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Abstract
Biosensors are analytical tools that transform the bio-signal into an observable response. Biosensors are effective for early 
detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection because they target viral antigens 
to assess clinical development and provide information on the severity and critical trends of infection. The biosensors are 
capable of being on-site, fast, and extremely sensitive to the target viral antigen, opening the door for early detection of 
SARS-CoV-2. They can screen individuals in hospitals, airports, and other crowded locations. Microfluidics and nanotech-
nology are promising cornerstones for the development of biosensor-based techniques. Recently, due to high selectivity, 
simplicity, low cost, and reliability, the production of biosensor instruments have attracted considerable interest. This review 
article precisely provides the extensive scientific advancement and intensive look of basic principles and implementation of 
biosensors in SARS-CoV-2 surveillance, especially for human health. In this review, the importance of biosensors includ-
ing Optical, Electrochemical, Piezoelectric, Microfluidic, Paper-based biosensors, Immunosensors, and Nano-Biosensors 
in the detection of SARS-CoV-2 has been underscored. Smartphone biosensors and calorimetric strips that target antibod-
ies or antigens should be developed immediately to combat the rapidly spreading SARS-CoV-2. Wearable biosensors can 
constantly monitor patients, which is a highly desired feature of biosensors. Finally, we  summarized the literature, outlined 
new approaches and future directions in diagnosing SARS-CoV-2 by biosensor-based techniques.
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Abbreviations
AIV  Avian influenza virus
A(H7N9)  Avian influenza virus subtype strains (low 

pathogenicity strains)
A(H5N1)  Avian influenza virus subtype strains 

(high pathogenicity strains)

SARS-CoV-2  Severe acute respiratory syndrome 
coronavirus-2

SARS  Severe acute respiratory syndrome
MERS  Middle East respiratory syndrome
HAdV  Human adenovirus
WHO  World Health Organization
PCR  Polymerase chain reaction
RT-PCR  Real-time polymerase chain reaction
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NA  Nucleic acid
RNA  Ribonucleic acid
DNA  Deoxyribonucleic acid
MIP  Molecularly imprinted polymer
LHBB  Luminescent hybridoma-based biosensor
PAFI  Plasmon-assisted fluoro-immunoassay
POC  Point-of-care
POF  Portable optical fiber
QCM  Quartz crystal microbalance
SH-SAW  Shear horizontal surface acoustic wave 

biosensor
SPR  Surface plasmon resonance
LSPR  Localized SPR
EBs  Electrochemical biosensors
OBs  Optical biosensors
PB  Piezoelectric biosensor
IS  Immunosensors
EZB  Enzymatic biosensors
GS  Genosensor
WCBs  Whole-cell biosensors
MFB  Microfluidic biosensors
HRPs  Horseradish peroxidases
PAN  Polyaniline
BOD  Biochemical oxygen demand
CRISPR-Cas9  Clustered regularly interspaced short 

palindromic repeats-associated protein 9
SERS  Surface-enhanced Raman scattering
PPT  Plasmonic photothermal
LOD  Limit of detection
LOC  Lab-on-chip
Pe  Péclet number
Re  Reynold’s number
Ca  Capillary number
LAMP  Loop-mediated isothermal amplification
LFDA  Laminar flow-assisted dendritic 

amplification
MFC  Microbial fuel cell
NB  Nano-biosensors
MNPs  Metal nanoparticles
LFT  Lateral flow test
MHealth  Mobile health
IL-6  Interleukin 6 test
SAM  Self-assembled monolayers
CBC  Complete blood picture
ESR  Sedimentation rate
CRP  C-reactive protein
CT scan  Computerized tomography scan

Introduction

In the twenty-first century, many respiratory distress such as 
avian influenza (A(H7N9, H5N1)) and other critical acute 
respiratory syndromes, among others, have faced human-
kind, and those have influenced human health and devel-
opment progress (Narita et al. 2021; Zaidi 2021). At the 
end of 2019, new severe respiratory distress has spread in 
China, Wuhan city, and then transferred to the whole world 
(Nemudryi et al. 2020; Samson et al. 2020; Qiu et al. 2020). 
Since the World Health Organization (WHO) revealed that 
coronavirus-2 (SARS-CoV-2) has an etiological agent of the 
new coronavirus strain epidemic disease, great efforts have 
been made to discover a vaccine or limit its spread (Barcelo 
2020). The spread of SARS-CoV-2 has infected millions of 
persons in over 213 countries (Suleman et al. 2021), which 
excited the confirmation of a higher and widespread case 
more than those that have been appeared since 2003 regard-
ing a severe acute respiratory syndrome (SARS) and in 2012 
regarding the middle east respiratory syndrome (MERS) 
(Wang and Anderson 2019; Wang et al. 2020). Thus, labo-
ratory diagnosis for epidemic prevention and control has 
been considered one of the foremost priorities. Fast testing 
diagnosis (e.g., antibody/antigen testing and nucleic acid 
(NA)-based polymerase chain reaction (PCR) “real-time 
PCR (RT-PCR)”) has frequently been used and developed 
to cover the epidemic spread (Jin et al. 2020; Li et al. 2020).

In such difficult situations like COVID-19, when health-
care facility professionals are seeking for smart and inno-
vative treatments or selecting a certain type of device 
for their patients, biosensors play a vital and beneficial 
function. Biosensors give such chances to more easily and 
effectively address and handle the difficulties that have 
previously been raised as well as future concerns. These 
technologies can be used for illness diagnosis, positive 
environment providing, monitoring, defense-related tox-
ins, food quality monitoring, prosthetic devices, and medi-
cal discoveries (Bahl et al. 2020a).

Additionally, biosensors may convenient to enable the 
acquisition of both pathogen information in a short time and 
host response information as well. This could facilitate the 
prevention process and quick diagnosis for such kinds of 
viruses as SARS-CoV-2 (Xu et al. 2020; Mao et al. 2020a; 
Ma et al. 2021). For instance, novel biosensors such as elec-
trochemical biosensor (EB), optical biosensor (OB), and 
surface plasmon resonance (SPR) are used for the detection 
of RNA viruses as “clustered regularly interspaced short 
palindromic repeats-associated protein 9 (CRISPR-Cas9)” 
based on a paper strip, nucleic acid-based, aptamer-based, 
and antigen-Au/Ag nanoparticles (Samson et al. 2020).

Biosensor might be very useful in order to identify 
and monitor the SARS-CoV-2 virus in the air. It swiftly 
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overcomes biological boundaries as well as technical 
restrictions. This technique aids in determining how long 
a virus may survive in the air when it is mostly transmit-
ted from person to person. It is also useful for determining 
whether or not a condition is caused by an infection. It 
evaluates different laboratory tests and the cause of sev-
eral infectious diseases in the air automatically (Bahl et al. 
2020a).

Additionally, patients who are infected with SARS-CoV-2 
have confirmed their viral ribonucleic acid (RNA) in feces 
(Barcelo 2020). Tetteh et al. (2020) reported that RNA of 
SARS-CoV-2 and COVID-19 has been detected in the sew-
age systems which are raising notable concerns about its 
pathogenic effects on wastewater systems. To date, there is 
no clear evidence towards SARS-CoV-2 survival in sewage 
systems or their fate to other ecosystems (WHO 2020); Lan-
gone et al. (2021) and other previous reviews revealed the 
SARS-CoV-2 detection in sewage systems and water envi-
ronment (Singh et al. 2021). Moreover, the fate of human 
excreta could be extended to other ecosystems depending 
on the human pathogenic virus transmission through human 
body (e.g., mucus, saliva, feces, vomits, urine, and blood) or 
from a person to another, or indirect/direct contact of con-
taminated respiratory droplets, or viruses persistence on the 
surfaces like SARS-CoV-2 (Langone et al. 2021). However, 
few studies have overviewed this kind of viruses in sewage 
systems (Table 1), and biosensors gained great attention to 
be a promising tool for this epidemic.

Therefore, biosensors are miniaturized systems that have 
a high capacity for development to cover a wide range of 
usages even on-site (Ejeian et al. 2018; Maryam et al. 2021; 
Mohankumar et al. 2021). They provide a significant influ-
ence on transforming current analytical procedures into 
diagnostic strategies by restructuring their sensing strate-
gies, improving traditional biosensors with nanotechnology 
and biotechnology, and detecting various viruses. There are 
universal applications in healthcare checking, metabolite 

measurement, illness screening, insulin treatment, clinical 
psychotherapy, disease diagnosis, medication improvement, 
and SARS-CoV-2 disease detection (Bahl et al. 2020a). In 
this review, we summarized the literature, outlined new 
directions, and explored new approaches and methodologies 
for SARS-CoV-2 diagnosis and detection using biosensor-
based techniques.

Biosensors advantages

Selectivity

It is the ability of the biosensor to detect the analyte exclu-
sively. The structures of the viruses are relatively identi-
cal, and they have in some cases a nucleic acid genome, 
a genome-related protein capsid and lipid covering, and a 
protein layer (Weis et al. 1988). This protein coat helps to 
distinguish them from the bacteria (Green et al. 1982). Per-
haps it can be possible that selective detection of the virus 
can occur by  explicitly identifying and targeting certain 
capsid proteins with other proteins via protein-protein inter-
actions (Rowe et al. 1999; Rossi et al. 2007; Nidzworski 
et al. 2014). Typically, adequate  selectivity is accomplished 
by the  optimum immobilization of the monolayer of the 
samples targeting the chosen biomarkers on the sensor sur-
face (Formisano et al. 2015; Miodek et al. 2015). Nano-
technology developments and the speed at which material 
development and innovation  progress give the researchers 
a solid opportunity to create chemical probes, which are only 
specific for the target being detected (Ge et al. 2014; Xi 
et al. 2020). Despite the apparent difficulty in designing spe-
cific probes, recent work revealed a probes’ surface fouling 
issues which induced by the blended biomolecules through 
a network of conductive nanomaterial (Sabaté del Río et al. 
2019). Also, after one month of exposure to unprocessed 

Table 1  Biosensor-detected 
respiratory virus in wastewater

Abbreviations: AIV-avian influenza virus, COVID-19-coronavirus disease, HAdV-human adenovirus, 
LHBB-luminescent hybridoma-based biosensor, MIP-molecularly imprinted polymers, PAFI-plasmon-
assisted fluoro-immunoassay, POC-point-of-care, POF-portable optical fiber, QCM-quartz crystal micro-
balance, SH-SAW-shear horizontal surface acoustic wave biosensor, SPR-surface plasmon resonance

Year Virus Biosensor type Reference

2020 COVID-19 POC Mao et al. (2020a)
2016 Vibrio cholerae LHBB Zamani et al. (2016)
2015 Influenza A H1N1 PAFI Lee et al. (2015)
2015 Bacteriophage MS2 MIP and SPR Altintas et al. (2015)
2013 HAdV POF Yildirim et al. (2013)
2011 AIV Impedance biosensor Wang et al. (2011)
2009 Influenza A Piezoelectric-based QCM sensors Mao et al. (2009)
2009 Porcine Rotavirus Photonic crystal biosensors Pineda et al. (2009)
2008 Sin Nombre virus SH-SAW Bisoffi et al. (2008)
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human plasma, 88% of the initial interleukin 6 test (IL-6) 
detection signals were retained.

Sensitivity

The analyte adhesion on the sensor surface was determined 
either by the specificity, spacing, and affinity of biorecogni-
tion elements or self-assembled monolayers (SAM) (Chaki 
and Vijayamohanan 2002; Zhou et al. 2006). The transducers 
(most commonly electric or optical) have also properties that 
affect the overall biosensor sensitivity (Sethi 1994). If SAM 
layer specificity is assured, even at a single molecular level, 
many tiny biomarkers (depths < 150 kDa) can be identified 
(Cannon et al. 2012; Wu et al. 2017). The development of 
the sensor is extremely important to be able to detect bio-
markers attributed to pandemic strain, like SARS-CoV-2 in 
lower concentrations, preferring to the same molecule, and 
produce an output that can easily be read for the measured/
needed concentration. Any such fundamental problems with 
the handling of biological liquids on sensor surfaces can also 
be resolved through additional methods, including sensor 
instruments using nanoparticles (Nam et al. 2003; Rasheed 
and Sandhyarani 2015) and microfluid detectors (Puleo and 
Wang 2009; Tekin et al. 2013).

Response time

In theory, most sensor transducers respond to the applied 
stimulus instantly are (< 1 s), such as biomolecular contact 
with the surface of the sensor (Buerk 1995). However, all 
of these signals are sometimes necessary to post-process 
with advanced electrical and computer science systems. The 
sensor response time is vital for the pandemic to be actively 
used. For instance, temperature corrections (Hall et al. 2010) 
and the detection and elimination of background noise (Hall 
et al. 2013) will also contribute to a greater response time 
for the sensor. The architecture and function of signal con-
ditional circuits are therefore important in order to ensure a 
rapid response time.

Multiplexing

When the characteristics of the viral strain are less widely 
understood at the early stages of the infection, the infection 
is frequently signed by the concentrations of common blood 
biomarkers. For example, in the case of SARS-CoV-2, some 
hematology and medical investigations such as complete 
blood picture (CBC), sedimentation rate (ESR), liver func-
tions, C-reactive protein (CRP), and interleukins, in addi-
tion to computerized tomography (CT) scan on the chest are 
performed. A combination of more than two biomarkers is 
normally used to confirm this condition; therefore, it is an 
ideal multiplex system for the early detection of the disease 

that enables multiple biomarkers to be identified. Multiplex-
ing can be accomplished by physically isolating different 
areas of the sensor area where every isolated region works as 
a single sensor (Geißler et al. 2010; Li et al. 2018). Moreo-
ver, each  area may be unique to a single type of biomarker 
(Varshney and Li 2009; Danilov et al. 2018; Mehta et al. 
2018), in which a single transducer scans the isolated areas 
of the sensor surface, or the addition of several transducers 
connected to a single sensing area (Formisano et al. 2015; 
Tort et al. 2017) can be used to measure.

Disposable

SARS-CoV-2 as an example has a reproductive number that 
is higher than the calculated for SARS and H1N1, since the 
single-use sensors needed is between 1.5 and 2 to prevent 
contamination in sensing systems because pandemic viral 
strains are highly infectious. The most judicial method for 
designing a disposable sensor (Wang et al. 2013; Ramfos 
et al. 2014; Rose et al. 2014) is the modular approach.

Electrodes and readers should be constructed indepen-
dently in this approach, where electrodes are made cost-
effective. The use for immobilizing bio probes that are 
unique in the biomolecules of our interest could potentially 
become candidates for the creation of disposable electrodes 
by the use of glass (Zuo et al. 2013), paper (Ge et al. 2014; 
Desmet et al. 2016), plastic (Kröger and Turner 1997; Fars-
inezhad et al. 2013), metal (Solanki et al. 2011; Xiao et al. 
2012), and ceramic or other material. These products have 
the best disposable features with paper-based biosensory 
electrodes (Zuo et al. 2013; Desmet et al. 2016) that have 
recently attracted public interest. Reading modules in the 
form of cell phone (Sun et al. 2016) can, on the contrary, 
deliver many benefits other than cost efficiency, including 
the frequent processing of data and access to integrated 
healthcare networks.

Life‑time

The electrodes should also be simple to use and should last 
at least 1 month. Their simple use can encourage people to 
self-assess themselves and to make choices on their own 
self-isolation, essential and knowledgeable, to ensure the 
spread of disease can be minimized at its source (Gibson 
et al. 1992; Hannah et al. 2020). This allows for the creation 
of a variable degree of self-test and self-isolation.

Cost‑effect

Intuitively, the reduced the cost of the biosensor, the much 
more efficient the system is. The biosensor’s cost-effective-
ness is expressed in its affordability (Han et al. 2020). In 
order to maintain the cost lower, so all people in the society 
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can tolerate it through disease outbreaks, the biosensor sys-
tem can even be basically split into 2 parts: its first portion 
would be a removable electrode, such as a screen-printed 
electrode or a paper-based electrode, which could poten-
tially be sold in retail pharmacy stores (Yoo and Lee 2010; 
Choi 2020). The electrode can have direct contact with body 
fluid. The second component of the sensor device could be 
a cell phone app that can effectively be used to read signals 
directly from the sensor (Broeders et al. 2013; Huang et al. 
2018). Such applications may theoretically be made avail-
able to the government or health authority of the affected 
area or population.

On the other hand, an autonomous read-only device 
may even be built for data loggers that can be fitted in 
hospitals or on a country’s border control posts for dis-
posable sensors (J et al. 2018). There are definitely sev-
eral biosensors available in supermarkets, such as pater-
nity checks and side flow strips for sexually transmitting 
and for disorders already readily accessible. In addition, 
this will reduce the pressure on public health officials to 
diagnose the disease in a large population and may also 
contribute to prompt monitoring of the transmission of 
the disease.

Mass manufacturable

During pandemics, there is a pressing and high need for 
sensors that can specifically and easily diagnose the rapidly 
spreading outbreak. In SARS-CoV-2, the research rate is 
limited following the overall population due to an inabil-
ity to have and meet several sensors and even in countries 
with the leading public health infrastructures (Dyer 2020; 
Gaur et al. 2020). In an optimal scenario, the population of 
a particular geographic area is equivalent to the number of 
biosensors being studied to ensure that all future communal 
participants are eligible to participate. While mass produc-
tion sensors face an important technical challenge, recent 
production advances, for example, 3D printing (Manzanares 
Palenzuela and Pumera 2018) and machine molding [158], 
will lead in a very short space of time to the creation of a 
large number.

Autonomy and connectivity

Autonomy in the biosensing process ensures a high degree 
of reliability between electrodes and reading modules. The 
pandemic sensor measurement systems should be able, in 
addition to autonomy, to connect to the central hospital data-
base to capture measurement data in real time. For instance, 
cellular devices collecting sensor data can be combined with 
a two-way communication channel to (i) pass data to the 
central database and (ii) immediately provide therapeutic 

intervention or facilitate a situation for paramedical staff sent 
(Cortez et al. 2014; Roda et al. 2016; Wood et al. 2019).

Additional details regarding the responsiveness of a sen-
sor can also be stored and troubleshot by networked health-
care providers. In addition, the central databases could eas-
ily be logged on to the venue, positive sickness cases, and 
personal information, including age, gender, and contact 
numbers. That will offer real-time intelligence to the gov-
ernment and healthcare policymakers to rapidly and reliably 
assess appropriate steps, including closing certain areas to 
avoid and reduce the rapid spread of the epidemic (Ferretti 
et al. 2020) (Fig. 1).

New approach in SARS‑CoV‑2 surveillance 
using biosensor technology

Electrochemical biosensors

Electrochemical biosensors (EBs) are a class of biosensors 
that use an electrochemical transducer to detect biological 
materials (Osman et al. 2019). EBs were found very effective 
tools beyond their potential capability to provide a specific 
quantitative or semi-quantitative analytical information, 
especially for organic materials; however, many EBs have 
yet been a widespread success (Riberio et al. 2020). EBs 
observe the distribution changes over the transducer sur-
face, depending on the potentiometric, amperometric, or 
impedimetric transduction principles (e.g., enzymes, spe-
cific ligands, whole cells, and tissues). Meanwhile, the elec-
trochemical biosensor works on transducing the biochemi-
cal events to electrical signals depending on the electrode 
component as solid support for the immobilization of the 
biomolecules and electron movement (Cho et al. 2020b).

Accordingly, there are many usages for EB; one of them 
is detecting the organic pollutants in wastewater through a 
wide range of biorecognition methods that influence biosen-
sor performance (Ejeian et al. 2018). Notably, the ampero-
metric transduction mechanism based on horseradish barore-
ceptor was employed, and a modified platinum electrode has 
also been accomplished by electrostatic attachment of horse-
radish peroxidases (HRPs) on polyaniline (PAN) (Nomn-
gongo et al. 2012). This implies that a series of innovations 
for in situ wastewater monitoring concerns pollutants such 
biochemical oxygen demand (BOD) in very short time per 
minute with a high detection limit which has been existed or 
those capable for non-aerated conditions with high detection 
efficiency (Verma and Singh 2013; Yamashita et al. 2016).

Moreover, due to the recent events of outbreaks con-
cerning the SARS-CoV-2 epidemic since 2019 and others 
in the last decade, the focus is directed into biosensors as 
a first crucial step due to their rapid and accurate diagno-
sis of infected cases (Mao et al. 2020b; Imran et al. 2021). 
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Furthermore, the early stages of SARS-CoV-2 monitoring 
in wastewater using biosensors could be a likely diagno-
sis in the current pandemic. Therefore, EBs have a wide 
application in detecting pathogens, besides the smart option 
concerning separating electrodes and readout on smart-
phones (Bhalla et  al. 2020; Vidic and Manzano 2021). 
Because EBs have many advantages (e.g., miniaturization, 
mass manufacturing, and low cost), they are now becoming 
widely available in portable formats due to their commercial 
prices. Thus, the development process to upgrade their use 
in different fields is running constructively to cover many 
technologies such as non-labeling techniques which include 
surface-enhanced Raman scattering (SERS) and quartz-crys-
tal microbalance (QCM) technologies for viral samples or 
others used for the detection of RNA viruses, such as influ-
enza A/B, SARS-Corona, Ebola, MERS, Zika, and dengue 
(Loncaric et al. 2012; Han et al. 2016). Moreover, EBs are 
widely accustomed to detect nucleic acids, proteins, small 
molecular antibodies, and viruses as noted recently by Bar-
celo (2020). Besides, EBs have been used many years ago 
in the detection and diagnosis of viral infections. Due to 
their low cost, high selectivity and sensitivity (Seshadri et al. 
2020), they have been used to detect different influenza A 
subtypes  (H1N1,  H5N1) by using microfluid sensors. Also 
carbon electrodes sensors have been used to detect MERS 
and SARS.

For SARS-CoV-2, scientists are using similar tech-
niques as those used to detect SARS infections. A coated 
transistor (Fig. 2) contains graphene sheets in the presence 
of SARS-CoV-2 antibodies to produce the desired sensor 
identification. As well, in another latest research, Mahari 
et al. (2020) designed three-electrode electrochemical sen-
sors with the presence of carbon electrodes that are able to 
detect the SARS-CoV-2 viral infection within a limit of 120 
fM in buffer solvent, which shows an additional advantage of 
electronic biosensors ability to detect viral infection at low 
concentration (Bhalla et al. 2020). Moreover,  EB was devel-
oped for SARS-CoV-2 via detection of S and N proteins as 
reported by (Kudr et al. 2021).

Optical biosensors

There is a large number of biosensors that are based on the 
plasmonic principle, especially where transduction princi-
ples use optical components, for instance, photonic crystals 
(Rodriguez et al. 2019), waveguides (Ligler et al. 2002), 
lasers (Ma and Oulton 2019), and fiber optics (Socorro-Lerá-
noz et al. 2019) are classified into optical sensors which are 
defined as compact analytical tools containing biorecogni-
tion sensing element integrated with an optical transducer 
system (Damborsky et al. 2016). As known, the primary 
target of the optical biosensor (OB) is to produce a signal 

Fig. 1  Characteristics of an 
optimal biosensor for successful 
pandemic usage
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which is commensurable with the concentration of a meas-
ured substance (analyte). OB such as localized SPR (LSPR) 
and SPR were commercially available since the early 1990s 
(Cooper 2002), and they are used for the detection of viral 
strains of SARS (Huang et al. 2009), H1N1 (Kamikawa 
et al. 2012), influenzas (Takemura et al. 2017), and MERS 
(Lu et al. 2013). Chen and Wang (2020) have described the 
recent advancement in OB and focused on the mainstream 
of research in the biosensor, i.e., SPR, optical resonator-
based biosensor, photonic crystal-based biosensor, optical 
waveguide-based biosensor, and optical fiber-based biosen-
sor. Those biosensors have a history of epidemic diagnosis 
detection usage such as Ebola, HIV, and norovirus. This 
implies their potential ability to be used in nano-scale bio-
sensors for virus detection and single virus imaging (Bhalla 
et al. 2020).

There are many advantages of the developed plasmonic 
techniques such as selectivity, short response time, and high 
sensitivity for the viral strains. However, there are major 
drawbacks such as high cost and complicated instrumenta-
tion being used for plasmonic system development which 
makes it difficult to use plasmonic techniques in point-of-
care (POC) applications so difficult (Suleman et al. 2021). 
Therefore, the usage of these sensors remains incompre-
hensible for self-testing and mass production (Sheta et al. 
2019b, 2019a).

The wide applications of the OB have extended to several 
biological materials which have approved high performance 
and sensitivity without complexity pretreatment in the detec-
tion of the biological system (Damborsky et al. 2016). In 
addition, they present meaningful progress towards food pro-
cess control, drug discovery, clinical diagnostics, and even 
environmental monitoring, which has a desire of combining 

the detection and imaging to provide a deeper understanding 
of pathogens and in biological samples as well (Maddali 
et al. 2020). This feature is allowing pathogen-specific trac-
ers beyond the abnormalities in pathways that concern the 
disease at the molecular stage. In this regard, the dense bio-
logical tissues have a high absorbance potential rate that 
reduce the light intensity caused a subsequent decrease of 
the signal-to-noise ratio. This implies the need for advanced 
tools based on detection and imaging which thoroughly 
affect the field of OB to be applied in the further testing 
mechanism of viral pathogens. As mentioned in the previous 
part, that biosensors have been applied to detect pollutant 
levels on wastewater sufficiently and used to observe organic 
matter based on the immunoanalytical methods, which are 
known as fluorimetry for signal transducing in OB of organic 
pollutants (Ejeian et al. 2018), in addition to its common use 
for other pollutant monitoring in the environment such as 
antibiotics, hormones, and pesticides.

For the recent SARS-CoV-2 epidemic, OBs have been 
used in various ways, which present an alternative way for 
virus detection because of their cost-effective, safe, and 
not requires a nucleic acid amplification. Pashchenko et al. 
(2018) concluded that OB-based detection of infectious 
diseases can be used as POC diagnostic tools having many 
advantages noted in the previous section. Recently, a deep 
and great effort has been excited to find a sample tool for 
detecting viruses such as SARS-CoV-2 or others. For exam-
ple, Samson et al. (2020) have developed an optical biosen-
sor to detect the virus safely and reliably that combines two 
different biosensors, one is an optical and another one is 
thermal. As known, the sensor theory depends on a single 
RNA strand of the virus detection, in which the receptors 
are therefore representing the complementary sequences 

Fig. 2  Application of carbon 
electrodes sensors in COVID-19 
detection
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that can reliably identify the virus. Moreover, a result in 
the probability of viruses spreading into wastewater could 
pose a serious effect on human health. OB has proved their 
potential ability to detect viruses in wastewater.  

A novel biosensor was developed by Qiu et al. to accu-
rately diagnose SARS-CoV-2 where LSPR and plasmonic 
photothermal (PPT) effects are combined as transduction 
principles in the sensing scheme (Qiu et al. 2020). Essen-
tially, the DNA receptors are used for the detection of par-
ticular SARS-CoV-2 sequences through nucleic acid hybrid-
ization. With the compulsory use of nanoparticles and light 
in LSPR sensing, well-known thermoplasmonic at the plas-
monic resonance frequency is being generated. According to 
the authors, this thermoplasmonic heat increases the in situ 
hybridization temperature that assists in the accurate dis-
tinction of two similar gene sequences. Besides, the LSPR 
biosensor shows excellent SARS-CoV-2 sequence selectivity 
with a lower limit of detection (LOD) at a concentration of 
0.22 pM (Fig. 3).

Piezoelectric biosensor

Piezoelectric biosensor (PB) utilizes the piezoelectric effect 
based on a physical phenomenon of material voltage pro-
duction upon mechanical stress. This phenomenon can be 
reversed, and the mechanical stress can be produced upon 
giving voltage piezoelectric material surface (Narita et al. 
2021). In PB, there is a proportional relationship between 
mechanical stress and the output electric charge. Moreover, 
fluid pressure is transmitted to a transduction element via 
pressure sensor diaphragm; hence, there is an additional 
proportional relationship between the force transmitted and 
transduction element which is once more converted to pro-
portional electric charge. Piezoelectric effect can be seen 
in various materials such as anisotropic crystals (crystals 

without a center of symmetry), quartz, aluminum phosphate, 
zinc oxide, aluminum nitride, crystalized topaz, lead, barium 
titanate, gallium orthophosphate, tartrate tetrahydrate, poly-
vinylidene fluoride, and polylactic acids (Pohanka 2018). In 
previously mentioned biosensors, transduction and sensing 
elements can be distinguished, unlike in PB since they are 
one and the same (Gautschi 2002). PB is widely used in the 
immunology field to determine numerous macromolecular 
compounds such as DNA (Kirimli et al. 2014), albuminuria 
(Muratsugu et al. 2002), and microorganisms such as den-
gue virus (Chen et al. 2009), and finally for the detection of 
SARS-C V-2 (Narita et al. 2021).

Immunosensors

Immunosensors (IS) are biosensor types in which they 
defined as a combination between a transducer and a bio-
logical recognition mechanism. This leads to a generation 
of a detectable signal associated with the changes in the 
biomolecule concentrations. There are two main components 
for this mechanism to occur, the ligand and analyte. The for-
mer is covalently immobilized to the matrix, and the latter is 
passed over the sensor in solution. In IS, the ligands refer to 
the antibodies, and this technology was first used in the mid-
1990s for food analysis. Recently, there are many compelling 
progresses in IS miniaturization. Therefore, portable IS are 
commercially available enabling on-site and/or simultaneous 
detection of numerous biomolecules (Dupont 2011). IS have 
two major categories according to the principle, labeled and 
non-labeled IS. The design of labeled IS allows the immu-
nochemical complexation (i.e., antigen-antibody complex) 
to occur on the sensor matrix surface. The immunocomplex 
formation on the matrix surface has many variations. There-
fore, to be able to measure it via optical, potentiometric, and 

Fig. 3  A Concentrations of 
various viral oligos measured 
using the dual-functional LSPR 
biosensors, B SPR mechanism, 
and C mapping the temperature 
distribution around the con-
verted PPT heat source.
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amperometric measurements, the label must incorporate into 
the immunocomplex in the last step (Fig. 4A).

Unlike labeled IS, the design of non-labeled IS allows 
the direct determination of immunochemical complexation 
through measuring the physical changes induced by the for-
mation of the complex. There were many proposed IS as 
schematically illustrated in Fig. 4B. Solid matrix has either 
antigen or antibody immobilized on the surface for sensing 
device formation. In this case, higher sensitivity is required 
in the solid matrix to detect the immunocomplex formation. 
Several surfaces can be used to create non-labeled IS (e.g., 
piezoelectric material, electrode, optically active material, 
or membrane) (Aizawa 1994). The determination of the 
antibody or antigen starts by dissolving them in a solution 
to react with a complementary matrix-bound antibody or 
antigen for immunocomplex formation. This alternates the 
surface (e.g., intrinsic piezo-frequency, electrode potential, 
transmembrane potential) physical properties.

Microfluidic biosensor

Microfluidic technology became popular in the early 1990s 
(Manz et al. 1990; Harrison et al. 1992) for chemical sepa-
ration applications. The technology simplifies fluids’ small 
volume operations in the range of  10−6 to  10−18 l (μL–aL) 
(Mark et al. 2010; Choi et al. 2012; Puigmartí-Luis 2014). 
The implementation of microfluidics often utilizes planar 
substrates bearing enclosed channels with approximate 
widths, lengths, and depths of 100 μm, 10 mm, and 10 
μm scales, respectively. Currently, microfluidic applica-
tions have been extended to include synthesis (Baxendale 

et al. 2006; Baek et al. 2011), genomics (Wu et al. 2014), 
mazes (Fuerstman et al. 2003; Qin and Wheeler 2007), and 
music (Tan et al. 2014). The microfluidic community has 
an integrated lab-on-chip (LOC) system. It is considered a 
predominantly attractive vision that will reproduce labora-
tory-scale processes with lower cost, less time, and consider-
ably smaller footprints than their conventional counterparts 
(Manz et al. 1992). A major difference between microfluid-
ics and conventional systems is that the former depends on 
fluidic phenomena that show the importance of diffusion, 
viscosity, and surface tensions. These properties are fre-
quently represented as dimensionless parameters including 
Péclet number (Pe=vL/D), Reynold’s number (Re=ρvL/μ), 
and capillary number (Ca, vμ/γ) where v is the mean fluid 
velocity, L is a characteristic length in the system, D is coef-
ficient of diffusion, ρ is the fluid density, μ is dynamic fluid 
viscosity, and γ is surface tension. Generally, Pe, Re, and 
Ca values for microfluidic systems are low, which means, 
viscous forces dominate inertial forces (resulting in laminar 
flow), interfacial forces dominate viscous forces, and dif-
fusion dominates convection. It is crucial to consider these 
phenomena when designing microfluidic systems for bio-
sensors and electrochemistry. This phenomenon at micron 
length dimensions has been described in detail in previously 
published books (Tabeling and Chen 2005; Kirby 2010) 
and reviews (Beebe et al. 2002; Squires and Quake 2005). 
Examples of microfluidic biosensors (MFB) are displayed 
in Fig. 5.

Sun et al. have developed a smartphone-based multi-
plexing nucleic acid detection system integrating a silicon 
microfluidic chip for loop-mediated isothermal amplification 

Fig. 4  A Labeled immunosen-
sors and B non-labeled immu-
nosensors
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(LAMP) and a smartphone for fluorescence signal detection 
(Sun et al. 2020). No nucleic acid extraction step was real-
ized on the microfluidic chip, and repeated manual pipet-
ting was required during the assay. Also, Spindiag GmbH 
(Zengerle and Grötzinger 2020) company is currently devel-
oping a centrifugal microfluidic device for SARS-CoV-2 
detection due to its short turnaround time. In centrifugal 
microfluidic biosensors, solutions are transported inside 
microchannels by spinning-induced centrifugal forces (Gor-
kin et al. 2010; Kong et al. 2015). Centrifugal microfluid-
ics uses a motor capable of rotating the chips at various 
speeds, which enables the multi-step mixing of the solution. 
Therefore, the system has proven its efficacy in multi-nucleic 
acid testing. A portable centrifugal microfluidic system was 
developed for H3N2 virus detection (Stumpf et al. 2015).

Mitsakakis and Gizeli developed a surface acoustic wave 
(SAW) biosensor to apply microfluidic biosensing in micro-
channels (Mitsakakis and Gizeli 2011). SAW contains dual 
microfluidic channels and electrical contacts for signal input 
and output. It is possible to detect four different samples 
per sensor. Arata et  al. developed biosensing in micro-
channels and laminar flow-assisted dendritic amplification 
(LFDA) mechanism (Arata et al. 2012). The biosensor was 
developed by streptavidin-biotin dendrimer complex that is 
formed by probe-micro-RNA-biotinylated DNA sandwich. 

The laminar flow permits the continual addition of bioti-
nylated anti-streptavidin antibodies (green) and fluorescent 
streptavidin (violet). Martinez et al. developed paper-based 
biosensing to determine protein and glucose by utilizing two 
regions. Liquid flow is directed by the hydrophobic pattern-
ing via capillary action (Martinez et al. 2007). Finally, Choi 
et al. reported an application of digital microfluidic-based 
biosensing showing the separation of the supernatant from 
magnetic particles by a permanent magnet. It is possible 
to implement large DMF electrodes and process multiple 
samples (Choi et al. 2012).

Nano‑biosensors

As known, the nano-biosensors (NB) have a fundamental 
potential for the future of many diseases’ diagnoses. Besides, 
it collaborates with nowadays technologies to take the diag-
nosis procedure to a new level (Shirvalilou et al. 2021). 
Generally, the NB is responsible for detecting biological 
agents such as antibodies, nucleic acid, pathogens, and other 
metabolites in the human body. The basic principle of the 
NB role is based on the affinity of the receptors to binding 
into the targeting bio-analytes, which in turn modulates the 
physiochemical signal associated with the binding. Then 
the transducer has the ability to capture and convert the 

Fig. 5  Microfluidic biosensors. A Surface acoustic wave (SAW) biosensor, B laminar flow biosensor, C paper-based biosensing, and D digital 
microfluidic-based biosensing
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physiochemical signal into an electric signal. The variation 
in this signal could be measured and monitored, followed 
by analysis depending on different parameters like current, 
electric potential, conductance, impedance, mass, tempera-
ture, viscosity, and electromagnetic radiation leading to the 
identification of the presence or absence of the biological 
agent (Bahl et al. 2020b) (Fig. 6).

Recently NBs are used in the detection of the SARS-
CoV-2 throughout the viral antigen detection or antibodies 
detection. For example, graphene is used for that purpose 
due to the electrical characters with negative charges; also, 
dendritic nanochips are used as nanomedicine in the deter-
mination of  H2O2 in the blood. Metal nanoparticles (MNPs) 
like gold nanoparticles are also used as they have a potential 
electric property, excellent biocompatibility, and catalytic 
properties. The Chinese scientists and researchers developed 
nanoparticles based on diagnostic kits for rapid testing of 
SARS-CoV-2. These kits contain 2D materials, graphene, 
gold nanoparticles AuNPs, and carbon (Antiochia 2020).

Paper‑based biosensors

Paper-based method for detecting SARS-CoV-2 counts as 
one of the lateral flow tests (LFT), also known as POC, 
like a pregnancy test. These tests have a similar principle 
of work as immunoassay technology (Antiochia 2021). The 
high demand for the POC tests is due to the low cost of the 
test, ease of use, rapid onset, biodegradability, and proper 
accuracy (Samson et al. 2020) (Fig. 7).

For SARS-CoV-2 the LFT was designed to detect the 
presence of human antibodies IgG and IgM in the patient 
blood sample. The test strip consists of the following: (i) 
sample pad, (ii) conjugate pad which has the SARS-CoV-2 
antigen conjugated with nanoparticles (as gold), (iii) nitro-
cellulose membrane with control line coated with IgG and 
test line coated with IgM, and (iv) another absorbent pad 

to absorb the excess sample. Adding the sample will flow 
along the test device, passing through the conjugate pad, 
which acts as the first stage if the target antigen is present. It 
will bind with the stored antibodies IgG forming a colored 
complex. Then the fluid passes to the nitrocellulose mem-
brane in the second stage, forming a more density color line 
if the target antigen is present in the sample by binding with 
IgM antibodies. Finally, the sample reaches out to the absor-
bent pad, which is the last stage of the test, when the pad 
will absorb the excess sample amount. The result could be 
detected as acute infection in the case of a positive (colored) 
IgM and negative IgG or positive at both lines. In contrast, 
a positive IgG with a negative IgM indicates a later stage of 
infection (Choi 2020).

Mobile health (MHealth)

Mobile health biosensors have a tremendous ability to tran-
scend the disadvantages of a scarcity of therapeutic services 
to overcome this problem in order to promote successful 
action. MHealth is the use of mobile devices, materials, 
and associated infrastructure in the area of health mainte-
nance. MHealth offers an optimal platform for real-time and 
efficient health maintenance and disease prevention that is 
accomplished by tailored lifestyle improvements (through 
interactive applications), community-based or clinical treat-
ment roadmaps, and related diagnosis tracking. MHealth 
system enhances the efficiency, reliability, and suitability 
of the integrated healthcare and medical outbreak response, 
primarily through 2 ways: enhanced access to non-clinical 
healthcare services (including self-testing) and report-
ing diagnostic results to medical providers and healthcare 
organizations (Perkel 2017).

Patients report the findings of the self-tests via the mobile 
device to the hospital and health services and request assess-
ment and medication recommendations based on the actual 
state of the patient (Fig. 8). These processes include the quick 

Fig. 6  Schematic diagram of 
nanomaterial-based affinity bio-
sensor for coronavirus detection 
(AuNPs, gold nanoparticles; 
GR, graphene; NWs, nanowires; 
AuNIs, gold nickel nanoparti-
cles; FET, field-effect transistor)
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transfer and storing of data and the connection of all relevant 
parties, all of which entail appropriate resources for technolog-
ical support and hardware. The exponential advancements of 
portable networking technologies like 5G and digital comput-
ing, such as “big data” principles and “block chain,” increase 
data transfer and exchange speed and performance. Further-
more, the comprehensive mobile and network application 
required for them decreases the expense of data processing and 
transfer. Scientists and medical networks will have the ability 
to collect and process data with an efficient portable device 
with sensors/biosensors and wireless links (Perkel 2017).

In addition, the MHealth method will improve productivity 
by automating inventory and supply chain processes, reduc-
tion of workload and paper-related mistakes, and avoiding 
item loss (Namisango et al. 2016). MHealth has shown its 
effectiveness in reacting to certain infectious diseases on the 
media, clinical, and public health. Detailed online preven-
tion, evaluation, and health plan were presented in a report 
from the UK (Estcourt et al. 2017). Clinical consultations 

were conducted online for chlamydia patients who had a link 
between their history and their pharmacies’ acquisition of 
antibiotics. The framework combines partner alerts, health 
promotion, and automated data treatment to prevent the spread 
of these potentially asymptomatic contagious diseases.

A biosensor can also be a quick (personality testing), rapid 
(almost real time) diagnostic tool or detection device to deter-
mine the appropriate diagnosis targets for contagious dis-
eases (Bissonnette and Bergeron 2017), and to immediately 
relay the diagnostic effects to the MHealth system, which 
would dramatically accelerate the patient’s access to treat-
ment and consultation. The identification and implementation 
of a web-based symptoms and diagnosis reporting applica-
tion, associated with standardized clinical and epidemiologi-
cal data gathering, provides a significant potential to increase 
epidemic monitoring and control (Fallah et al. 2017).

Mobile surveillance can easily identify and handle SARS-
CoV-2 and intensify the real-time tracking of outbreak areas 
(Hayward et al. 2014). In addition, community health agencies 

Fig. 7  Paper-based biosensors
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will track the disease with the MHealth system in real time 
and take corrective steps such as geographic separation and 
strategic material distribution. The mobile system is easy to 
learn and can be diagnosed by all mobile system users, includ-
ing prospective patients, medical personnel, and community 
health agencies. Health professionals can help direct patients’ 
healthcare, and the community health department can better 
track the crisis and take steps such as prompt patient segrega-
tion, health safety, and public service distribution. In accord-
ance with diagnostic biosensors connected to the internet, the 
mobile networks provide modern approaches for the detec-
tion, surveillance, and management of infectious disorders 
while enhancing health system performance (Fig. 8).

Data analysis and user’s privacy protection 
challenges

Embedded data is used for remote patient treatment and 
diagnosis (e.g., from smartphones and sensors) (Latif 
et al. 2017a). This can include details on mobility, vital 

physiological signs, blood glucose, body temperature, and 
various other signals related to the activity. Ye et. al. (2020) 
have built a framework that uses real-time information, 
including demographic data, accessibility data, disease-
related data, and user-generated social media information. 
This proposed framework, called satellite, will provide a hier-
archical community-level risk evaluation that can guide the 
creation of strategies to tackle the SARS-CoV-2 pandemic.

Google has also used location data from smartphones to 
display people’s movements during the pandemic (Newton 
2020). The design of a low-cost framework for detecting 
SARS-CoV-2 using smartphone sensors is presented in 
another study (Maghdid et al. 2020). They suggest the use 
of radiologists’ mobile phones for virus detection. They 
emphasize that the proposed system is more accurate as it 
uses multi-readings that can capture signs related to the ill-
ness from multiple sensing instruments. Another latest study 
(Ferretti et al. 2020) concluded that SARS-CoV-2’s spread is 
too rapid for manual contact tracing to be contained. Disease 
monitoring applications (Yoneki and Crowcroft 2014) use 
contact/location sensor data to address this.

Fig. 8  Biosensor-based 
MHealth system
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The COVID Symptom-Tracking-Software and the 
COVID-Near-You- Service are the simplest ones that aim 
to understand the spread of the disease, particularly mild 
cases that are not frequently checked in the laboratory. Oth-
ers, such as Stay-Home-Safe in Hong Kong and the Home-
Quarantine-App in Poland (Cyfryzacji 2020), aims to track 
whether people follow quarantine rules (via geofencing). 
If they have come into touch with anybody infected, more 
sophisticated technologies will alert users. For example, there 
are many common softwares such as China's Close-Contact-
Detector- App as has been mentioned by (Kamel Boulos and 
Geraghty 2020), China's QR health code complementary 
system (Ye 2020), Singapore's Trace-Together-App. (Lai 
et al. 2021), and Israel’s HaMagen-App. (Cohen 2020). In 
the above apps, we remember that one important problem 
is the security of consumer privacy (Calvo et al. 2020; Cho 
et al. 2020a). Uploading contact data for server-side comput-
ing, for example, might build a national social relationship 
database, particularly in countries where the user can be man-
datory. Decentralized Privacy-Preserving Proximity Tracing 
(DP-3T) (Troncoso et al. 2020) was proposed to address this. 
This is a smartphone app for users who might have recently 
come in touch with an infected user that delivers privacy-
preserving warnings. Similar features based on homomorphic 
encryption are provided by TraceSecure (Bell et al. 2020), 
while Berke et al. provide privacy assurances through the 
intersection of private sets (Berke et al. 2020). Apple and 
Google have revealed collaboration focused on Bluetooth to 
create their privacy-preserving touch tracing standards.

The SARS-CoV-2 pandemic presents specific challenges 
to communities in developing countries with limited access to 
healthcare, especially as those people are disproportionately 
impacted by limited access to public health information (Ahmed 
et al. 2020; Abouzid et al. 2021) The creation of innovations 
intended to be internationally inclusive is a key task. This includes 
an analysis of how certain innovations could affect diverse pop-
ulations and examine how they could be applied in rural and 
socially vulnerable regions (Quinn et al. 2014; Latif et al. 2017b; 
Qadir et al. 2017) and also how they could be misused in such 
ways. This subsumes a range of functional challenges that natu-
rally differ on the basis of a particular use case. For example, if 
you are developing a mobile app for touch monitoring, it should 
be low cost and need limited resources; it should be built with 
limited network connectivity in mind; it should also accommodate 
various languages and be open to illiterate users or people with 
disabilities. We stress that maintaining widespread usability to 
technical technologies is essential to solving this global pandemic.

Conclusion and future perspective

Since the SARS-CoV-2 virus is already spreading from 
one person to another around the globe, it is imperative 
that this infection can be diagnosed early. Biosensing 

techniques must be continuously improved in order to 
meet the rising obstacles in viral diagnosis. It is possible 
for medical facilities to use the biosensor information to 
remotely screen the huge populations, such as quarantined 
individuals, patients confined to long-term care facilities, 
and those who are at risk in their own homes. The develop-
ment of biosensors remains challenging, especially with 
new issues such as data privacy and funding. Therefore, it is 
essential to proceed with more research on novel biomark-
ers and mechanisms besides the collaboration with multi-
ple disciple scholars. Future research should focus more 
on investigating modern properties of materials and study 
the mechanism and interactions between biomolecules and 
nanomaterials using nanofilms, electrodes, or new fabri-
cated surfaces.
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