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Abstract
We studied heavy metal levels in floodplain soils of the Innerste River in northern Germany and in the leaves of wild black-
berries (Rubus fruticosus L. agg.) growing within and in adjacent areas outside the river floodplain. Heavy metal contami-
nation of the Innerste floodplain is a legacy of historical metal ore mining, processing, and smelting in the Harz Mountains. 
The heavy metal (Cd, Pb, Zn, Cu, Ni, and Cr) contents of previously studied soil samples from eleven floodplain sites along 
the Innerste River were re-analyzed statistically, and the levels of these metals in blackberry leaves were determined at five 
sites. Mean concentrations in the floodplain soils were elevated by factors of 4.59 to 28.5 for Cd, 13.03 to 158.21 for Pb, 
5.66 to 45.83 for Zn, and 1.1–14.81 for Cu relative to the precautionary limits for soils stipulated by the German Federal Soil 
Protection and Contaminated Sites Ordinance. Cadmium, Pb, Zn, Cu, and Ni levels in floodplain soils decreased markedly 
downstream, as did the concentrations of Cd, Zn, and Ni in the leaves of blackberries from within the floodplain. Levels of 
Cd, Pb, and Zn in leaves of blackberries from within the floodplain significantly exceeded those of specimens from outside 
the floodplain. The findings of our study highlight the potential of wild blackberry as a biomonitor of soil pollution by Cd, 
Pb, and Zn and corroborate the massive heavy metal contamination of floodplain soils along the Innerste River observed in 
previous studies.

Keywords  Biomonitoring · Floodplain · Harz Mountains · Heavy metals · Legacy pollution · Metal ore mining · Rubus 
fruticosus L. agg

Introduction

Heavy metals are typically defined as metals with a den-
sity greater than 5 g/cm3 (Oves et al. 2012). They are nat-
urally present in the Earth’s crust and cycle through the 
biogeosphere, but anthropogenic activities have greatly 
increased their release into the environment, where they 
are widely transported by wind and water (Kabata-Pendias 
and Mukherjee 2007). Heavy metals are non-biodegradable, 
undergo bioaccumulation and biomagnification (Ganesan 
2012; Flache et al. 2016), and can pose significant health 
risks to humans (Kabata-Pendias and Mukherjee 2007; Ali 
et al. 2013), wildlife (Beyer et al. 2013; Wiemeyer et al. 
2017), and entire ecosystems (Liu et al. 2019; Gorena et al. 
2020). Some heavy metals, like cadmium (Cd) and lead 
(Pb), are nonessential and exhibit toxic effects even at low 
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concentrations (Beyersmann and Hartwig 2008, Sigel et al. 
2015, Joshi et al. 2019). Others, like copper (Cu), nickel 
(Ni), and zinc (Zn), have important physiological func-
tions, yet are toxic above certain threshold values (Joshi 
et al. 2019). Therefore, knowledge of heavy metal levels 
in the environment is important for assessing metal-related 
ecological risks in an area (Nadgórska-Socha et al. 2017). 
Biomonitoring is frequently used to assess metal levels in 
the environment (Lin 2015). Vascular plants take up metals 
primarily (but not exclusively) from the soil via their roots, 
and plant biomonitoring can therefore provide a useful tool 
for geochemical risk assessment (Bianchini et al. 2012).

Numerous studies have addressed the bioavailability of 
heavy metals to plant species, and metal uptake and accu-
mulation by plants growing on metalliferous soils around 
contaminated industrial and mining sites (Boularbah et al. 
2006; Remon et al. 2013; Hu et al. 2014; Zhan et al. 2014; 
Favas et al. 2018; Wechtler et al. 2019; Nujkić et al. 2020). 
Positive relationships between heavy metal levels in soil 
and air and the concentrations found in plants growing at 
contaminated sites have been demonstrated (D’Souza et al. 
2010, Al-Khashman et al. 2011; Galal and Shehata 2015). 
These relationships are often complex, as metal uptake and 
accumulation by plants depend on the chemical speciation 
and related bioavailability of the heavy metals, which in turn 
are affected by soil properties like pH, soil organic matter 
and cation exchange capacity, specifics of plant physiology, 
and phenology (Keane et al. 2001; Du Laing et al. 2009; 
Čurlík et al. 2016).

Several studies worldwide addressed the suitability of 
blackberries (Rubus fruticosus L. agg.) for biomonitoring 
or phytoremediation of contaminated areas (Baroni et al. 
2004; Yoon et al. 2006; Reglero et al. 2008; Marques et al. 
2009; Massa et al. 2010; Moreira et al. 2011; Nujkić et al. 
2016). Blackberry shrubs are often found on railway and 
road embankments, allotments, alluvial landscapes, fallow 
land, and in light woodland or along forest edges. Blackber-
ries are pseudophanerophytes with 2-year-old woody shoots 
(Ossig and Brandes 2019). Due to their chemical constitu-
ents (ascorbic acid and other organic acids, tannins, and 
essential oils), blackberries are a traditional herbal medicine 
(Verma et al. 2014; Vlad et al. 2019). The consumption of 
plant parts with elevated metal content may pose a health 
risk for humans and animals (National Research Council 
2005, Kabata-Pendias and Mukherjee 2007).

Floodplains are transition zones between aquatic and 
terrestrial ecosystems, and the distribution of heavy metals 
in riverine and floodplain ecosystems varies due to differ-
ent factors (Miller 1997; Besser et al. 2007; Hürkamp et al. 
2009; Weber and Opp 2020). Fluvial transport of heavy met-
als occurs largely via suspended solids that are deposited 
in floodplains during flooding events (Zheng et al. 2008; 
Hürkamp et al. 2009; Parzych and Sobisz 2018). Floodplain 

soils therefore constitute long-term sinks for heavy metals, 
but can also become sources when heavy metals are remobi-
lized during flooding events (Hürkamp et al. 2009).

Heavy metals released via runoff from tailings and slag 
heaps and those originating from atmospheric emissions 
due to smelting activities can contaminate soils and river 
sediments in the immediate vicinity of point sources as 
well as floodplains and river sediments further downstream 
(Miller 1997; Hürkamp et al. 2009; Ponting et al. 2021). The 
long-term release of heavy metals from metalliferous tail-
ings or slag heaps constitutes a major environmental health 
risk for downstream areas. Due to climate-driven increase 
of extreme rainfall, flood events are expected to increase 
globally (Hilscherova et al. 2007; Ponting et al. 2021). The 
resulting changes in the flow regime of river systems, with 
more intense flooding, erosion, and drainage (Lynch et al. 
2018), will increase the risk of heavy metal remobilization 
in floodplains (Hilscherova et al. 2007; Ponting et al. 2021).

The Harz Mountains in Northern Germany are rich in 
metalliferous minerals and have a long history of mining 
for silver (Ag), Cu, Pb, and Zn. The ores of the overburden 
that were mined in the Upper Harz area were mainly galena 
(PbS) and sphalerite (ZnS), and to a lesser extent also chal-
copyrite (CuFeS2) (Deicke 2009). Mining activities in the 
Harz region first peaked between the twelfth and fourteenth 
centuries CE and then again between the fifteenth and the 
beginning of the twentieth century. Metal ore mining in the 
Harz Mountains ceased in 1992, when the last mine was 
closed. The long-standing mining, processing, and smelting 
of metal ores resulted in large amounts of harmful waste 
containing residual heavy metals (Deicke 2009). Mill tail-
ings and the slag waste from smelting activities were depos-
ited along several Harz rivers, including the Innerste River 
(Hellwig 2002). Heavy metals were transported into rivers 
due to contact of water with ore deposits, during ore pro-
cessing, and by wash-out from the waste heaps (Ernst et al. 
2009). These metals were transported downstream, and, in 
consequence, high contents of heavy metals, particularly 
Pb, Cd, Cu, and Zn, are present in sediments, floodplain 
soils, and vegetation along the Innerste River (Nowak and 
Preul 1971; Ernst et al. 2009; Knolle 2009). The high heavy 
metal concentrations in plants growing on the contaminated 
soils have repeatedly caused severe toxicosis in biota (Meyer 
1822; Haarstick 1910; Knolle and Knolle 1983; Matschullat 
et al. 1997; Knolle et al. 2011).

The present study reports the concentrations of six heavy 
metals (Cd, chromium (Cr), Cu, Ni, Pb, and Zn) in flood-
plain soils along a section of the Innerste River and in leaves 
of wild blackberries growing within and outside the Innerste 
floodplain. Thus far, information on heavy metal levels in 
native spontaneous vegetation growing in the episodically 
inundated Innerste floodplain is lacking. Wild blackberry 
was selected as indicator species because of its widespread 
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historic (Meyer 1822) and current natural occurrence 
throughout the study area. In this way, we assessed the suit-
ability of wild blackberry as a biomonitor of heavy metal 
contamination. Specifically, we tested whether heavy metal 
concentrations of floodplain soils and in leaves of blackber-
ries growing within the floodplain, and in adjacent regions 
outside the floodplain, decrease with distance from the Harz 
Mountains, the source region of the contamination.

Materials and methods

Study region

The Innerste River (51° 47′ to 52° 14′ N, 10° 22′ to 9° 49′ 
E) is located in the SE of the federal state of Lower Saxony 
(Germany) and runs mainly through the counties of Gos-
lar and Hildesheim (Fig. 1). The study region has a sub-
continental to subatlantic climate with an average annual 

precipitation of 683 mm and an average annual tempera-
ture of 8.7° C (Climate-Data.org 2020). The Innerste River 
originates in the Upper Harz Mountains south of Clausthal-
Zellerfeld at about 600 m above sea level. After approxi-
mately 99 km, it flows into the Leine River. The Innerste 
has a catchment area of 1264 km2 along an altitude differ-
ence of about 540 m. From the upper to the lower reaches, 
the Innerste River flows through the natural regions of 
the Harz Mountains, the Weser-Leine Highlands, and the 
Hildesheim Börde in the northwestern Harz foreland. The 
upstream rock beds in the Upper Harz Mountains are com-
posed of greywackes as well as siliceous and argillaceous 
shales (Liessmann 2010), while the downstream section is 
characterized by calcareous sediments from loess accumula-
tions (Kroll 2005). At the “Heinde” water gauge, the average 
discharge (period 1953 − 2015) is 8.13 m3 × s−1 (NLWKN, 
2018). Our study region starts 25 km downstream of the 
origin of the Innerste River, and below the outflow from the 
Innerste Reservoir (Fig. 1) near Langelsheim. Construction 

Fig. 1   Location of the Harz Mountains and the study region in Ger-
many and of the soil and plant sampling sites along the Innerste River 
in the counties of Hildesheim, Goslar, and Wolfenbüttel. Soil samples 
were collected at all eleven sites; leaf samples were collected at the 

five sites given in bold. Sites: Langelsheim (LAN), Palandsmühle 
(PAL), Othfresen (OTH), Baddeckenstedt (BAD), Grasdorf (GRA), 
Heinde (HEI), Roter Stein (ROT), Steuerwald (STE), Hasede 
(HAS), Ahrbergen (AHR), and Sarstedt (SAR)
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of the reservoir, which has a storage volume of 19.27 hm3, 
was completed in 1966. The reservoir is used for flood 
protection, low water elevation, and drinking water supply 
(Harzwasserwerke GmbH 2019). The last major flooding 
event, which caused inundation of nearly the entire Innerste 
floodplain and set some new records for high water marks, 
occurred in July 2017 (NLWKN, 2017).

Study design, sample collection, and analysis

Soil

To study the variation of heavy metal (Cd, Cr, Cu, Ni, Pb, 
and Zn) concentrations in floodplain soils with increasing 
distance from the outflow from the Innerste Reservoir (here 
used as a reference point), a total of 37 soil profiles had pre-
viously been recorded at eleven sites along the river in spring 
and summer of 2009 and 2010 (Table 1 and Fig. 1; Germer-
shausen 2013). The soil samples had been digested accord-
ing to DIN 38414, and heavy metal concentrations had been 
determined by a certified laboratory (Lower Saxony State 
Office for Water Management, Coastal Protection and Nature 
Conservation, NLWKN) using inductively coupled plasma 
optical emission spectroscopy (ICP-OES) according to DIN 
EN ISO 11885-09. For the present study, these data were 
subjected to a new statistical (linear mixed models) analy-
sis, corresponding to that used for the leaf data, in order to 
identify the effect of distance from the Innerste Reservoir 
on heavy metal levels in the floodplain soils. The floodplain 
was defined based on the flood hazard areas established by 

the NLWKN ( 2014) and covers the areas that are statisti-
cally flooded at least once every 100 years (HQextreme). At 
each soil sampling site, between two and four profiles were 
dug to a depth of 65‒145 cm and at a distance of 2‒200 m 
from the river. Originally, samples from four to five different 
horizons had been separately analyzed for each soil profile. 
For the present analysis, average concentrations (± standard 
error, SE) were calculated from these data for each profile 
(Fig. 2). One profile (OTH11 in Germershausen 2013) was 
excluded from the statistical analysis because of potential 
anthropogenic disturbance.

Blackberry leaves

Between January 8 and January 23, 2020, we collected 
leaves of wild blackberries at five sites that were situated 
relatively close to five of the eleven sites from which the 
soil samples had previously been obtained. A total of 92 leaf 
samples were collected at the five sampling sites along the 
Innerste River, and for each site, leaves of plants growing 
within and outside the floodplain were obtained (Table 2). 
The five plant sampling sites differ with respect to the domi-
nant type of land use:

(1)	 Langelsheim (LAN): upstream, large settlement areas, 
several industrial (including metal processing) plants, 
and sewage treatment plant “Innerstetal”

(2)	 Baddeckenstedt (BAD): midstream, mainly farmland
(3)	 Heinde (HEI): lower midstream, mixture of agricultural 

and settlement areas

Table 1   Heavy metal concentrations (mg/kg dry weight) in soil samples from eleven sites along the floodplain of the Innerste River

a Mean distance of soil sampling sites from the outflow of the Innerste River from the Innerste Reservoir
b BBodSchV ( 1999)
c Kabata-Pendias (2011)

Site Mean distancea Mean ± SD

Cd Pb Zn Cu Ni Cr

LAN 0.7 km 23.88 ± 5.11 11,075.00 ± 1503.09 6875.00 ± 949.81 592.50 ± 136.36 25.63 ± 1.77 11.48 ± 1.97
PAL 8.7 km 25.81 ± 22.23 6296.67 ± 4276.28 5751.11 ± 4008.02 330.83 ± 169.77 31.28 ± 6.46 21.83 ± 9.68
OTH 13.4 km 28.50 ± 15.18 7012.50 ± 3355.78 5987.50 ± 1453.51 375.00 ± 176.96 33.38 ± 7.37 13.92 ± 26.63
BAD 28.4 km 26.00 ± 7.46 9133.33 ± 3508.78 5375.00 ± 1642.13 332.50 ± 132.61 25.42 ± 4.21 15.60 ± 5.49
GRA​ 35.3 km 19.43 ± 8.16 8222.00 ± 4255.31 4820.00 ± 1857.11 225.27 ± 79.32 30.60 ± 9.07 20.33 ± 9.37
HEI 43.1 km 20.06 ± 8.23 6671.18 ± 2835.05 4282.35 ± 1819.77 207.29 ± 105.95 25.12 ± 6.43 16.02 ± 6.73
ROT 50.7 km 7.21 ± 3.35 2780.67 ± 1406.25 1698.00 ± 796.63 74.73 ± 35.75 24.33 ± 7.24 23.60 ± 8.86
STE 56.7 km 7.39 ± 6.70 1928.94 ± 2024.80 1430.00 ± 1403.75 75.63 ± 61.08 23.06 ± 5.90 26.56 ± 8.80
HAS 59.6 km 7.30 ± 4.01 2748.17 ± 1865.29 1767.50 ± 922.66 86.25 ± 36.38 28.00 ± 6.50 30.17 ± 10.40
AHR 65.7 km 4.59 ± 5.48 912.31 ± 980.84 849.63 ± 896.59 44.00 ± 30.91 24.19 ± 4.43 27.44 ± 7.68
SAR 68.5 km 5.35 ± 6.15 1784.33 ± 2532.91 1208.75 ± 1403.33 57.42 ± 47.98 27.50 ± 4.03 31.50 ± 11.39
Precautionary limits for soils in Ger-

many (mg/kg d. w.)b
1 70 150 40 50 60

World soil average (mg/kg)c 0.41 27 70 38.90 29 59.50
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(4)	 Hasede (HAS): downstream, nature reserve “Haseder 
Busch” (a hardwood alluvial forest with oaks and 
ashes) and sewage treatment plant “Stadtentwässerung 
Hildesheim”

(5)	 Ahrbergen (AHR): lower downstream, exclusively agri-
cultural area

Leaves (30 to 50 g per shrub) from 5 to 11 wild black-
berry shrubs that exhibited a similar stage of development 
were obtained from each sampling site. To ensure independ-
ence of individual plants, the sampled shrubs within each 
site were situated at least 100 m apart or located on opposing 
sides of the riverbank. To remove external contamination by 
soil and dust particles, the sampled leaves were thoroughly 
washed with tap water for 3 to 4 min and subsequently rinsed 
with distilled water. They were then oven-dried (Memmert 
UNE 500) to constant weight at 80 °C and stored in plastic 
bags at − 20 °C until further analysis.

Heavy metal concentrations in the leaves were deter-
mined by a certified external laboratory (GBA Gesellschaft 
für Bioanalytik mbH, Hildesheim, Germany). Approxi-
mately 1 g of dried leaves per sample was digested in aqua 
regia (DIN EN 13657:2003–01) and analyzed by induc-
tively coupled plasma mass spectrometry (Agilent ICP-MS 
7800 and Agilent ICP-MS 7700x) according to the DIN 
EN 16171:2017–01 procedure. Multielement standard IV 
(Merck, Darmstadt, Germany) was used as the stock solution 
for calibration. Heavy metal determination was validated 
with the certified reference material “Aqua Regia Extract-
able Trace Elements in Soil” (BAM-U115) and “Trace Met-
als in Drinking Water Solution A” (CRM-TMDW-a). Limits 
of quantification (LOQ) were 1.0 mg/kg for Cr, Cu, Ni, Pb, 
and Zn, and 0.10 mg/kg for Cd. For calculations, analytical 
results below the LOQ were assigned a randomly generated 
value between zero and the LOQ. As most of the analytical 
results for Cr were below the LOQ, these data were excluded 

Fig. 2   Mean (± SE) heavy metal content in 36 soil profiles from 11 
sites along the Innerste River with increasing distance from the Inner-
ste Reservoir. All soil profiles were located within the floodplain. The 
red horizontal lines indicate the precautionary limits for heavy met-
als according to the German Federal Soil Protection and Contami-

nated Sites Ordinance (BBodSchV, 1999). The significance of the 
effect “distance from the Innerste Reservoir” along with marginal R2 
values (R2m) is added to ease interpretation (see Table 3 for full sta-
tistical results). Note the different scaling for each heavy metal. (*) 
0.05 < P < 0.1, * P < 0.05, *** P < 0.001
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from statistical analyses. Heavy metal concentrations in the 
samples are expressed as mg/kg dry weight.

Statistical analysis

All statistical analyses were conducted using the software 
program R version 4.0.4 (R Core Team 2021). Heavy metal 
content in floodplain soils along the river was analyzed with 
linear mixed models, separately for each metal, using the 
package “lme4” (Bates et al. 2020). The models included 
distance from the Innerste Reservoir as fixed effect, while 
site as a random factor accounted for non-independence of 
the 2 to 4 soil profiles per site. All heavy metal values were 
square-root-transformed prior to analyses to approximate 
homoscedasticity and normality of residuals. Significance 
was assessed using Wald II F tests with Kenward-Roger 
approximated degrees of freedom in the package “car” (Fox 
et al. 2020).

Heavy metal contents in wild blackberry leaves were ana-
lyzed with similar linear mixed models to test whether they 
differed between locations within and outside the floodplain 
and with distance from the Innerste Reservoir. The models 
included as fixed effects the factorial variable flood type 
(flooded, non-flooded), the distance of the sampling sites 
from the Innerste Reservoir (continuous), and the interac-
tion of the two variables. Plant sampling sites were fitted 
as a random effect in all models, accounting for the non-
independence of the blackberry individuals from the same 
sampling site. All heavy metal values were log10-trans-
formed prior to analyses to approximate homoscedasticity 
and normality of residuals. Significance of the fixed effects 
was evaluated using a Wald II F test with Kenward-Roger 
approximated degrees of freedom as above.

Correlations among the concentrations of the different 
heavy metals in (a) the soil samples and (b) the blackberry 
leaves were tested by calculating Spearman rank coefficients 
using the package “corrplot” (Wei et al. 2017). To account 
for multiple testing, P values were adjusted according to the 
Holm-Bonferroni method, and (adjusted) P values < 0.05 
were considered statistically significant.

Results

Heavy metals in floodplain soils

Average metal concentrations for the eleven soil sampling 
sites are given in Table 1. Mean concentrations of the six 
heavy metals decreased in the following order (ranges of 
means): Pb (912.31‒11,075 mg/kg) > Zn (849.63‒6875 mg/
kg) > Cu (44‒592 mg/kg) > Ni (23.06‒33.38 mg/kg) > Cr 
(11.48‒31.5 mg/kg) > Cd (4.59‒28.5 mg/kg).

The statistical models indicated that the distance from 
the reservoir significantly influenced the soil concentrations 
of all heavy metals except Ni. The highest concentrations 
of Cd, Pb, Zn, and Cu occurred at a short distance from 
the Innerste Reservoir, and the levels of these four metals 
decreased downstream (Table 3 and Fig. 2). In contrast, Cr 
concentrations in the floodplain soils increased downstream.

Concentrations of Pb, Zn, Cu, and Cd in soil were 
strongly correlated (rho-values between 0.88 and 0.96, all 
P < 0.001). A moderate positive correlation existed between 
Cr and Ni values (rho = 0.58, P < 0.001). Moderate nega-
tive correlations were found for Cr and Pb (rho =  − 0.57, 
P < 0.001) as well as for the relationships between Cr and 
Cd, Cu, and Zn, respectively (all rho =  − 0.47, all P < 0.001) 
(Fig. 4A).

Heavy metals in blackberry leaves

The concentrations of the five heavy metals in leaves 
of wild blackberries from the five plant sampling sites 
along the Innerste River are presented in Table  2 and 
Fig. 3. In both flooded and non-flooded areas, mean heavy 
metal concentration in the leaves decreased in the fol-
lowing order (ranges of means, flooded; non-flooded): 
Zn (35.9‒125.6; 28.9‒53.8  mg/kg) > Cu (8.01‒10.13; 
7.91‒9.75  mg/kg) > Pb (1.12‒6.1; < 1.0‒5.7  mg/
kg) > Ni (< 1.0‒1.95  mg; < 1.0‒2.23  mg/kg) > Cd 
(0.24‒0.66; < 0.1‒0.25 mg/kg). At all sites, mean Cd values 
for leaves from blackberries growing within the floodplain 
exceeded the range of normal values for uncontaminated 
mature plant leaves given by Kabata-Pendias (2011). Mean 
Cu and Ni contents in the blackberry leaves were within 
the normal range of values at all sampling sites within and 
outside the floodplain (Table 5 and Fig. 3), while mean Pb 
levels were below the normal range, except for the non-
flooded area of LAN (5.7 ± 2.41 mg/kg) and the floodplain 
area of AHR (6.10 ± 8.58 mg/kg). For Zn, the vast majority 
of leaf concentrations were within the normal range given 
by Kabata-Pendias (2011); however, values measured for 
leaves from the flooded area of LAN were at the threshold 
of toxicity (Table 2 and Table 5).

Table 3   The effect of distance 
from the Innerste Reservoir on 
heavy metal content in soils. 
Results are based on linear 
mixed effects models with Wald 
II F tests with Kenward-Roger 
approximated residual degrees 
of freedom. P values < 0.05 are 
given in bold

Distance

F1,9.4–9.7 P value

Cd 37.39 0.00013***
Pb 24.88 0.00065***
Zn 54.66  < 0.0001***
Cu 95.15  < 0.0001***
Ni 3.61 0.0870 (*)
Cr 8.17 0.0178*
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The statistical models showed that flood type signifi-
cantly affected the Cd, Pb, Zn, and Ni concentrations of the 
leaves (Table 4), with overall higher Cd, Pb, and Zn values 
for plants from within and higher Ni values for those from 
outside the floodplain. However, near the Innerste Reser-
voir, Pb concentrations in leaves were higher in blackberries 
from the non-flooded than the flooded area (Fig. 3). The 
model further revealed that the concentrations in the wild 

blackberry leaves differed marginally significantly with dis-
tance from the Innerste Reservoir for Cd, and significantly 
for Ni (Table 4), with higher levels occurring at shorter 
distance from the reservoir. The model also indicated that 
the interaction of flood type and distance from the reservoir 
affected leaf concentrations of Pb outside the floodplain and 
Zn concentration of leaves inside the floodplain (Fig. 3 and 
Table 4).

Fig. 3   Mean (± SE) heavy metal concentration in leaves of 92 wild 
blackberry plants, sampled within and outside the floodplain (factor 
flood type; flooded vs. non-flooded area) at five sampling sites along 
the Innerste River with increasing distance from the Innerste Reser-
voir. The blue line represents a common slope for both flood types, 
while the dotted (non-flooded) and long-dashed (flooded) lines show 

slopes depending on the flood type. The horizontal red lines represent 
the normal range for mature plant leaves according to Kabata-Pendias 
(2011). Significant effects are indicated for ease of interpretation (see 
Table 4 for full statistical results). Note the different scaling for each 
heavy metal. (*) 0.05 < P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001

Table 4   The effects of flood type (flooded and non-flooded) and dis-
tance from the Innerste Reservoir on heavy metal content in wild 
blackberry leaves. Results are based on linear mixed effects mod-

els with Wald II F tests with Kenward-Roger approximated residual 
degrees of freedom. P values < 0.05 are given in bold

Flood type Distance Flood type × distance

F1,85 P value F1,2.5–2.9 P value F1,85 P value

Cd 52.90  < 0.0001*** 8.31 0.0716 (*) 0.49 0.485 ns

Pb 6.88 0.0103* 1.46 0.316 ns 10.91 0.0014**
Zn 31.68  < 0.0001*** 4.81 0.12 ns 10.86 0.0013**
Cu 1.50 0.225 ns 0.45 0.55 ns 0.00 0.975 ns

Ni 16.62 0.0001*** 13.37 0.0488* 0.38 0.540 ns
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Leaf concentrations of Zn and Cd (rho = 0.64, P < 0.001), 
Pb and Cd (rho = 0.46, P < 0.001), and Pb and Zn 
(rho = 0.38, P < 0.01) were positively correlated (Fig. 4B).

Discussion

Heavy metals in floodplain soils

The present study revealed that the floodplain soils along 
the Innerste River are heavily contaminated with the heavy 
metals Cd, Pb, Zn, and Cu that are typical constituents of 

mill tailings and slag wastes from the historic ore mining, 
processing, and smelting in the Harz Mountains. At all 
sampling sites, mean soil levels of Pb, Zn, Cu, and Cd 
markedly exceeded the precautionary limits of the German 
Federal Soil Protection and Contaminated Sites Ordinance 
(BBodSchV, 1999) and were also considerably higher than 
the global average values for soils given by Kabata-Pen-
dias (2011). Concentrations of Ni and Cr in the Innerste 
floodplain did not exceed the precautionary limits for soils 
stipulated by federal regulations in Germany (BBodSchV, 
1999). Except for Ni at sites PAL, OTH, and GRA, all 
Ni and Cr values were below the global average for soils 

Fig. 4   A Spearman’s correlation matrix of total heavy metal concen-
trations among 36 soil samples. B Spearman’s correlation matrix of 
total heavy metal concentrations among leaves from 92 blackberry 
plants. The size of the boxes indicates the strength of the relationship 

and the color gradient from red to blue shows the change of the rela-
tionship from negative to positive. P values are Bonferroni adjusted. 
** P < 0.01, *** P < 0.001

Table 5   Heavy metal concentrations (mg/kg) in blackberry leaves from the Innerste study region compared to data from two other studies 
(means ± SDs), typical and toxic concentrations in plant leaves, and maximum tolerable levels (MTL) in animal feed

a Lassalle et al. ( 2021)
b Alagić et al. ( 2016)
c Kabata-Pendias ( 2011)
d National Research Council ( 2005)

Blackberry leaves (this study) Blackberry leaves 
(brownfield, exact 
study site not 
given)a

Blackberry 
leaves (Minićevo, 
Serbia)b

Sufficient or normal 
content in mature 
leavesc

Excessive or toxic 
content in mature 
leavesc

MTL in feed 
for livestockd

Within floodplain Outside floodplain

Cd 0.39 ± 0.32 0.13 ± 0.12 - 0.17 ± 0.03 0.05–0.2 5–30 10
Pb 3.01 ± 4.47 2.12 ± 2.84 - 1.16 ± 0.36 5–10 30–300 10–100
Zn 64.34 ± 44.08 37.89 ± 14.07 86.91 ± 24.27 20.24 ± 4.52 27–150 100–400 300–1000
Cu 9.08 ± 2.11 8.58 ± 2.26 17.44 ± 5.91 12.46 ± 2.58 5–30 20–100 15–250
Ni 0.89 ± 0.98 1.72 ± 1.21 1.71 ± 0.44 2.64 ± 0.57 0.1–5 10–100 50–250
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(Table 1 and Fig. 2). Our results are in line with those of 
previous studies (Nowak and Preul 1971; Hellwig 2002; 
Knolle et al. 2011) and demonstrate the lasting impact 
of the former mining activities in the Harz Mountains, 
as well as the crucial role of riverine ecosystems in the 
dispersal of the heavy metals. The massive heavy metal 
contamination of the Innerste floodplain was recently 
again confirmed for lead and zinc at the downstream site of 
Ahrbergen (Steingräber et al., unpublished observations).

The Innerste Reservoir acts as an artificial sediment trap 
and can thus be considered a sink for heavy metals, corre-
sponding to the situation described for other artificial res-
ervoirs in mining areas (García-Ordiales et al. 2016). It has 
previously been concluded that the larger part of the heavy 
metal load present in the river sediments and the flood-
plain soils downstream of the Innerste Reservoir reached 
the area prior to its construction (Ernst et al. 2009).

Concentrations of Cd, Pb, Zn, and Cu in floodplain soils 
decreased significantly with distance from the Innerste 
Reservoir. The decrease of heavy metal concentrations 
along the course of the Innerste River is typical for flood-
plain soils (Hilscherova et al. 2007; Hürkamp et al. 2009). 
The concordant decrease in Cd, Pb, Zn, and Cu contents 
with distance from the Innerste Reservoir and the positive 
correlations for the concentrations of these heavy metals 
indicate that the metals in the floodplain soils originate 
from the same source (Abderahman and Abu-Rukah 2006). 
The heavy metals in the floodplain soils of the Innerste 
River were washed out from waste heaps (Meyer 1822; 
Hellwig 2002; Knolle 2009; Germershausen 2013). As in 
other contaminated river systems (Hilscherova et al. 2007; 
Hürkamp et al. 2009; Schulz-Zunkel and Krueger 2009), 
it is assumed that the heavy metal-laden sediments of the 
Innerste River were transported downstream and repeat-
edly redistributed during flooding events and intense rain-
fall (Du Laing et al. 2009; Ponting et al. 2021). According 
to Fan et al. (2021), mining and other industrial activities 
in upstream areas will result in higher heavy metal con-
centrations compared to downstream areas. Lower metal 
levels in the latter can be attributed to dilution effects from 
inflow of unpolluted waters (Luo et al. 2020). This is prob-
ably also a main factor explaining the decrease of metal 
levels (except Cr) in floodplain soils with distance from 
the Innerste Reservoir.

The mobility of heavy metals in soils depends on chemi-
cal, physical, and biological factors, including soil texture 
(proportion of clay minerals), pH, organic matter, salinity, 
redox potential, temperature, soil organisms, and vegetation 
(Du Laing et al. 2009; Schulz-Zunkel and Krueger 2009; 
Hu et al. 2017; Ponting et al. 2021). It has been shown that 
periodic flooding of floodplain soils affects a number of 
these factors, especially pH and redox potential (Du Laing 
et  al. 2009; Schulz-Zunkel and Krueger 2009). Further 

studies addressing these issues in the Innerste floodplain 
are recommended.

Nickel and Cr are not associated with mining in the 
Harz Mountains and therefore probably derived from other 
sources. Major anthropogenic entry routes of Cr are waste-
water, sewage sludge, and mineral fertilizers (Gonnelli and 
Renella 2013; Stückrad and Wilcke 2013 2013), while min-
eral fertilizer, manure, and sewage sludge constitute the most 
important sources of Ni in agricultural areas (Gonnelli and 
Renella 2013; Wilcke 2013). This is also considered to be 
the case in our study area.

Heavy metals in blackberry leaves

Overall, leaves of wild blackberry plants growing in the 
heavily metal-contaminated soils of the Innerste floodplain 
showed significantly higher concentrations of Cd, Pb, and 
Zn compared to those from outside the floodplain (Table 4). 
Similar findings were reported by Madejón et al. (2004) in 
a study on Populus alba in Spain. The levels of Cd, Zn, and 
Ni in the leaves decreased with distance from the Innerste 
Reservoir (Fig. 2 and Fig. 3). This matches the findings for 
the floodplain soils and suggests that variation in leaf con-
centrations reflects those in the soils (Parzych and Sobisz 
2018). Given the long-standing nature of the heavy metal 
contamination of the Innerste floodplain, this conclusion 
seems justified, even though the soil and leaf samples were 
obtained during different years. An unexpected finding was 
the higher concentration of Pb in leaves of blackberries from 
outside compared to those growing within the floodplain 
close to the Innerste Reservoir near Langelsheim (Fig. 3). 
We suspect that this may reflect Pb exposure from mine 
tailings and slag waste deposited outside the floodplain or 
to excavated river sediment dumped during construction of 
the reservoir.

Uptake and accumulation of heavy metals by R. fruti-
cosus from contaminated and uncontaminated sites were 
previously studied by different authors (Dorrington and 
Pyatt 1983; Yoon et al. 2006; Alagić et al. 2016; Nujkić 
et al. 2016; Lassalle et al. 2021). It has been demonstrated 
that blackberries growing on contaminated soils accumulate 
higher amounts of heavy metals (Alagić et al. 2016; Nujkić 
et al. 2016). For comparison with our data, Table 5 lists 
concentrations in blackberry leaves that were reported by 
two other studies (Alagić et al. 2016; Lassalle et al. 2021).

Metal uptake by plant roots occurs either passively with 
water uptake or actively through transport mechanisms 
across the plasma membrane of the rhizodermis (Yoon et al. 
2006; Tangahu et al. 2011). Essential metals (such as Cu, 
Ni, and Zn) are subject to physiological regulation and their 
uptake is selective, while that of nonessential elements (such 
as Cd and Pb) is not (Du Laing et al. 2009; Kabata-Pendias 
2011; Salinitro et al. 2019). Zinc uptake by plants increases 
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linearly with its concentration in soil (Madejón et al. 2004; 
Kabata-Pendias 2011). The concentrations of Cu in the 
blackberry leaves from within and outside the floodplain 
were not significantly different, which is consistent with the 
view that transfer of Cu to aboveground parts is limited and 
concentration in aboveground plant parts is constant over a 
wide range of soil Cu contents (Parzych and Sobisz 2018). 
In contrast, nickel concentrations in wild blackberry leaves 
outside the floodplain were significantly elevated compared 
to those within the floodplain. It is hypothesized that this 
mainly reflects the application of mineral fertilizers, manure, 
and sewage sludge in the former areas.

In terms of food web transfer to herbivores, overall mean 
leaf concentrations were below the maximum tolerable 
levels (MTLs) specified by the National Research Council 
(2005) for livestock feed (Table 5). A few Pb values of leaves 
sampled within the floodplain at Ahrbergen exceeded levels 
associated with livestock toxicity. Therefore, the possibility 
of excess exposure of herbivores must be taken into account 
(Reglero et  al. 2008), especially considering additional 
uptake of dust and grit attached to plant surfaces (Vlad et al. 
2019). In fact, Pb toxicosis has been repeatedly reported in 
livestock grazing in the Innerste floodplain (Meyer 1822; 
Haarstick 1910; Knolle and Knolle 1983; Knolle et al. 2011).

Conclusions and outlook

The floodplain soils of the Innerste River are highly con-
taminated with Cd, Pb, Zn, and Cu due to historical metal 
ore mining in the Harz Mountains and related ore processing 
and smelting activities. Except for Cr, heavy metal concen-
trations in the floodplain soils decreased downstream. Lev-
els of Cd, Pb, and Zn in blackberry leaves sampled within 
the floodplain typically exceeded concentrations in leaves 
sampled outside the floodplain. For Ni, higher values were 
measured in leaves of plants from outside the floodplain. 
Notwithstanding the fact that the soil and plant data were not 
obtained at the same time, the results of the present study 
suggest that heavy metal levels in soil affect those in the 
leaves of wild blackberries growing on these soils and, in 
the case of Cd, Pb, Zn, and Ni, reflect the difference between 
the flooded and non-flooded areas. A study addressing soil-
root-leaf transfer of metals (Pb, Zn) is currently undertaken 
that will enhance our understanding of the physiological 
mechanisms underlying metal uptake by blackberries and 
their potential as a biomonitor of heavy metal pollution in 
the Innerste floodplain.
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