX (TXx), 
min TN (TNn), warm days 
(TX90p), and warm nights 
(TN90p) for HadEX3 and the 
CMIP6 ensemble mean over the 
PTP region for the 1970–1999 
average
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less than 3 °C increase relative to the reference period under 
the four scenarios. The mid-term period can be regarded 
as a transition period during which the different tempera-
ture responses for the SSP2-4.5, SSP3-7.0, and SSP5-8.5 
scenarios become increasingly noticeable, with maximum 
values of 3.87 °C, 4.55 °C, and 5.28 °C, respectively. How-
ever, the temperature changes under the low-forcing sus-
tainability pathway (SSP1-2.6 scenario) are relatively small 
throughout the twenty-first century, with increases generally 
remaining within 3 °C. By the end of the twenty-first cen-
tury (2075–2099), changes under the SSP5-8.5 are much 
larger than other scenarios. The increase in the annual mean 
temperature under the high‐forcing pathway (SSP5-8.5) will 
exceed 6 °C over most of the PTP region and will exceed 
7 °C over the Tibetan Plateau and Central Asia.

The time series of annual mean temperature in the histori-
cal (1901–2014) and projected periods (2015–2099) in the 
PTP region, SEA, TP, and CA are illustrated in Fig. 9. The 
simulations of the multi-model mean show that the annual 

mean temperature of the PTP region and all three subregions 
will increase remarkably over the twenty-first century under 
all scenarios. On average, the temperature over the whole 
PTP region will rise by 1.24 °C/100 year, 3.28 °C/100 year, 
5.57 °C/100 year, and 7.40 °C/100 year for the SSP1-2.6, 
SSP 2–4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. 
The projected warming trends under SSP5-8.5 are consid-
erably higher than those under SSP1-2.6 in all the consid-
ered regions. The highest warming trends occur in the CA 
region under all four scenarios, following by the TP region, 
while the lowest warming trends appear in SEA. The strong 
warming trends in the entire PTP region, the CA region, 
and the TP region are all higher than the global land average 
(about 7.20 °C/100 year under SSP5-8.5) (Fan et al. 2020a), 
which will cause greater threats in the vulnerable ecological 
systems of these regions. Additionally, we found that the 
warming trend slows down or even declines after 2050 under 
SSP1-2.6 for the PTP region and its three subregions. For 
the model uncertainty of the mean temperature projections, 
the results suggested that the uncertainty increases with time 
in the twenty-first century, and the uncertainty under high-
forcing pathways is larger than it is under medium- and low-
forcing pathways.

Projected changes in temperature extremes

Figure 10 presents the spatial distributions of projected 
changes in temperature extreme indices over the PTP 
region during the long-term future period at the end of 
the twenty-first century (2075–2099). The spatial distribu-
tions of changes in the near-term (2025–2049) and mid-
term (2050–2074) periods are shown in Figures S8 to S11. 
Projected changes in the TX90p and TN90p are shown in 
absolute values, and not as differences relative to the refer-
ence period as for the TXx and TNn. This is because the 
percentile indices represent exceedance rates (in %) rela-
tive to the 1961–1990 base period, which has been used as 
the baseline for future changes. All four extreme tempera-
ture indices are projected to show prominent increases in 
the PTP region, with stronger warming under the SSP5-8.5 
scenario (Figures S8–S11). The most intense warming for 
TXx and TNn is mainly projected in the CA region, with 
magnitudes of around 8 °C and 14 °C, respectively. A pro-
nounced increase in warm days (TX90p) is projected over 
most of the TP region under all SSP scenarios (around 
80% for SSP5-8.5), and the index value in the SEA region 
will also increase greatly by the end of the twenty-first 
century. For warm nights (TN90p), the projected strongest 
increases occur in the SEA region, where the exceedance 
rate in some areas reaches 99.6%. The robustness of the 
projected increases of these four indices over the entire 
PTP region suggests a potential risk of intensified tem-
perature extremes to natural and social systems under the 
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Fig. 8   Spatial distribution of 
changes in annual mean tem-
peratures over the PTP region 
in the near-term (2025–2049), 
mid-term (2050–2074), and 
long-term (2075–2099) periods 
of the twenty-first century, 
relative to 1970–1999, under the 
SSP1-2.6, SSP2-4.5, SSP3-7.0, 
and SSP5-8.5 scenarios
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accelerated emission scenarios. Nevertheless, consistent 
with the changes in mean temperatures described above, 
the extreme temperature indices also show little difference 
with time under the SSP1-2.6 scenario, which indicates the 
effectiveness of anticipated climate mitigation and adapta-
tion strategies associated with this scenario.

To identify the inter-annual trend under different sce-
narios, the time series of regional average annual tem-
perature extremes indices over the three subregions and 
the entire PTP region during 1951–2099 are shown in 
Fig. 11. In general, the CMIP6 models exhibit increas-
ing trends in annual TXx, TNn, TX90p, and TN90p over 
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the PTP region and its three subregions in the twenty-first 
century. The increase in TXx is lower than that in TNn for 
all four CMIP6 SSPs (except SEA region). For the PTP 
region, the multi-model mean increases in TXx and TNn, 
respectively, that are projected by the end of the twenty-
first century are 1.22 °C/100 year and 1.73 °C/100 year in 
SSP1-2.6, 3.44 °C/100 year and 4.35 °C/100 year in SSP2-
4.5, 5.72 °C/100 year and 7.46 °C/100 year in SSP3-7.0, 
and 7.58 °C/100 year and 10.03 °C/100 year in SSP5-8.5. 
By the end of the twenty-first century, the greatest warm-
ing trends under the four scenarios for TXx and TNn 
are projected in the CA region (8.40  °C/100  year and 

12.86 °C/100 year in SSP5-8.5, respectively). The increas-
ing trends of TN90p are greater than those of warm days 
(TX90p). Toward the end of the twenty-first century, the 
warming trends for TX90p and TN90p over the entire PTP 
region are 11.94%/100 year and 14.18%/100 year for SSP1-
2.6, 31.08%/100 year and 38.54%/100 year for SSP2-4.5, 
49.67%/100 year and 60.27%/100 year for SSP3-7.0, and 
63.49%/100 year and 72.80%/100 year for SSP5-8.5. The 
strongest warming for TX90p occurs in the SEA region 
(70.67%/100 year) followed by warming in the TP region of 
about 70.46%/100 year for SSP5-8.5. The highest increase 
for TN90p (about 78.64%/100 year for SSP5-8.5 by year 
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2099) occurs in the TP region, followed by the SEA region 
(75.21%/100 year). In conclusion, the warming trends of the 
nighttime extremes (TNn and TN90p) are larger than those 
of the daytime extremes (TXx and TX90p), which is consist-
ent with the results for CMIP5 in previous studies (Yin et al. 
2019; You et al. 2018), probably because the water vapor 
and radiative feedbacks are enhanced at lower air tempera-
tures (Ohmura 2012; You et al. 2018).

Summary and conclusions

In this work, a comprehensive evaluation of CMIP6 ensem-
bles over the Pan-Third Pole region was performed to assess 
their performance in simulating spatial patterns and tem-
poral variability of mean temperatures and four indices of 
temperature extremes, which constitute the most important 
parameters for modeling climate-related changes to the ter-
restrial water cycle. From the results of the spatial pattern 
analysis of the mean and extreme temperatures, we found 
that most CMIP6 simulations are in fairly good agreement 
with CRU or HadEX3 observations in many areas, but 
model replication of observed temperature patterns over the 
Tibetan Plateau is problematic. The multi-model ensemble 
mean is found to be superior to most CMIP6 model simula-
tions, overall.

Then, temperature projections for the twenty-first century 
were estimated for four integrated scenarios of socioeco-
nomic development and greenhouse gas emissions, SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The multi-model 
ensemble of CMIP6 models reveals a continuous increase 
in the annual mean temperature and four extremes indices 
over the PTP region during the twenty-first century under 
all four SSP scenarios. The northern parts of PTP (Central 
Asia and the Tibetan Plateau) are projected to experience 
the largest increases in future mean temperature (exceeding 
7 °C) by the end of the twenty-first century under SSP5-8.5 
relative to the reference periods (1970–1999). For TXx and 
TNn, the most intense warming will occur in the CA region, 
with magnitudes of around 8 °C and 14 °C, respectively. The 
pronounced increase of warm days (TX90p) is projected to 
be around 80% over the TP region and under the SSP5-8.5 
scenario, and the greatest number of projected warm nights 
(TN90p) occur in the SEA region, where the exceedance rate 
in some areas reaches 99.6%.

By the end of the twenty-first century, the annual mean 
temperature averaged over the PTP region is projected 
to increase for the SSP1-2.6, SSP 2–4.5, SSP3-7.0, and 
SSP5-8.5 scenarios by 1.24 °C/100 year, 3.28 °C/100 year, 
5.57 °C/100 year, and 7.40 °C/100 year, respectively. For 
temperature extremes, we found that the increasing trends 
in indices based on TN are greater than the increases in indi-
ces based on TX for all four CMIP6 SSPs. The CA region 

is projected to exhibit the greatest warming trends for TXx 
and TNn across the four scenarios (8.40 °C/100 year and 
12.86 °C/100 year for SSP5-8.5, respectively). The strong-
est warming during the twenty-first century for TX90p 
and TN90p occurs during SSP5-8.5 in the SEA region 
(70.67%/100 year) and the TP region (78.64%/100 year), 
respectively. Finally, we note that the projected changes 
in mean and extreme temperatures are stronger under the 
highest emissions scenario (SSP5-8.5). However, the tem-
peratures start to decrease under the SSP1-2.6 scenarios 
around 2080, which largely reflect the design of the down-
ward trajectories in terms of socioeconomic development 
and radiative forcing in SSP1-2.6 scenario (Gidden et al. 
2019). This indicates that the future heat risk in the Pan-
Third Pole region would be mitigated by reducing green-
house gas emissions. Although risks will be reduced sub-
stantially under the low emissions scenario (SSP1-2.6) with 
the lowest temperature projections compared to the highest 
temperature projections (SSP5-8.5–high emissions), the ris-
ing temperatures still have non-negligible impacts on the 
ecological environment of the Pan-Third Pole region, such 
as glacial melting, grassland degradation, soil erosion, and 
natural disaster. Practical adaptation measures are essential 
to reduce vulnerability to the negative effects of climate 
change. To effectively cope with climate change impacts, 
a regional integrated water resource management approach 
is needed. Important factors such as soil health, erosion, 
and land use management should be taken into account in 
order to improve agricultural productivity and hydropower 
production while protecting natural resources (Kong et al. 
2022). The alpine grassland water-saving irrigation was 
recommended as key measure and supplemented with rea-
sonable grazing management, alpine grassland fencing, and 
artificial grass planting measures. In order to better response 
with natural disasters, the government needs to pay more 
attention to the hotspot areas within the plateau most sensi-
tive to the climate change, strengthen scientific research in 
these areas, and enhance monitoring, regulation, and warn-
ing systems. Greater international cooperation is also needed 
to effectively adapt to climate change and mitigate its effects.
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